特許第5946443号(P5946443)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本テキサス・インスツルメンツ株式会社の特許一覧 ▶ テキサス インスツルメンツ インコーポレイテッドの特許一覧

特許5946443積分非直線性補正を備えた逐次比較レジスタアナログ・デジタル・コンバータ
<>
  • 特許5946443-積分非直線性補正を備えた逐次比較レジスタアナログ・デジタル・コンバータ 図000003
  • 特許5946443-積分非直線性補正を備えた逐次比較レジスタアナログ・デジタル・コンバータ 図000004
  • 特許5946443-積分非直線性補正を備えた逐次比較レジスタアナログ・デジタル・コンバータ 図000005
  • 特許5946443-積分非直線性補正を備えた逐次比較レジスタアナログ・デジタル・コンバータ 図000006
  • 特許5946443-積分非直線性補正を備えた逐次比較レジスタアナログ・デジタル・コンバータ 図000007
  • 特許5946443-積分非直線性補正を備えた逐次比較レジスタアナログ・デジタル・コンバータ 図000008
  • 特許5946443-積分非直線性補正を備えた逐次比較レジスタアナログ・デジタル・コンバータ 図000009
  • 特許5946443-積分非直線性補正を備えた逐次比較レジスタアナログ・デジタル・コンバータ 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5946443
(24)【登録日】2016年6月10日
(45)【発行日】2016年7月6日
(54)【発明の名称】積分非直線性補正を備えた逐次比較レジスタアナログ・デジタル・コンバータ
(51)【国際特許分類】
   H03M 1/10 20060101AFI20160623BHJP
   H03M 1/46 20060101ALI20160623BHJP
【FI】
   H03M1/10 A
   H03M1/46
【請求項の数】20
【全頁数】19
(21)【出願番号】特願2013-506130(P2013-506130)
(86)(22)【出願日】2010年12月23日
(65)【公表番号】特表2013-526179(P2013-526179A)
(43)【公表日】2013年6月20日
(86)【国際出願番号】US2010062014
(87)【国際公開番号】WO2011133193
(87)【国際公開日】20111027
【審査請求日】2013年12月11日
(31)【優先権主張番号】12/799,323
(32)【優先日】2010年4月22日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】390020248
【氏名又は名称】日本テキサス・インスツルメンツ株式会社
(73)【特許権者】
【識別番号】507107291
【氏名又は名称】テキサス インスツルメンツ インコーポレイテッド
(74)【上記1名の代理人】
【識別番号】100098497
【弁理士】
【氏名又は名称】片寄 恭三
(72)【発明者】
【氏名】マイケル ディー スネデカー
【審査官】 栗栖 正和
(56)【参考文献】
【文献】 米国特許出願公開第2008/0186214(US,A1)
【文献】 特開平03−280719(JP,A)
【文献】 米国特許出願公開第2010/0207791(US,A1)
【文献】 特開平07−086947(JP,A)
【文献】 特開2009−005139(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H03M 1/00−1/88
(57)【特許請求の範囲】
【請求項1】
逐次比較レジスタ(SAR)アナログ・デジタル・コンバータ(ADC)を含むデバイスであって、
前記ADCが、
第1のアナログ入力信号を受け取るために接続され、各々が第1の導体に結合された第1の端子を有する複数のキャパシタを含む、第1のキャパシタデジタル・アナログ・コンバータ(CDAC)と、
前記第1の導体に結合される第1の端子を有する補正キャパシタを含む第1の補正キャパシタ回路と、
前記第1の導体に結合される第1の入力を有するコンパレータと、
前記コンパレータの出力に結合される入力を有し、更に、前記第1のキャパシタデジタル・アナログ・コンバータの前記キャパシタの第2の端子に結合され、それぞれ、前記第1のキャパシタデジタル・アナログ・コンバータの前記キャパシタの前記第2の端子を第1の基準電圧又は第2の基準電圧のいずれかに選択的に結合するための、複数のスイッチを制御するように結合される第1の出力バスを有する、逐次比較レジスタ論理回路要素であって、前記第1のアナログ入力信号を表すデジタル信号を生成する、前記逐次比較レジスタ論理回路要素と、
前記補正キャパシタの第2の端子を前記第1の基準電圧又は第3の基準電圧のいずれかに選択的に結合するように、前記補正キャパシタの前記第2の端子に結合される第1のスイッチと、
前記アナログ・デジタル・コンバータの転送特性における積分非直線性誤差を補正するように、ストアされた積分非直線性(INL)誤差情報に応答して、前記補正キャパシタの前記第2の端子を前記第1の基準電圧又は第3の基準電圧のいずれかに選択的に結合するように、前記第1のスイッチを制御するよう結合される第1の出力バスを有する、デコーダ回路要素と、
を含む、デバイス。
【請求項2】
請求項1に記載のデバイスであって、
前記第1の補正キャパシタ回路が複数の補正キャパシタを含み、前記デコーダ回路要素の前記第1の出力バスが、前記第1の補正キャパシタ回路の、それぞれ、前記補正キャパシタの第2の端子に結合される複数のスイッチを制御するよう結合される、デバイス。
【請求項3】
請求項2に記載のデバイスであって、
前記ADCが、第2のアナログ入力信号を受け取り、各々が前記コンパレータの第2の入力に結合される第2の導体に結合される第1の端子を有する複数のキャパシタを含む、第2のキャパシタデジタル・アナログ・コンバータを含み、前記ADCが、各々が前記第2の導体に結合される第1の端子を有する複数の補正キャパシタを含む第2の補正キャパシタ回路を更に含み、前記逐次比較レジスタ論理回路要素が、前記第2のキャパシタデジタル・アナログ・コンバータの前記キャパシタの第2の端子に結合され、それぞれ、前記第2のキャパシタデジタル・アナログ・コンバータの前記キャパシタの前記第2の端子を前記第1の基準電圧又は前記第2の基準電圧のいずれかに選択的に結合するための、複数のスイッチを制御するように結合される第2の出力バスを有し、前記デコーダ回路要素が、ストアされた積分非直線性誤差情報に応答して、前記第2の補正キャパシタ回路の前記補正キャパシタの前記第2の端子を前記第1の基準電圧又は前記第3の基準電圧のいずれかに選択的に結合するように、前記第2の補正キャパシタ回路の前記補正キャパシタの前記第2の端子に結合される複数のスイッチを制御するように結合される第2の出力バスを有し、前記逐次比較レジスタ論理回路要素が、前記第1及び第2のアナログ入力信号間の差を表すため前記デジタル信号を生成する、デバイス。
【請求項4】
請求項3に記載のデバイスであって、
前記第1及び第2のキャパシタデジタル・アナログ・コンバータのキャパシタがバイナリに重み付けられている、デバイス。
【請求項5】
請求項3に記載のデバイスであって、
前記第1及び第2の補正キャパシタ回路の補正キャパシタがバイナリに重み付けされている、デバイス。
【請求項6】
請求項3に記載のデバイスであって、
前記第1及び第2の補正キャパシタ回路の各々が2つの補正キャパシタを含む、デバイス。
【請求項7】
請求項3に記載のデバイスであって、
前記第1及び第2の補正キャパシタ回路の各々が6つの補正キャパシタを含む、デバイス。
【請求項8】
請求項7に記載のデバイスであって、
前記第1の導体が、第3の導体と前記第1及び第3の導体間に結合される第1のスケーリングキャパシタとを用いて、前記第1の補正キャパシタ回路の前記キャパシタの前記第1の端子と前記コンパレータの前記第1の入力とに結合され、前記第2の導体が、第4の導体と前記第2及び第4の導体間に結合される第2のスケーリングキャパシタとを用いて、前記第2の補正キャパシタ回路の前記キャパシタの前記第1の端子と前記コンパレータの前記第2の入力とに結合される、デバイス。
【請求項9】
請求項1に記載のデバイスであって、
前記デコーダ回路要素が、前記逐次比較レジスタ論理回路要素の一部である、デバイス。
【請求項10】
請求項9に記載のデバイスであって、
前記デジタル信号が、前記デジタル信号を前記逐次比較レジスタアナログ・デジタル・コンバータのデジタル出力信号にフォーマットするために出力論理回路により受け取られる、デバイス。
【請求項11】
請求項1に記載のデバイスであって、
前記逐次比較レジスタロジックによる所定の数の初期ビット決定の結果が、前記補正キャパシタのどれが前記第3の基準電圧に選択的に結合されるべきかを決定するようルックアップテーブルにアクセスするため、前記デコーダ回路要素によって用いられる、デバイス。
【請求項12】
請求項11に記載のデイバスであって、
前記ADCが、前記第3の基準電圧を生成するためにデジタルスケーリング信号を受け取るように結合される入力を有するデジタル・アナログ・コンバータを更に含む、デバイス。
【請求項13】
請求項1に記載のデバイスであって、
前記積分非線形誤差が、主として、前記第1及び第2のキャパシタデジタル・アナログ・コンバータの前記キャパシタの電圧係数により生じる、デバイス。
【請求項14】
請求項11に記載のデバイスであって、
前記ルックアップテーブルが、統計的に決定される積分非直線性補正情報をストアする、デバイス。
【請求項15】
逐次比較レジスタ(SAR)アナログ・デジタル・コンバータ(ADC)において積分非直線性誤差を低減するための方法であって、
前記ADCが、
各々が第1の導体に結合される第1の端子を有する複数のキャパシタを含む、アナログ入力信号を受け取るキャパシタデジタル・アナログ・コンバータ(CDAC)と、
前記第1の導体に結合された第1の入力を有するコンパレータと、
前記コンパレータの出力に結合された入力を有し、更に、前記キャパシタデジタル・アナログ・コンバータの前記キャパシタの第2の端子に結合され、それぞれ、前記第2の端子を第1の基準電圧又は第2の基準電圧のいずれかに選択的に結合するための、複数のスイッチを制御するように結合される第1の出力バスを有する、逐次比較レジスタ(SAR)論理回路要素であって、前記入力信号を表すデジタル信号を生成する、前記逐次比較レジスタ論理回路要素と、
を含み、
前記方法が、
ストアされた積分非直線性誤差情報を提供することと、
補正キャパシタ回路内の複数の補正キャパシタの各々の第1の端子を前記第1の導体に結合することと、
前記逐次比較レジスタアナログ・デジタル・コンバータの伝達関数における非線形性誤差を補正するように、ストアされた非線形性補正誤差情報に応答して、前記補正キャパシタの第2の端子を、それぞれ、前記第1の基準電圧又は第3の基準電圧のいずれかに選択的に結合するように、前記補正キャパシタの各々の第2の端子に結合されるスイッチを制御することと、
を含む、方法。
【請求項16】
請求項15に記載の方法であって、
前記補正キャパシタのどれが前記第3の基準電圧に選択的に結合されるべきかを決定するようルックアップテーブルにアクセスするため前記逐次比較レジスタ論理回路要素による所定の数の初期ビット決定の結果を利用することを更に含む、方法。
【請求項17】
請求項16に記載の方法であって、
前記ルックアップテーブル内の統計的に決定される積分非直線性補正情報をストアすることを更に含む、方法。
【請求項18】
請求項17に記載の方法であって、
前記積分非直線性誤差が、主として、前記キャパシタデジタル・アナログ・コンバータの前記キャパシタの電圧係数により生じ、前記方法が、前記逐次比較レジスタアナログ・デジタル・コンバータのための理想的な伝達関数から前記逐次比較レジスタアナログ・デジタル・コンバータのための実際の伝達関数を減算することにより前記積分非直線性誤差を決定することを更に含む、方法。
【請求項19】
請求項18に記載の方法であって、
デジタルスケーリング信号を受け取るよう結合される入力を有するデジタル・アナログ・コンバータを用いて前記第3の基準電圧を生成することを更に含む、方法。
【請求項20】
逐次比較レジスタ(SAR)アナログ・デジタル・コンバータ(ADC)において積分非直線性誤差を低減するための回路要素であって、
前記ADCが、
各々第1の導体に結合される第1の端子を有する複数のキャパシタを含む、アナログ入力信号を受け取るキャパシタデジタル・アナログ・コンバータ(CDAC)と、
前記第1の導体に結合される第1の入力を有するコンパレータと、
前記コンパレータの出力に結合される入力を有し、更に、前記キャパシタデジタル・アナログ・コンバータの前記キャパシタの第2の端子に結合され、それぞれ、前記第2の端子を第1の基準電圧又は第2の基準電圧のいずれかに選択的に結合するための、複数のスイッチを制御するように結合される第1の出力バスを有する、逐次比較レジスタ(SAR)論理回路要素であって、前記入力信号を表すデジタル信号を生成する、前記逐次比較レジスタ論理回路要素と、
を含み、
前記回路要素が、
補正キャパシタ回路内の複数の補正キャパシタの各々の第1の端子を前記第1の導体に結合するための第1の補正キャパシタ手段と、
積分非直線性誤差情報をストアするための手段と、
前記逐次比較レジスタアナログ・デジタル・コンバータの伝達関数における積分非直線性誤差を補正するために、ストアされた積分非直線性誤差情報に応答して、前記補正キャパシタの第2の端子を、それぞれ、前記第1の基準電圧又は第3の基準電圧のいずれかに選択的に結合するよう、補正キャパシタの各々の第2の端子に結合されるスイッチを制御するための手段と、
を含む、回路要素。
【発明の詳細な説明】
【技術分野】
【0001】
本願は、回路要素及び逐次比較レジスタ(SAR)ロジックを用いるアナログ・デジタル・コンバータ(ADC)において積分非直線性(INL)誤差に関する。
【背景技術】
【0002】
逐次比較レジスタ(SAR)アナログ・デジタル・コンバータ(ADC)は、入力電圧がキャパシタデジタル・アナログ・コンバータ(CDAC)にサンプリングされた後、バイナリビット毎の比較を実行するバイナリアルゴリズムを用いてアナログ信号をデジタル信号に変換する。このサンプリングは、操作され、基準と比較されるデジタル出力コードを決定する、CDAC内に電荷をストアし、このコードはアナログ入力電圧を最も近接して表す。
【0003】
キャパシタは、本来、キャパシタにストアされた電荷の量がキャパシタを介する電圧に対し非線形となるようにする二次電圧係数を有する。このような電圧係数は、ADCの出力における積分非直線性(INL)誤差を生じさせる。ADC増加においてアナログ入力電圧がサンプリングされるにつれて、CDACキャパシタ増加の二次係数に起因するINL誤差。実際のSAR ADC伝達曲線と「理想的な」直線上の階段状の伝達関数キャパシタ電圧係数により生じるとの差は、INL誤差であると考えられる。
【0004】
ADCにおけるINL誤差の大きさは、入力信号の大きさが増加するにつれて増加する。INL誤差のこの増加は、CDACキャパシタのキャパシタ電圧係数に起因するINL誤差とそれらを横切る電圧特徴的な二次又は「二乗」関係となる間の差の結果である。従って、入力電圧範囲のダブリングは、4倍にされたINL誤差となる。例えば、5ボルトピークトゥピーク入力信号がSAR ADCに印加される及びこれが1最下位ビット(LSB)のINL誤差の生成となる場合、10ボルトピークトゥピーク入力信号は、入力信号ピークで4LSBの誤差を生じ得る。INL誤差のグラフの中心点は、CDACにおける個別のキャパシタのマッチングに基づいて、及び入力がユニポーラ又はバイポーラ(及び更に、INL誤差の原因の一部であるため本質的に電圧係数に基づいて)であるか否かにも基づいて、左又は右のいずれかにシフトし得る。SAR ADCのINL曲線の特徴的なS形状は、入力信号を変換する際に用いられるアルゴリズムに応じて反転され得る。
【0005】
従来のアプローチは、米国特許番号第7,501,965号及び第7,196,645号に記載されている。
【0006】
図1及び図2は基本的なINL補正手法を開示する米国特許登録番号第7,501,965号の図6及び図7を再現したものである。図2は、図1のCDAC630の詳細を示す。コンパレータ610は、中間信号(これは、VIN及び補助DAC640に応答してCDAC630によって生成される)を、入力をSARロジック626に生成する中位参照電圧と比較する。補助DAC640は、誤差演算ブロック625によって演算されるデジタルINL誤差信号を受け取り、CDAC630への入力としてINL誤差信号のアナログ表示を生成する。INL誤差信号のアナログ表示は、CDAC630によって生成されるアナログ出力電圧を補正するために用いられる。SARロジック626は、演算ブロック625及びCDAC630を制御する典型的なSARアルゴリズムを実行する。米国特許番号第7,501,965号の手法は、現在の変換プロセスが生じているSAR ADC伝達関数の一部を決定する変換オペレーションの最初の数個のSAR ADCビット決定を用いる。このため、CDACキャパシタ容量性電圧係数により生じる典型的な誤差は、SAR ADC変換が終了する前に補正される。
【0007】
米国特許番号第7,501,965号の誤差演算ブロック625において実行されるINL誤差補正は、この複雑なプロセス及びそこに記載される関連する数式に従ってINL誤差補正を決定するために必要とされる種々の係数を演算する複雑な「数学エンジン」によって実行され、それにより、各個々のSAR ADCチップに対し非常に正確な補正を提供する。しかし、数学エンジンの利用は、望ましくなく複雑で、遅く、コストのかかる開示されたSAR ADCとなる。
【0008】
幾つかの既知のCDACにおいて、信号電圧セトリング問題より生じるダイナミック誤差に対し補正するダイナミック誤差補正キャパシタが提供される。
【0009】
SAR ADCにおけるキャパシタ電圧係数により生じるINL誤差速い補正費用をかけずに達成する必要性、及びこのような補正を達成するための複雑な数学エンジンを避ける必要性がある。
【発明の概要】
【0010】
一実施例に従って、本発明は、各々導体(13)に接続される第1の端子を有する補正キャパシタ(11B)を提供することにより、SAR ADC(10)におけるINL誤差が低減される回路及び方法を提供し、導体(13)は、CDAC(11A)のキャパシタの1つの端子に、及びSAR ADCのコンパレータ(5)の入力にも接続される。ストアされたINL誤差情報(18A)は、INL誤差を低減するようにストアされたINL誤差情報に応答して接地電圧又は参照電圧(VEF)のいずれかにそれらを選択的に結合するように補正キャパシタの第2の端子に結合されるスイッチ(32)を制御するために用いられる。
【0011】
一実施例において、本発明は、第1のアナログ入力信号(VIN)を受け取る第1のCDAC(11A)を含み、更に、各々第1の導体(13)に結合される第1の端子を有する複数のCDACキャパシタを含む、SAR ADC(10)を提供する。第1の補正キャパシタ回路(11B)が、第1の導体(13)に結合される第1の端子を有する補正キャパシタを含む。コンパレータ(5)が、第1の導体(13)に結合される第1の入力(+)を有する。SAR論理回路要素(18)が、コンパレータ(5)の出力(6)に結合される入力を有し、第1の基準電圧(GND)又は第2の基準電圧(VREF)のいずれかに第2の端子を選択的に結合するため、それぞれ、第1のCDAC(11A)のキャパシタの第2の端子に結合される複数のスイッチ(32)を制御するように結合される第1の出力バス(16)を更に有する。SAR論理回路要素(18)は、第1のアナログ入力信号(VIN)を表すデジタル信号(25)を生成する。デコーダ回路要素(18A)が、SAR ADCの転送特性のINL誤差を補正するようにストアされたINL誤差情報に応答して、補正キャパシタの第2の端子を第1の基準電圧(GND)又は第3の基準電圧のいずれかに(図8のVREF又はVREF1)選択的に結合するよう、補正キャパシタ(11B)の第2の端子に結合されるスイッチ(32)を制御するよう結合される第1の出力バス(24)を有する。
【0012】
説明した実施例において、第1の補正キャパシタ回路(11B)が、複数の補正キャパシタ(11B)を含む。デコーダ回路要素(18A)の第1の出力バス(24)が、第1の補正キャパシタ回路(11B)の、それぞれ、補正キャパシタの第2の端子に結合される複数のスイッチ(32)を制御するよう結合される。第2のCDAC(7A)が、第2のアナログ入力信号(VIN)を受け取り、各々がコンパレータ(5)の第2の入力(−)に結合される第2の導体(12)に結合される第1の端子を有する複数のCDACキャパシタを含む。SAR ADC(10)は、各々が第2の導体(12)に結合される第1の端子を有する、複数の補正キャパシタを含む第2の補正キャパシタ回路(7B)を更に含む。SAR論理回路要素(18)は、第2のCDAC(7A)のキャパシタの第2の端子を第1の基準電圧(GND)又は第2の基準電圧(VREF)のいずれかに選択的に結合するための、それぞれ、第2のCDAC(7A)のキャパシタの第2の端子に結合される複数のスイッチ(32)を制御するように結合される第2の出力バス(14)を有する。デコーダ回路要素(18A)は、ストアされたINL誤差情報に応答して、第2の補正キャパシタ回路(7B)の補正キャパシタの第2の端子を、第1の基準電圧(GND)又は第3の基準電圧(図8のVREF、又はVREF1)のいずれかに選択的に結合するよう、第2の補正キャパシタ回路(7B)の補正キャパシタの第2の端子に結合される複数のスイッチ(32)を制御するように結合される第2の出力バス(22)を有する。SAR論理回路要素(18)は、第1の(VIN)及び第2の(VIN)アナログ入力信号間の差(VIN−VIN)を表すデジタル信号(25)を生成する。デコーダ(18A)は、SAR論理回路要素(18)のの一部である。デジタル信号(25)は、デジタル信号(25)をSAR ADC(10)のデジタル出力信号(DOUT)にフォーマットするため出力論理回路(27)により受け取られる。
【0013】
説明した実施例において、第1の(11A)及び第2の(7A)CDACのキャパシタは、バイナリに重み付され、第1の(11B)及び第2の(7B)補正キャパシタ回路の補正キャパシタもバイナリに重み付される。
【0014】
一実施例において、第1の導体(13)が、第3の導体(13A)及び第1の(13)及び第3の(13A)導体間に結合される第1のスケーリングキャパシタ(図7のCSCALE)を用いて、第1の補正キャパシタ回路(11B)のキャパシタの第1の端子及びコンパレータ(5)の第1の(+)入力に結合され、
第2の導体(12)が、第4の導体(12A)及び第2の(12)及び第4の(12A)導体間に結合される第2のスケーリングキャパシタ(図7のCSCALE)を用いて、第2の補正キャパシタ回路(7B)のキャパシタの第1の端子及びコンパレータ(5)の第2の(−)入力に結合される。
【0015】
一実施例において、デジタル・アナログ・コンバータ(15)が、第3の基準電圧(VREF1)を生成するためにデジタル入力信号(SCALING CODE)を受け取るよう結合される入力(17)を有する。
【0016】
説明した実施例において、INL誤差は、主として第1の(11A)及び第2の(7A)CDACのキャパシタ電圧係数により生じる。
【0017】
説明した実施例において、SARロジック(18)による所定の数の初期ビット決定の結果が、どの補正キャパシタが第3の基準電圧(VREF又はVREF1)に選択的に結合されるべきかを決定するルックアップテーブル(表1)にアクセスするためデコーダ(18A)によって用いられる。
【0018】
一実施例において、ルックアップテーブル(表1)は、統計的に決定されたSAR ADCのためINL補正情報をストアする。
【0019】
一実施例において、本発明は、アナログ入力信号(VIN)を受け取るCDAC(11A)を含むSARADC(10)におけるINL誤差を低減するための方法を提供し、SARADC(10)は、各々が第1の導体(13)に結合される第1の端子を有する複数のCDACキャパシタ、第1の導体(13)に結合される第1の入力(+)を有するコンパレータ(5)、及びコンパレータ(5)の出力(6)に結合される入力を有し、第2の端子を第1の基準電圧(GND)又は第2の基準電圧(VREF)のいずれかに選択的に結合するための、それぞれ、CDAC(11A)のキャパシタの第2の端子に結合される複数のスイッチ(32)を制御するように結合される第1の出力バス(16)を更に有する、SAR論理回路要素(18)を含み、SAR論理回路要素(18)が、入力信号(VIN+)を表すデジタル信号(25)を生成する。この方法は、ストアされたINL誤差情報を提供すること、補正キャパシタ回路(11B)内の第1の端子の各々の複数の補正キャパシタを第1の導体(13)に結合すること、及びSAR ADC(10)の伝達関数のINL誤差を補正するため、ストアされたINL誤差情報に応答して、補正キャパシタの第2の端子を、それぞれ、第1の基準電圧(GND)又は第3の基準電圧(図8のVREF又はVREF1)のいずれかに選択的に結合するように補正キャパシタの各々の第2の端子に結合されるスイッチ(32)を制御することを含む。
【0020】
記述される実施例において、この方法は、どの補正キャパシタが第3の基準電圧(VREF又はVREF1)に選択的に結合されるべきかを決定するルックアップテーブル(表1)にアクセスするためSAR論理回路要素(18)による所定の数の初期ビット決定の結果を利用することを含む。記述される実施例において、この方法は、ルックアップテーブル(表1)内のSAR ADCのための統計的に決定されたINL補正情報をストアすることを含む。この方法は、SAR ADCのための理想的な伝達関数からSAR ADC(10)のための実際の伝達関数を減算することによりINL誤差を決定することを更に含む。一実施例において、この方法は、デジタル入力信号(SCALING CODE)を受け取るよう結合される入力(17)を有するデジタル・アナログ・コンバータ(15)を用いて第3の基準電圧(VREF1)を生成することを含む。
【0021】
一実施例において、この方法は、アナログ入力信号(VIN)を受け取るCDAC(11A)を含むSARADC(10)におけるINL誤差を低減するための回路を含み、SARADC(10)は、各々が第1の導体(13)に結合される第1の端子を有する複数のCDACキャパシタ、第1の導体(13)に結合される第1の入力(+)を有するコンパレータ(5)、及びコンパレータ(5)の出力(6)に結合される入力を有し、第2の端子を第1の基準電圧(GND)又は第2の基準電圧(VREF)のいずれかに選択的に結合するために、それぞれ、CDAC(11A)のキャパシタの第2の端子に結合される複数のスイッチ(32)を制御するように結合される第1の出力バス(16)を更に有するSAR論理回路要素(18)を含む。SAR論理回路要素(18)は、入力信号(VIN+)を表すデジタル信号(25)を生成し、この回路要素は、補正キャパシタ回路(11B)内の複数の補正キャパシタの各々の第1の端子を第1の導体(13)に結合するための第1の補正キャパシタ手段(11B)、INL誤差情報をストアするための手段(表1、18A)、及びSAR ADC(10)の伝達関数のINL誤差を補正するように、ストアされたINL誤差情報に応答して、それぞれ、補正キャパシタの第2の端子を第1の基準電圧(GND)又は第3の基準電圧(VREF又はVREF1)のいずれかにに選択的に結合するよう、補正キャパシタの各々の第2の端子に結合されるスイッチ(32)を制御するための手段(18A)を含む。
【0022】
例示の実施例を添付の図面を参照して説明する。
【図面の簡単な説明】
【0023】
図1図1は、従来技術INL誤差補正回路要素を含むアナログ・デジタル・コンバータの概略図である。
【0024】
図2図2は、図1のブロック620の概略図である。
【0025】
図3図3は、典型的なINL特性曲線及び本発明に従ったINL補正曲線を示す図である。
【0026】
図4図4は、本発明に従ったINL補正キャパシタ及び関連する回路を含むSAR ADCのブロック図である。
【0027】
図5図5は、4個のINL補正キャパシタを含む、図4のSAR ADCの一実装例の概略図である。
【0028】
図6図6は、12個のINL補正キャパシタを含む、図4のSAR ADCの一実装例の概略図である。
【0029】
図7図7は、12個のINL補正キャパシタ及び2個のスケーリングキャパシタを含む、図4のSAR ADCの一実装例の概略図である。
【0030】
図8図8は、12個のINL補正キャパシタ及びDAC(デジタルアナログコンバータ)を含み、スケーリングコードに応答してCDAC及びスケーリングキャパシタのための参照電圧を生成するための、図4のSAR ADCの一実装例の概略図である。
【発明を実施するための形態】
【0031】
理想的なSAR ADC伝達関数は、SAR ADCのアナログ入力電圧をそれらのデジタル表示に関連させる直線又は線形の階段状の関数である。SAR ADC内のCDACのキャパシタ電圧係数に起因する伝達関数におけるINL誤差(積分非直線性誤差)は、その実際の伝達関数をそれの理想的な伝達関数と異ならせる。理想の伝達関数からの差は、図3に示すような特徴的なS形状のINL誤差曲線により表され得る。INL曲線は、そのCDACキャパシタの電圧係数に起因する、SAR ADCの積分非直線性に見られる特徴的なS形状を有する。INL誤差曲線は、実際の伝達曲線から理想的な線形伝達曲線を減じることにより得られる。
【0032】
INL誤差曲線の特徴的なS形状は、二次キャパシタ電圧係数により生じる。INL誤差曲線は、実際は、実際のSAR ADC伝達関数の終点から直線を描き、その後理想の直線の伝達関数から実際の伝達関数を減算することにより得られる。この線を描くことは、最終結果にトランスペアレントな最初の及び最後のセグメントの任意の違いをつくる。
【0033】
図3に示すINL曲線のシンプルな表示を提供するために三次多項式が用いられたが、より複雑で、従って、より正確な、数式を代りに用いることもできる。いずれにしても、数式で表されるべき必要とされるINL補正の量は、まずINL曲線を区分することにより決まる必要がある。補正の制約は、これらのセグメント内で補正が成され得ないように、最初の及び最後のセグメント内の最大誤差から来る。
【0034】
図3のグラフにおいて、「INL」で示すシミュレーションされたS形状の曲線は、SAR ADCのCDACのキャパシタの電圧係数により生じる積分非直線性誤差を表す。図3グラフの縦軸は、LSB(最下位ビット)で表わされる正規化されたINL誤差を示し、従って、ボルトを暗示する。各LSBが、関連する「LSBサイズ」を有し、これは、デジタル出力信号DOUT(図4)の最下位ビットを「0」から「1」まで又はその反対にスイッチさせるために必要とされる入力電圧変化の量に等しい。最大INL誤差電圧の値は、用いられている参照電圧及び印加された入力電圧の範囲に依存する。「LSBサイズ」は、CDACの構成又はアーキテクチャに依存する。図3のINL曲線の縦軸は、最大誤差が1LSBと性格に同等となるように正規化される。図3の横軸で示す「正規化された入力電圧範囲」は、SAR ADCのバイポーラ入力電圧の範囲を示す。図3の横軸では、実際のバイナリ・コードは示されていないことに留意されたい。というのは、それらは、+1ボルトに正規化されているためである。図3の「INL調整(正規化されたもの)」曲線は、図4及び5に示すSAR ADCのためのシミュレーションされた「補正された」INL誤差であり、図4のブロック5、7、及び11に対し、図5のCDAC回路要素10−1が提供される場合、INL補正キャパシタのVREFへのスイッチングに起因する。本発明のINL補正キャパシタは、シミュレーションされたINL調整(正規化されたもの)曲線に示す低減されたINL誤差を提供するために用いられる。INL調整(正規化されたもの)曲線は、本発明のINL補正キャパシタ手法を用いた結果、補正されていない(即ち、S形状の)INL誤差の量に比べ、SAR ADC伝達関数におけるINL誤差の著しく低減された量を示す。
【0035】
図3において、INL調整(正規化されたもの)曲線は、INL調整(実際)曲線及び理想的な伝達関数曲線から得られる。INL調整(正規化されたもの)曲線の左及び右の終点はいずれも縦軸で0LSBであることに留意されたい。図4及び5の例において示されるINL補正回路要素が用いられる場合、実際の補正されたINL誤差曲線が、実際のSAR ADC伝達関数から、SAR ADCの対応する実際の理想の線形伝達関数を減じることにより得られるとき、結果は、図3に示すINL調整(実際)曲線である。その計算された終点は0LSBではないことに留意されたい。従って、理想的な伝達関数曲線は、実際は、理想の伝達関数曲線の左及び右の終点を通る直線を描くことにより得られる。そのため、理想の伝達関数及びINL調整(実際)は、実際は、理想の伝達関数の左の終点を0LSBまで引き上げ、右の終点を0LSB下げることにより「正規化される」。理想の伝達関数曲線の各点がシフトされる量は、INL調整(実際)曲線の対応する点を等しくシフトするために用いられ、そのシフトによりINL調整(正規化されたもの)曲線となる。
【0036】
図4において、SARADC10は、CDAC11A及び複数のINL補正キャパシタブロック11B両方を含むCDAC11を含む。入力電圧VINは、CDAC11Aの入力に印加される。CDAC11の出力13は、コンパレータ5の(+)入力に接続され、その出力は、SARロジック18の入力に接続される。SARADC10は、CDAC7A及びブロック7B内の複数のINL補正キャパシタ両方を含むCDAC7を更に含む。入力電圧VINは、CDAC7Aの入力に印加される。CDAC7の出力12は、コンパレータ5の(−)入力に接続される。(コンパレータ5の(+)及び(−)入力の接続に対するVIN及びVINの関係は、逆にすることができ、SARロジック18内で補償されることに留意されたい。)
【0037】
図3のINL及びINL調整(正規化されたもの)曲線のシミュレーション元となったCDAC7及び11の一実装の詳細を図5に示す。図5を参照すると、回路要素10−1を、CDAC7A及び11A及び図4のINL補正キャパシタブロック7B及び11Bの実装のために用いることができる。(図4のINL補正キャパシタ7B及び11Bは、それぞれ、CDAC7及び11の一部であると考えることができる。)図5のCDAC11Aにおいて、それぞれ、静電容量C、2C、4C、8C...xC、yC、及びzCの多数のバイナリに重み付されたCDACキャパシタの各々は、導体13によりコンパレータ5の(+)入力接続される上側端子を有する。それらのCDACキャパシタの各々の下側端子は、接地(GND)に接続される1つの端子及びVREFに接続される別の端子を有する対応するスイッチ32のワイパーに接続される。同様に、CDAC7Aにおいて、それぞれ、静電容量C、2C、4C、8C...xC、yC、及びzCの多数のバイナリに重み付されたCDACキャパシタの各々は、導体12によりコンパレータ5の(−)入力接続される下側端子を有する。CDAC7A内の各CDACキャパシタの上側端子は、接地(GND)に接続される1つの端子及びVREFに接続される別の端子を有する対応するスイッチ32のワイパーに接続される。CDAC11A内のスイッチ32の制御電極は、図4のバス16の対応する導体に接続され、CDAC7A内のスイッチ32の制御電極は、図4のバス14対応する導体に接続される。
【0038】
図5は、図4のブロック7B及び11B内のINL補正キャパシタのための回路要素を更に示す。図5のブロック7Bにおいて、2つのINL補正キャパシタ静電容量C/4及びC/2の各々が、導体12に接続される上側端子及び接地に接続される1つの端子及びVREFに接続される別の端子を有する対応するスイッチ32のワイパーに接続される下側端子を有する。同様に、図5のブロック11Bにおいて、静電容量C/4及びC/2の2つのINL補正キャパシタの各々が、導体13に接続される下側端子及び接地に接続される1つの端子及びVREFに接続される別の端子を有する対応するスイッチ32のワイパーに接続される上側端子を有する。
【0039】
ブロック11B内のスイッチ32の制御電極は、INLデコーダ18A(図4)からバス24の対応する導体に接続され、及び同様に、ブロック7B内のスイッチ32の制御電極は、バス22(図4)の対応する導体に接続される。この例において、図5の補正キャパシタ値は、0.5及び0.25LSBに対応する値を有するようにスケーリングされる。これにより3つのINL補正値0.25、0.5、及び0.75LSBがコンパレータ5の(+)又は(−)入力のいずれかに提供されることが可能となる(ここでLSBは、1つのキャパシタンス値Cに対応する値を有するとして定義される)。図4及び5に示す構成は、12ビットSAR ADCの場合について図3のシミュレーションされたINL及びINL調整(正規化されたもの)曲線を生成するために用いられた。(図3のグラフは、正規化されており、実際には8より大きいビットの任意のSAR ADCに適用可能である。)
【0040】
図3のINL調整(正規化されたもの)曲線は、実際には、INL補正静電容量の選択された量をCDAC7A又はCDAC11Aの静電容量に付加することにより初期ビット決定(例えば、5ビット決定)が現在のSAR ADC変換プロセスにおいて成されるとして、区分されたINL補正の選択された量がINL誤差を補正するためにどのように用いられ得るかを示す。対応する補正値は、それにより決定され、予期される統計的INL誤差のためを補正するため、図5のCDAC7Aの導体12又はCDAC11Aの導体13上に重畳される。図4及び5の例において、最初の5つの決定がなされた後補正が導体12又は導体13に適用される。(しかし、どのくらい多くのINL誤差補正が必要とされるかを決定するためにより多くの初期ビット決定の結果を用いることは、より正確なINL補正結果をもたらすことに留意されたい。)サンプルが位置する伝達関数の「位置」を5ビットを用いて評価することは、32個の可能なINL誤差補正値を提供する。
【0041】
INL補正キャパシタ11Aを「ON」にすること(例えば、表1に後述するように)は、対応するスイッチ32を介してそれらをVREFに及び導体13をコンパレータ5の(+)入力に接続することにより達成される。これは、CDAC11における有効なストアされた電荷を増加させ、そのため、バス25(これは、データフォーマットを除き、バス30上のDOUTと全く同じである)上のSAR ADC出力コード値を増加させる。同様に、INL補正キャパシタ7Aを、それらを対応するスイッチ32を介して及び導体12をコンパレータ5の(−)入力に接続することにより「ON」にすることは、CDAC11内の有効なストアされた電荷を低減させ、それによりSAR ADC出力コード値を低減させる。
【0042】
CDAC11A及び7Aのキャパシタ内の対応する電荷の量をストアする差動入力電圧VIN−VINのサンプリングの間、INL補正キャパシタが、に結合される接地参照電圧(GND)。続いて、選択された補正キャパシタが、導体13又は導体12上の適切なINL補正をつくるためVREFにスイッチングされる。(このプロセスは反対にされ得、すなわち、補正キャパシタはVREFにサンプリングされ、補正を行うため接地にスイッチングされ得ることに留意されたい。しかし、ルックアップテーブルはこれを可能にするために調節される必要がある。)SAR ADC10はビット決定を準じ行うため、現在の変換が起こっているSAR ADC伝達関数の部分又は位置、最上位又は上側ビットの結果を決定するために用いることができる。この情報で、ブロック7B内の補正キャパシタは、CDAC7Aのキャパシタと共に導体12に接続され、又は補正キャパシタブロック11Bは、CDAC11Aのキャパシタと共に導体13に接続され、従って、実際には、続いて記載されるINLデコーダ18A及び関連する実装続いて記載される表1によって決まるような方式でINL誤差を補正する目的で、それぞれ、CDAC11A又はCDAC7Aに付加されるまたはその上に重畳される。INL補正の大きさは、統計的に予期されるINL誤差に従って多数のLSB又は「LSBサイズ」として生じ、入力信号範囲に対して調節される。
【0043】
図4において、SARロジック18は、従来のSARロジック及びレジスタ回路要素を含み、変換プロセスの間ONにされる(即ち、参照電圧VREFに接続される)INL補正キャパシタを制御するINLデコーダ18Aを更に含む。SARロジック18の1つの出力は、導体のグループ又はデジタルバス14により結合されて、SARロジック18によって実行される従来のSARアルゴリズムの実行に従って、ブロック7A内の種々のバイナリに重み付されたキャパシタを接地又はVREFのいずれかに接続するよう機能する、CDAC7Aの種々のスイッチの端子を制御する。同様に、SARロジック18の別の出力は、導体のグループ又はバス16により結合されて、ブロック11A内の種々のバイナリに重み付されたキャパシタを、SARアルゴリズムに従って接地又はVREFのいずれかに接続するよう機能する、CDAC11Aの種々のスイッチの端子を制御する。
【0044】
INLデコーダ18Aの1つの出力は、本発明のINL誤差補正プロセスに従って、接地又はVREFのいずれかにブロック7Bの個別の補正キャパシタを接続するよう機能する種々のスイッチの端子を制御するよう導体22のグループにより接続される。同様に、INLデコーダ18Aの別の出力は、本発明のINL誤差補正プロセスに従って、接地又はVREFのいずれかにブロック11Bの個別の補正キャパシタを接続するよう機能する種々のスイッチの端子を制御するよう導体24のグループにより接続される。
【0045】
SARロジック18の出力は、デジタルバス25により出力ロジック27の入力に結合される、出力ロジック27は、SARロジック18内のSARレジスタの内容をシリアル又はパラレルデジタル出力ワードDOUTに変換する。
【0046】
INLデコーダ18Aの種々の実装例を用いることができる。例えば、マルチプレクサに関連してシンプルなハードワイヤードルックアップテーブルを用いることができる。SARロジック18による最初の5つの最上位ビット決定の結果に基づいて、INLデコーダ18Aは、どのINL補正キャパシタ11B又は7BがONにされるかべきかを選択する。最初のビット決定は、SAR ADC変換プロセスが図3のS形状のINL誤差曲線の正の部分で動作しているか又は負の部分で動作しているか、及びそのためINL誤差を低減するため補正キャパシタブロック7Bに又は11Bが(それらをVREFに接続することにより)オンにされているかどうかを示す。次の4つのビット決定は、CDAC回路要素の側(即ち、(+)側又は(−)側)のどのINL補正キャパシタがコンパレータ5の入力(導体12又は導体13のいずれか)上のINL誤差補正電荷及び電圧の増加量を重畳し得るかを示す。図3の左側に対応するSAR ADC伝達関数の前半では、実際のINL誤差を補正するためINL誤差が減算され、図3の右側に対応するINL伝達関数の後半では、実際のINL誤差を補正するため誤差量が付加される。(INL曲線のSの形状の極性は反対にされてもよく、その場合、上述のINL誤差の減算及び付加も反対にされる必要があることに留意されたい。)
【0047】
最初の5つのビット決定がSARロジック18により成された後、INLデコーダ18Aがアクティブにされ、例えば、5つの最上位ビット決定のMSBビット結果をデコードし、その情報を用いて表1で表すルックアップテーブルからの情報に応答して成される必要があるINL誤差補正の極性及び量を決定する。INLデコーダ18Aはその後、実際は、それに従って、導体12又は導体13上の増分INL補正電荷(及び電圧)の適切な量を重畳するため、種々の補正キャパシタをオンにする。
【0048】
このため、導体12又は導体13上の結果の電圧がセトリングすることを可能にした後、SARロジック18は、SAR ADC変換アルゴリズムの実行を継続する。出力論理回路要素27は、SARロジック18からデジタル出力コード信号25を受け取り、それを所望のフォーマット、例えば、シリアルフォーマット、パラレルフォーマットなどに変換する。
【0049】
上述したように、「ダイナミック誤差補正キャパシタ」は、信号電圧セトリング問題により生じるダイナミック誤差のため幾つかのCDACを補正するために用いられる。(ダイナミック誤差は、ビット決定の任意のものの間導入され得る。典型的に、最上位ビットは、最もダイナミック誤差が導入され及び最もセトリング時間が必要とされる場所である。)このようなダイナミック誤差補正キャパシタが存在する場合、その後、本発明のINL補正はこのようなダイナミック誤差補正キャパシタの最後がSARロジック18において用いられる前に適用されるべきである。ダイナミック誤差補正オペレーションは、変換の間任意の付加的な誤差が導入される場合、それらが補償され得るように、本発明の少なくとも1つの誤差補正ビットオペレーション前に実行されるべきである。
【0050】
上述のように、INLデコーダ18Aは、以下に示す表1に示される情報を含むハードワイヤードルックアップテーブルを含み得、ルックアップテーブル1をアクセスするため従来のマルチプレクス又はアドレス回路要素を含み得る。表1において、最初の5つのMSB決定ビットは、最初の5つのMSBビット決定の結果であり、結果00000で始まる。ビット決定結果00000は、図3に示す横軸の「入力電圧範囲」の正規化された値である、正規化された−1.0000を表す。同様に、ビット決定結果11111は、図3の横軸の「入力電圧範囲A」の正規化された1.0000値を表す。
【0051】
種々の入力電圧範囲のためのINL調整(正規化されたもの)補正レベルは、ブロック11B及び7B内のINL補正キャパシタの種々の組み合わせを選択するため、ルックアップテーブルを単に調節することによって提供され得る。付加的なINL補正キャパシタ、即ち、図5に示す4つより多い補正キャパシタが、より大きい範囲の基準電圧のためのより大きいINL誤差の補正を可能にするため提供され得る。これは、より大きい入力電圧がADCSAR10の入力に印加されるとき助けとなる。典型的に、入力電圧が大きいほど、INL誤差がより大きくなり得る、これは、INL誤差の大きさは、入力電圧の二乗関数であるためである。
【0052】
例えば、入力信号範囲が+10ボルトである場合、そのSAR ADCの最大INL誤差は8LSBとなる。図6に示す12INL補正キャパシタを用いる構成は、8LSBまでのINL誤差を補正することができる。しかし、入力信号の範囲が+5ボルトまで低減される場合、入力範囲が半分に低減されており、その後これが、INL誤差範囲を4の係数でを低減する効果を有する。その後、8LSBのINL誤差範囲が2LSBまで低減される。その場合、図6に示す静電容量4C及び2Cの補正キャパシタは、INL補正に必要とされない。従って、表1は、この場合、低い値のINL補正キャパシタのみを用いるよう調整され得る。しかし、好ましくは、より高い値のINL補正キャパシタがブロック11B及び7Bに含まれて、表1を予期される最も悪いINL誤差のため調整し得る。
【表1】
【0053】
INLデコーダ18A(図4)異なる入力電圧範囲のため調節するよう拡張され得る。2つ多い補正キャパシタを各CDACに付加することにより一層多くの量の誤差が補正され得る。図3のINL及びINL調整(正規化されたもの)曲線は、固定入力電圧範囲を仮定している。しかし、この固定入力電圧範囲が2倍になる場合、誤差は1LSBから4LSBまで増加する。それぞれ、1.0及び2.0LSBの値の上述の2つの付加的な補償キャパシタを図6に示すようにCDAC7B及び11Bの各々に付加することにより、付加的な誤差が補正され得る。
【0054】
図3において、正規化された入力電圧範囲が+1.000ボルトである場合、横軸でほぼ0.5から0.6の間の正規化された入力電圧の値は、縦軸の1.0LSBの最悪ケースのINL誤差に対し生じることが分かる。更に具体的には、正規化された入力電圧の値が−0.55ボルトである場合、INL曲線は、SAR ADCの特定の設計の観察された統計的性能に基づいてINL誤差の1LSBを示す。このため、INL曲線は、INL誤差補正の最大量が必要とされる、SAR ADC変換プロセスの「位置」を示す。最初の2つのビット決定は、このような最大補正が必要とされる、正規化された入力電圧範囲の一部で起こる。最初の2つのキャパシタの変換が実行されると、即ち、最初の2ビット決定がなされると、それらの2つのビット決定は、入力電圧が入力電圧範囲内にある場所辺りを示す。
【0055】
図3に示すシミュレーションされたINL曲線は、統計的な、補正されていなく、正規化された、最大1.000LSBであり最小−1.000LSBの、積分非直線性誤差曲線値を示す。これに対し、INL調整(正規化されたもの)曲線により示される補正された誤差は、正規化された最大値0.250LSB及び正規化された最小値−0.250LSBを有する。これは、正規化されたINL曲線最大値正確に1.000LSB及び正規化された最小値−1.000よりずっと小さい。
【0056】
このため、本発明のINL誤差補正プロセスは、図5のブロック7B及び11Bに示す4つの補正キャパシタが、図4のブロック7B及び11Bにおいて用いられるこの例において、INL誤差を約4の係数で低減する。
【0057】
図6の回路要素10−2は、図5の回路要素10−1と本質的に同じである。しかし、回路要素10−2は、導体13によりSARコンパレータ5の(+)入力に接続されるブロック11B内の、それぞれ、静電容量C/8、C/4、C/2、C、2C、及び4Cのバイナリに重み付されたINL補正キャパシタ6INLを含む。図6の回路要素10−2は、導体12によりSARコンパレータ5の(−)入力に接続されるブロック7B内の、それぞれ、静電容量C/8、C/4、C/2、C、2C、及び4Cのバイナリに重み付されたINL補正キャパシタ6INLを更に含む。ルックアップテーブル1は、コンパレータ5の、それぞれ、各入力に結合され得る4つより多いINL補正キャパシタを提供するよう改変することができる。表1は、異なる入力電圧範囲に対応することもできる。つまり、図6の実装は、より大きなルックアップテーブルの異なる部分に関連して異なる入力電圧範囲で機能するように設計される。
【0058】
図7において、SARADC回路10−3は、導体13が、導体13Aによりコンパレータ5の(+)入力に及びブロック11BのINL補正キャパシタの上側端子に接続される他の端子を有する静電容量CSCALEの第1のスケールダウンキャパシタの1つの端子に接続される点を除くと、図6のものと同じである。同様に、回路要素10-3において、導体12は、導体12Aによりコンパレータ5の(−)入力に及びブロック7BのINL補正キャパシタの下側端子に接続される他の端子を有する静電容量CSCALEの第2のスケールダウンキャパシタの1つの端子に接続される。図7の実装は、単一のルックアップテーブルを用いることができ、スケールダウンキャパシタを適切に改変することにより種々の入力電圧範囲のための必要な調整を提供することができる。
【0059】
図8において、SARADC回路10−4は、図6の回路10−2を含み、「SCALING CODE」と示されるスケーリングコードを受け取るよう接続されるデジタル入力17を有するDAC15を更に含む。DAC15は、参照電圧VREFを受け取るよう接続される参照電圧入力19を有する。DAC15の出力は、導体20によりスケーリングされた参照電圧VREF1をINL補正ブロック11B及び7B内のスイッチ32の参照電圧端子に印加するよう接続される。図8のDAC15の出力は、固定電圧であり、これは、SAR ADCの入力電圧の予期される範囲を基にスケーリングされる。種々のINL補正キャパシタをコンパレータ5の適切な入力にスイッチングすることによりINL補正をおこなうため、単一のルックアップテーブルを上述のように用いることができる。これは、単一のINL補正キャパシタを用い、必要とされるINL補正を提供するように補助DACの出力電圧を調整し、この補助DACがINL補正をおこなう際のアクティブ構成要素である(そのためINL補正キャパシタのスイッチングがINL補正をおこなう主要な方式でない)上述の米国特許番号第7,501,965号と対照的である。
【0060】
説明した本発明の実施例は、上述の米国特許番号第7,501,965号のINL誤差補正システムにより要求されるように、複雑な数学エンジン、及びSARADC変換の間種々の係数を演算する関連する回路の利用を避ける。その代り、本発明は、SAR DAC変換プロセスの所定の数の初期ビット決定に応答して、バイナリに重み付されたCDACキャパシタと並列の種々のINL補正キャパシタをスイッチングするためのルックアップテーブルの使用に基づいてはるかにシンプルなINL補正手法を提供する。このルックアップテーブルは、どのINL補正キャパシタが、複雑な数学エンジンを利用することなくINL誤差補正するようにCDAC出力を調整することを必要とされているかを決定する。
【0061】
本発明はINL誤差の統計的平均に基づくため、本発明のINL補正手法は、米国特許番号第7,501,965号に記載されたものほど正確ではないが、
本発明の手法は、数学エンジンを用いる複雑さ、コスト、及び低速を避け、それでも大抵の応用例で許容可能な精度を提供する。また、本発明のSAR ADCの製造中の最終テストは、従来技術のSAR ADCの場合よりもはるかにコストがかからず、はるかに速い。
【0062】
説明した例は改変され得ることは、に関連する本発明に精通する者であれば、明らかであろう。例えば、本発明の実施例の差動を記載したが、本発明は、シングルエンドの実施例(これらの2つは、本質的に、各説明した差動実施例に含まれる)にも等しく適用可能である。また、補正キャパシタの重みは、アルゴリズムの補正応答にカスタマイズするため、バイナリ重み付以外の方法でスケーリングされ得る。多数の補正キャパシタが説明した実施例に含まれるが、幾つかの場合において、単一の補正キャパシタのみを用いることが実際的である可能もある。また、CDACに接続されるコンパレータの1つの側のみを有し、他方の側は、固定基準電圧に接続されることも可能である。当業者であれば、他の多くの実施例及び変形も特許請求の範囲に包含されることが理解されるであろう。例示の実施例の文脈で説明したような特徴又は工程のすべて又はその幾つかを有する例示の実施例の文脈で説明した一つ又は複数の特徴又は工程の異なる組み合わせを有する実施例も、本明細書に包含されることを意図している。
図1
図2
図3
図4
図5
図6
図7
図8