(58)【調査した分野】(Int.Cl.,DB名)
入力される光を駆動信号によって変調して光信号を出力する変調部と、データ信号に従った前記駆動信号を前記変調部に印加する駆動部と、を備える光変調装置における制御方法であって、
逐次算出するバイアス電圧値に従って、前記駆動信号のバイアス電圧の動作点を前記変調部の変調曲線における光強度が減少する方向に合わせるバイアス制御を行い、
前記バイアス制御の最中に、前記データ信号の周波数が所定の範囲外にあるとき、前記データ信号に閾値以上の大きさのノイズが含まれているとき、前記データ信号内に多重されている複数のデータ間における位相差が閾値以上にあるとき、前記複数のデータにおけるマーク率が所定の範囲外にあるとき、前記複数のデータのいずれかの周波数が所定の範囲外にあるとき、または、前記複数のデータのいずれかに閾値以上の大きさのノイズが含まれているときに、前記データ信号が予め定めた状態と異なる状態であることを示すアラームに従って前記バイアス制御を中断し、
前記データ信号が前記予め定めた状態と異なる状態になって前記バイアス制御を中断するときは、前記バイアス制御の中断開始時点でのバイアス電圧値に前記バイアス電圧を固定し、
前記バイアス制御の中断中は、その固定したバイアス電圧値を有する前記バイアス電圧を前記変調部に供給し続け、
前記データ信号が前記異なる状態から前記予め定めた状態に戻ったときは、前記固定したバイアス電圧値を初期値として用いて前記バイアス制御を再開する、
制御方法。
【発明を実施するための形態】
【0016】
以下に、本願の開示する光変調装置及び制御方法の実施形態を図面に基づいて詳細に説明する。なお、この実施形態により本願の開示する光変調装置及び制御方法が限定されるものではない。また、実施形態において同一の機能を有する構成には同一の符号を付し、重複する説明は省略される。
【0017】
[実施の形態1]
[光変調装置200の構成]
図2は、実施の形態1に係る光変調装置200の構成例を示すブロック図である。光変調装置200は、ドライバ(駆動回路)201と、LD202と、変調部203と、PD(Photo Diode)204と、BPF(Band Pass Filter)205と、発振器206と、同期検波部207と、バイアス制御部208とを有する。
【0018】
LD202が発生する光は変調部203に入力される。
【0019】
ドライバ201は、入力されるデータ信号を増幅し、データ信号に従った駆動信号を変調部203に印加して変調部203を駆動する。
【0020】
変調部203は、LD202から入力される光を、ドライバ201から印加される駆動信号によって変調する。また、変調部203での変調処理のバイアス制御が、バイアス制御部208から変調部203に供給されるバイアス電圧に従って行われる。バイアス制御部208から供給されるバイアス電圧には、発振器206からバイアス制御部208に入力される周波数f0のパイロット信号が重畳されている。
【0021】
PD204は、変調部203から出力される光信号の一部を受光して電気信号に変換する。
【0022】
BPF205は、PD204から入力される電気信号から周波数f0の成分(f0成分)を抽出する。
【0023】
同期検波部207は、発振器206から入力される周波数f0のパイロット信号を用いて、BPF205から入力されるf0成分を同期検波し、検波結果をバイアス制御部208に出力する。
【0024】
バイアス制御部208は、同期検波部207から入力される検波結果に従って、f0成分を0(ゼロ)に近づけるようにバイアス電圧値を算出し、算出した電圧値を有するバイアス電圧を変調部203に供給する。このバイアス電圧には、バイアス制御部208によって、発振器206から入力される周波数f0のパイロット信号が重畳される。
【0025】
上記の一連の処理が逐次なされることにより、バイアス制御部208は、以下のような制御を行うことになる。すなわち、位相変調の場合には、バイアス制御部208は、逐次算出するバイアス電圧値に従って、駆動信号のバイアス電圧の動作点を変調部203の変調曲線における光強度が減少する方向に逐次合わせるABC制御を行う。より好ましくは、バイアス制御部208は、逐次算出するバイアス電圧値に従って、駆動信号のバイアス電圧の動作点を変調部203の変調曲線における光強度が最小となる点に逐次合わせるABC制御を行う。また、強度変調の場合には、バイアス制御部208は、逐次算出するバイアス電圧値に従って、駆動信号のバイアス電圧の動作点を、変調部203の変調曲線における光強度が最小となる点と最大となる点との中間点に逐次合わせるABC制御を行う。
【0026】
<バイアス制御部208の処理>
バイアス制御部208は、ABC制御の最中にデータ信号が異常な状態にあるときはABC制御を中断する。
【0027】
また、バイアス制御部208は、ABC制御の中断の後に、データ信号の異常が解消されてデータ信号が正常な状態に戻ったときはABC制御を再開する。このとき、バイアス制御部208は、ABC制御の中断前に算出したバイアス電圧値を初期値として用いてABC制御を再開する。
【0028】
より具体的には、データ信号が異常な状態にあるときは、その旨を示すアラーム信号がバイアス制御部208に入力される。このアラーム信号は、光変調装置200内の図示しない他の構成、または、光変調装置200の外部にある他の構成のいずれから入力されてもよい。アラーム信号は、(1)連続してドライバ201に入力されるデータ信号が中断しているとき、(2)データ信号の振幅が所定の範囲外にあるとき、(3)データ信号の周波数が所定の範囲外にあるとき、(4)データ信号に閾値以上の大きさのノイズが含まれているとき等に、データ信号が異常な状態であることを示すために発せられてバイアス制御部208に入力される。また、複数のデータが多重されてデータ信号が生成される場合には、アラーム信号は、(5)複数のデータの一部が欠落しているとき、(6)複数のデータ間における位相差(位相ずれ)が閾値以上にあるとき、(7)複数のデータにおいて“0”のデータと“1”のデータとの割合を示すマーク率が所定の範囲外にあるとき、(8)複数のデータのいずれかの振幅が所定の範囲外にあるとき、(9)複数のデータのいずれかの周波数が所定の範囲外にあるとき、(10)複数のデータのいずれかに閾値以上の大きさのノイズが含まれているとき等に、データ信号が異常な状態であることを示すために発せられてバイアス制御部208に入力される。また、アラーム信号は、データ信号が上記(1)−(10)等の状態にないとき、すなわち、データ信号が正常な状態にあるときには発せられない。
【0029】
バイアス制御部208は、入力されるアラーム信号に従って、バイアス電圧値の算出及び変調部203へのバイアス電圧の供給を中断する。すなわち、バイアス制御部208は、データ信号が異常な状態にあるときはABC制御を中断する。また、ABC制御を中断する際に、バイアス制御部208は、バイアス電圧値をABC制御中断時の電圧値、すなわち、ABC制御の中断の直前に算出した電圧値に固定する。また、バイアス制御部208は、ABC制御の中断中は、その固定した電圧値を有するバイアス電圧を変調部203に供給する。このように、ABC制御の中断中は固定値のバイアス電圧が変調部203へ供給される一方で、データ信号は異常な状態にあるため、変調器203からはノイズが出力される。
【0030】
そして、バイアス制御部208は、ABC制御の中断後、データ信号が正常な状態に戻ってアラーム信号が入力されなくなったときに、ABC制御中断時に固定したバイアス電圧値を初期値として用いてABC制御を再開する。
【0031】
よって、例えば、データ信号に異常が発生した時点でのバイアス電圧値が
図1のV
1付近にある場合、ABC制御の中断中は、バイアス電圧値はV
1付近に固定される。そして、データ信号が正常な状態に戻ってABC制御が再開されるときには、その固定されたV
1付近のバイアス電圧値を初期値として用いてABC制御が再開されるため、バイアス電圧値がV
1に収束するように再びABC制御される。よって、データ信号に異常が発生した場合でも、バイアス電圧値の収束点がV
1からV
2またはV
3に変化してしまうことを防止できる。
【0032】
[実施の形態1の効果]
以上のように本実施の形態によれば、光変調装置200において、バイアス制御部208が、データ信号が異常な状態にあるときにABC制御を中断するとともにバイアス電圧値を固定する一方で、データ信号が正常な状態に戻ったときに、その固定したバイアス電圧値を初期値として用いてABC制御を再開することにより、ABC制御を安定させる。
【0033】
これにより、データ信号の異常によってABC制御が不安定となってバイアス電圧が不定となってしまうことを防止できるため、上限値により近い最適値にバイアス電圧が収束してしまうことを防止できる。よって、DCドリフトの影響によりバイアス電圧が上限値を超えてしまうことを防止できる。その結果、DCドリフトが発生しても、変調部203への最適なバイアス電圧の供給が中断せずに継続でき、変調部203での変調処理を確実に継続することができる。
【0034】
また、データ信号に異常が発生した時点でバイアス電池値を固定することにより、ABC制御が不安定になる前にバイアス電圧値を固定することができる。よって、データ信号の異常が解消されたときは、不定になる前のバイアス電圧値を初期値として用いてABC制御を再開できるため、ABC制御再開後にバイアス電圧を最適値に素早く収束させることができる。
【0035】
[実施の形態2]
実施の形態2に係る光変調装置は、ABC制御の最中にデータ信号が異常な状態にあるときはABC制御を中断し、ABC制御の中断の後にデータ信号が正常な状態に戻ったときは、ABC制御の中断の前に算出したバイアス電圧値を初期値として用いてABC制御を再開する点において実施の形態1に係る光変調装置と同一である。一方で、実施の形態2に係る光変調装置は、逐次求めるバイアス電圧値をメモリに記憶し、ABC制御の中断の後にデータ信号が正常な状態に戻ったときは、データ信号が異常な状態になる直前に記憶したバイアス電圧値を初期値として用いてABC制御を再開する点において実施の形態1に係る光変調装置と異なる。
【0036】
[光変調装置300の構成]
図3は、実施の形態2に係る光変調装置300の構成例を示すブロック図である。
図3において、光変調装置300は、バイアス制御部301と、メモリ302とを有する。
【0037】
<バイアス制御部301の処理>
バイアス制御部301は、データ信号が正常な状態にあるとき、逐次求めたバイアス電圧値をメモリ302に書き込んで記憶する。このときバイアス制御部301は、逐次求めたバイアス電圧値を順にメモリ302に記憶してもよく、また、最新のバイアス電圧値でメモリ302を逐次更新してもよい。つまり、メモリ302には、データ信号が正常な状態にあるときの最新のバイアス電圧値が記憶されていればよい。
【0038】
バイアス制御部301は、データ信号が異常な状態にあるときに入力されるアラーム信号に従って、ABC制御を中断するとともに、メモリ302へのバイアス電圧値の記憶を中断する。
【0039】
そして、バイアス制御部301は、ABC制御の中断後、データ信号が正常な状態に戻ってアラーム信号が入力されなくなったときに、メモリ302に記憶された最新のバイアス電圧値、すなわち、データ信号が異常な状態になる直前に算出したバイアス電圧値をメモリ302から読み出し、その読み出した電圧値を初期値として用いてABC制御を再開する。また、バイアス制御部301は、アラーム信号が入力されなくなったときに、メモリ302へのバイアス電圧値の記憶を再開する。
【0040】
<バイアス制御部301によるバイアス制御の処理手順>
図4は、実施の形態2におけるバイアス制御の説明に供するフローチャートである。
【0041】
図4に示すように、データ信号が正常な状態にあるときは(ステップS401:No)、バイアス制御部301は、バイアス電圧値を算出し(ステップS402)、算出した電圧値をメモリ302に書き込んで記憶するとともに(ステップS403)、算出した電圧値を有するバイアス電圧を変調部203に供給する(ステップS404)。データ信号が正常な状態にある間は、ステップS401〜S404の処理が繰り返されることによりABC制御が行われる。
【0042】
データ信号に異常が発生し(ステップS401:Yes)、データ信号が異常な状態である間は(ステップS405:Yes)、ABC制御が中断される。
【0043】
ABC制御の中断後にデータ信号の異常が解消されて、データ信号が正常な状態に戻ったときは(ステップS405:No)、バイアス制御部301は、ABC制御での初回制御であるか否か判定する(ステップS406)。
【0044】
ABC制御での初回制御時には(ステップS406:Yes)、バイアス制御部301は、所定の初期値を有するバイアス電圧を変調部203に供給する(ステップS407,S404)。これによりABC制御が開始される。
【0045】
ABC制御での2回目以降の制御時には(ステップS406:No)、バイアス制御部301は、メモリ302から読み出した電圧値を有するバイアス電圧を変調部203に供給する(ステップS408,S404)。これにより、中断していたABC制御が再開される。
【0046】
[実施の形態2の効果]
以上のように本実施の形態によれば、光変調装置300において、バイアス制御部301が、データ信号が異常な状態にあるときにABC制御を中断する一方で、データ信号が正常な状態に戻ったときに、データ信号が異常な状態になる直前に算出したバイアス電圧値を初期値として用いてABC制御を再開する。
【0047】
これにより、ABC制御の再開後、データ信号が異常な状態にあることを示すアラーム信号の発生時間以内でのバイアス電圧値の変動の影響を除くことができる。よって、実施の形態1に比べ、バイアス電圧値を最適値にさらに素早く収束させることができる。
【0048】
[実施の形態3]
実施の形態3に係る光変調装置は、駆動信号の振幅制御を行う点において実施の形態1に係る光変調装置と異なる。
【0049】
[光変調装置500の構成]
図5は、実施の形態3に係る光変調装置500の構成例を示すブロック図である。
図5において、光変調装置500は、振幅制御部501を有する。
【0050】
<振幅制御部501の処理>
振幅制御部501には、同期検波部207から検波結果が入力される。振幅制御部501は、同期検波部207から入力される検波結果に従って、f0成分を0(ゼロ)に近づけるように振幅値を算出し、算出した振幅値に応じてドライバ201の増幅率を変化させて駆動信号の振幅を制御する。振幅制御部501は、このようにして逐次算出する振幅値に従って駆動信号の振幅を逐次変化させる振幅制御を行う。
【0051】
振幅制御部501は、振幅制御の最中にデータ信号が異常な状態にあるときは振幅制御を中断する。
【0052】
また、振幅制御部501は、振幅制御の中断の後に、データ信号の異常が解消されてデータ信号が正常な状態に戻ったときは振幅制御を再開する。このとき、振幅制御部501は、振幅制御の中断前に算出した振幅値を初期値として用いて振幅制御を再開する。
【0053】
より具体的には、データ信号が異常な状態にあるときは、その旨を示すアラーム信号が振幅制御部501に入力される。また、アラーム信号は、データ信号が正常な状態にあるときには振幅制御部501に入力されない。
【0054】
振幅制御部501は、入力されるアラーム信号に従って振幅制御を中断する。すなわち、振幅制御部501は、データ信号が異常な状態にあるときは振幅制御を中断する。また、振幅制御を中断する際に、振幅制御部501は、振幅値を振幅制御中断時の振幅値、すなわち、振幅制御の中断の直前に算出した振幅値に固定する。
【0055】
そして、振幅制御部501は、振幅制御の中断後、データ信号が正常な状態に戻ってアラーム信号が入力されなくなったときに、振幅制御中断時に固定した振幅値を初期値として用いて振幅制御を再開する。
【0056】
なお、振幅制御部501は、実施の形態2におけるバイアス制御部301と同様に、逐次求める振幅値をメモリに記憶し、振幅制御の中断の後にデータ信号が正常な状態に戻ったときは、データ信号が異常な状態になる直前に記憶した振幅値を初期値として用いて振幅制御を再開してもよい。
【0057】
[実施の形態3の効果]
以上のように本実施の形態によれば、光変調装置500において、振幅制御部501が、データ信号が異常な状態にあるときに振幅制御を中断する一方で、データ信号が正常な状態に戻ったときは、振幅制御の中断の前に算出した振幅値を初期値として用いて振幅制御を再開する。
【0058】
これにより、データ信号の異常によって駆動信号の振幅値が不安定になってしまうことを防止できる。
【0059】
また、データ信号の異常が解消されたときは、不安定になる前の振幅値を初期値として用いて振幅制御を再開できるため、振幅制御再開後に駆動信号の振幅を最適値に素早く収束させることができる。
【0060】
[実施の形態4]
実施の形態4に係る光変調装置は、QPSK(Quadrature Phase Shift Keying)変調方式による変調処理を行う点において実施の形態1に係る光変調装置と異なる。
【0061】
[光変調装置600の構成]
図6は、実施の形態4に係る光変調装置600の構成例を示すブロック図である。
図6において、光変調装置600は、変調部601と、ドライバ602(駆動回路)と、モニタ部603と、BPF604と、発振器605と、同期検波部606と、バイアス制御部607とを有する。
【0062】
ドライバ201は、入力されるデータ信号(I)を増幅し、データ信号(I)に従った駆動信号を変調部601のIアームに印加して変調部601のIアームを駆動する。
【0063】
ドライバ602は、入力されるデータ信号(Q)を増幅し、データ信号(Q)に従った駆動信号を変調部601のQアームに印加して変調部601のQアームを駆動する。
【0064】
変調部601は、Iアーム及びQアームの2つのアームを有し、QPSK変調方式による変調処理を行う。変調部601は、LD202から入力される光を、Iアームにおいてドライバ201から印加される駆動信号によって変調し、Qアームにおいてドライバ602から印加される駆動信号によって変調する。また、変調部601での変調処理のバイアス制御が、バイアス制御部208から変調部601に供給されるバイアス電圧に従って行われる。Iアームからは光信号(I)が出力され、Qアームからは光信号(Q)が出力される。また変調部601では、バイアス制御部607によって、光信号(I)と光信号(Q)との位相差がπ/2(π/2シフト)となるようにバイアス制御(π/2バイアス制御)が行われる。よって、変調部601からは、I成分及びQ成分を有する光信号が出力される。
【0065】
図6におけるIアーム側でのABC制御処理は実施の形態1において説明したとおりである。また、実施の形態1において説明したABC制御処理と同一の処理がQアーム側でも行われる。
【0066】
モニタ部603には、PD204から電気信号が入力される。モニタ部603は、PD204から入力される光信号の電力を検出する。
【0067】
BPF604は、モニタ部603から入力される電力のf0成分を抽出する。
【0068】
同期検波部606は、発振器605から入力される周波数f0のパイロット信号を用いて、BPF604から入力されるf0成分を同期検波し、検波結果をバイアス制御部607に出力する。
【0069】
バイアス制御部607は、同期検波部606から入力される検波結果に従って、f0成分を0(ゼロ)に近づけるようにバイアス電圧値を算出し、算出した電圧値を有するバイアス電圧を変調部601に供給する。このバイアス電圧には、バイアス制御部607によって、発振器605から入力される周波数f0のパイロット信号が重畳される。
【0070】
上記の一連の処理が逐次なされることにより、バイアス制御部607は、逐次算出するバイアス電圧値に従って、π/2シフトのABC制御を行う。
【0071】
<バイアス制御部607の処理>
バイアス制御部607は、ABC制御の最中にデータ信号が異常な状態にあるときはABC制御を中断する。
【0072】
また、バイアス制御部607は、ABC制御の中断の後に、データ信号の異常が解消されてデータ信号が正常な状態に戻ったときはABC制御を再開する。このとき、バイアス制御部607は、ABC制御の中断前に算出したバイアス電圧値を初期値として用いてABC制御を再開する。
【0073】
より具体的には、データ信号が異常な状態にあるときは、その旨を示すアラーム信号がバイアス制御部607に入力される。また、アラーム信号は、データ信号が正常な状態にあるときにはバイアス制御部607に入力されない。
【0074】
バイアス制御部607は、入力されるアラーム信号に従ってバイアス電圧値の算出及び変調部601へのバイアス電圧の供給を中断する。すなわち、バイアス制御部607は、データ信号が異常な状態にあるときはABC制御を中断する。また、ABC制御を中断する際に、バイアス制御部607は、バイアス電圧値をABC制御中断時の電圧値、すなわち、ABC制御の中断の直前に算出した電圧値に固定する。
【0075】
そして、バイアス制御部607は、ABC制御の中断後、データ信号が正常な状態に戻ってアラーム信号が入力されなくなったときに、ABC制御中断時に固定したバイアス電圧値を初期値として用いてABC制御を再開する。
【0076】
なお、バイアス制御部607は、実施の形態2におけるバイアス制御部301と同様に、逐次求めるバイアス電圧値をメモリに記憶し、ABC制御の中断の後にデータ信号が正常な状態に戻ったときは、データ信号が異常な状態になる直前に記憶したバイアス電圧値を初期値として用いてABC制御を再開してもよい。
【0077】
[実施の形態4の効果]
以上のように本実施の形態によれば、光変調装置600において、バイアス制御部607が、データ信号が異常な状態にあるときにABC制御を中断する一方で、データ信号が正常な状態に戻ったときは、ABC制御の中断の前に算出したバイアス電圧値を初期値として用いてABC制御を再開する。
【0078】
これにより、データ信号の異常によってABC制御が不安定となってバイアス電圧が不定となってしまうことを防止できる。
【0079】
また、データ信号の異常が解消されたときは、不定になる前のバイアス電圧値を初期値として用いてABC制御を再開できるため、ABC制御再開後にバイアス電圧を最適値に素早く収束させることができる。
【0080】
[実施の形態5]
実施の形態5に係る光変調装置は、複数のデータを多重してデータ信号を生成する多重化データ生成部を有する点において実施の形態1に係る光変調装置と異なる。
【0081】
[光変調装置700の構成]
図7は、実施の形態5に係る光変調装置700の構成例を示すブロック図である。
図7において、光変調装置700は、多重化データ生成部701を有する。また、多重化データ生成部701は、異常検出部702を有する。
【0082】
多重化データ生成部701は、データ1〜Nの複数のデータを多重し、複数のデータが多重されたデータ信号を生成し、生成されたデータ信号をドライバ201へ出力する。
【0083】
異常検出部702は、データ信号の異常を検出し、データ信号が異常な状態にあるときにアラーム信号を発する。
【0084】
<多重化データ生成部701の構成例(構成例1)>
図8は、実施の形態5における多重化データ生成部701の構成例1を示すブロック図である。構成例1に示す多重化データ生成部701は、DDR801−1〜801−Nと、バッファ802−1〜802−Nと、遅延器803−1〜803−Nと、多重化部804と、DDR805と、バッファ806と、デスキュー制御部807と、バッファ初期化部808とを有する。構成例1は、“Serdes Framer Interface Level 5 (SFI-5):Implementation Agreement for 40Gb/s Interface for Physical Layer Devices., OIF-SFI5-01.02, January 29, 2002”(以下「SFI−5」と称する)に準拠したものである。
【0085】
DDR801−1〜801−Nは、データ1〜Nの波形整形を行う。
【0086】
バッファ802−1〜802−Nは、FIFO方式のバッファであり、DDR801−1〜801−Nから順次入力されるデータを一時的に蓄え、蓄えたデータを順に遅延器803−1〜803−N及びデスキュー制御部807に出力する。
【0087】
遅延器803−1〜803−Nは、デスキュー制御部807からの制御に従って、データ1〜Nを遅延させて多重化部804に出力する。
【0088】
多重化部804は、データ1〜Nを多重してデータ信号を生成する。
【0089】
DDR805は、基準信号の波形整形を行う。
【0090】
バッファ806は、FIFO方式のバッファであり、DDR805から順次入力される基準信号を一時的に蓄え、蓄えた基準信号を順にデスキュー制御部807に出力する。
【0091】
デスキュー制御部807は、データ1〜Nの間での位相差を検出し、基準信号に従って遅延器803−1〜803−Nの遅延量を制御することにより、データ1〜Nの間での位相差を調節する。
【0092】
デスキュー制御部807は、データ信号の異常を検出し、データ信号が異常な状態にあるときに、その旨を示すアラーム信号を発する。つまり、デスキュー制御部807は、
図7における異常検出部702に該当する。デスキュー制御部807は、例えば、データ1〜Nが実施の形態1に記載した上記(5)〜(10)等の状態にあるときに、データ信号が異常な状態にあるとしてアラーム信号を発する。このアラーム信号に従って、バイアス制御部208(
図7)でのABC制御が中断される。また、アラーム信号はバッファ初期化部808に入力される。
【0093】
バッファ初期化部808は、データ信号が異常な状態になった後、すなわち、ABC制御が中断された後、データ信号が再び正常な状態に戻ったときに、デスキュー制御部807からアラーム信号が入力されないことを検出し、バッファ802−1−802−N,806をクリアして初期化する。これにより、異常なデータ信号の元になるデータが削除される。
【0094】
なお、SFI−5では、各々が2.4Gb/sのデータ1〜16を多重して40Gb/sのデータ信号を生成することが規定されている。また、SFI−5では、データ1〜16の信号をブロック毎にコピーして基準信号を生成することが規定されている。また、SFI−5では、データ1〜16の各データ間の位相差(位相ずれ)をパターンマッチにより検出し、1レーンでもマッチングパターンを検出できない場合にOOA(Out Of Alignment)なるアラーム信号をデスキュー制御部807から出力することが規定されている。
【0095】
<多重化データ生成部701の構成例(構成例2)>
図9は、実施の形態5における多重化データ生成部701の構成例2を示すブロック図である。構成例2に示す多重化データ生成部701は、MLD(Multi Lane Distribution)インタフェース901と、誤り訂正符号化器902と、多重化部903とを有する。構成例2は、“Multisource Agreement for 100G Long-Haul DWDM Transmission Module-Electromechanical, IA # OIF-MSA-100GLH-EM-01.0, June 8, 2010”(以下「MSA―100GLH」と称する)の送信部に適用可能なものである。
【0096】
MLDインタフェース901は、100Gb/sイーサネット(登録商標)で用いられる並列伝送のMLD信号を受信するものである。MLDインタフェース901は、データ信号の異常を検出し、データ信号が異常な状態にあるときに、その旨を示すアラーム信号を発する。つまり、MLDインタフェース901は、
図7における異常検出部702に該当する。MLDインタフェース901は、データ1〜Nが入力され、例えば、データ1〜Nが実施の形態1に記載した上記(5)〜(10)等の状態にあるときに、データ信号が異常な状態にあるとしてアラーム信号(MLDアラーム)を発する。このアラーム信号に従って、バイアス制御部208(
図7)でのABC制御が中断される。
【0097】
誤り訂正符号化器902は、データ1〜Nに対する誤り訂正符号化を行う。
【0098】
データ信号が正常な状態にあるときは、データ1〜Nから抽出したクロックを、MLDインタフェース901及び誤り訂正符号化器902を動作させるクロックとして使用することにより、データの揺らぎに対応することが可能となる。一方で、データ信号が異常な状態にあるときは、外部から入力される基準クロックを一時的に使用し、データ信号が再び正常な状態に戻ったときは、データ1〜Nから抽出したクロックを再び使用する。このように、外部から入力される基準クロックを一時的に使用することにより正常な動作に素早く復帰させることができる。また、データ信号が再び正常な状態に戻ったときに多重化部903を初期化してデータの異常を除去してもよい。
【0099】
多重化部903は、データ1〜Nを多重してデータ信号を生成する。
【0100】
なお、MSA―100GLHでは、各々が11.2Gb/sのデータ1〜10を多重して100Gb/sのデータ信号を生成することが規定されている。
【0101】
[実施の形態5の効果]
以上のように本実施の形態によれば、光変調装置700において、ABC制御の中断の後にデータ信号が正常な状態に戻ったときに、多重化データ生成部701を初期化する。
【0102】
これにより、データ信号を異常な状態から正常な状態に確実に回復させることができる。
【0103】
以上、本発明の実施の形態について説明した。
【0104】
なお、実施の形態5は、実施の形態2〜4と組み合わせることも可能である。
【0105】
また、実施の形態3において説明したデータ信号の異常に基づく振幅制御または実施の形態4において説明したデータ信号の異常に基づくバイアス制御を、実施の形態1において説明したデータ信号の異常に基づくバイアス制御と組み合わせることなく、各々個別に実施することも可能である。
【0106】
また、上記説明では、データ信号が、「正常な状態」と「異常な状態」の2つの状態をとるものとした。しかし、2つの状態は「正常な状態」及び「異常な状態」に限定されない。データ信号は、少なくとも、「予め定めた状態」と「予め定めた状態と異なる状態」の2つの状態をとればよい。