【実施例】
【0031】
以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。下記実施例においては、Alb-TRECK/SCIDマウスをTRECK/SCIDマウスと記す。
【0032】
〔実施例1〕
1.材料及び方法
ヒト肝細胞の供給源 本研究に用いるヒト胎児肝臓細胞は、米国のACBRI(Applied Cell Biology Research Institute a registered Washington non-profit research institution)により提供者の同意の下に分離され、米国セルシステムズ社により無償で供与されているものである(Cat No. CS-ABI-3716)。本邦においては、大日本製薬株式会社から初代ヒト胎児肝細胞 (Human
primary fetal hepatocytes; Cat No. CS-ABI-3716)として供給されており、本研究においてはこれを使用した。感染症の検査(HIV, HBV, HCV)と細菌類検査(真菌、細菌、マイコプラズマ)については陰性である。本研究については、本学倫理委員会において審議され許可されている。
【0033】
細胞培養及び継代 既に確立され、報告されているコロニー形成能を持つ胎児肝細胞低密度培養系(Zheng YW, Taniguchi H, et al. Transplant Proc 2000;32:2372-2373; Suzuki A, Zheng YW, et
al. Hepatology 2000;32:1230-1239)に以下のような改変を行った。
【0034】
IV型コラーゲンコートディッシュ(Becton Dickinson Labware) に10%ウシ胎仔血清(FBS)、ヒトγ-インスリン(1.0 μg/ml, Wako, Japan)、ニコチンアミド(10 mM, SIGMA)、デキサメタゾン(1x10-7M, SIGMA)、L-グルタミン(2 mM, GIBCO BRL)を加えたDMEM栄養混合F-12 Ham培地(DMEM/F12 1:1 mixture, SIGMA)を添加し、初代胎児肝細胞又はフローサイトメトリーで画分化した細胞を播種し、約2-3週間又はそれ以上の期間にわたり、培養した。完全培地交換を5日毎に行った。ヒト組換えHGF (50 ng/ml, SIGMA)及び上皮増殖因子(EGF) (10 ng/ml, SIGMA)のような増殖因子を播種後24時間で添加した。
【0035】
細胞が培養皿中で90%コンフルエントになった際、以下の手順で継代を行った。培養培地を除去し、細胞を0.05%トリプシン-EDTA (GIBCO)で室温にて5分間処理し、細胞を優しくタッピングし、培養皿から剥離し、浮遊細胞を10% FBSを含有する培養培地洗浄した後、培養培地中に再播種した。トリパンブルー染色を行ったところ、解離した細胞の生存率が90%を下回ることはなかった。細胞の播種密度は、実験設計に応じて、単細胞培養(フローサイトメトリーでソーティングした細胞1個/を96穴プレートの1ウェル中で培養する手法)、100-500個の細胞/cm
2の低密度細胞培養から1×10
3個の細胞/cm
2の高密度細胞培養から選択した。
【0036】
フローサイトメトリーによる細胞プロファイリング及びソーティング 浮遊細胞を、氷上で30分間、蛍光標識モノクローナル抗体(mAb)の至適濃度下で遮光してインキュベートした。2% FBSを添加したPBSを洗浄液及び抗体希釈液として用いた。ビオチン標識一次抗体を用いた際はストレプトアビジン標識の施された蛍光抗体で二次反応を行った。すべての蛍光標識モノクローナル抗体はBecton Dickinsonから購入した。フルオレセイン-イソチオシアネート(FITC)結合抗ヒトCD66 (hCD66FITC)、アロフィコシアニン(APC)結合hCD90、フィコエリトリン(PE)結合
hCD318。ソーティングは高速セルソーターMoFlo (DakoCytomation)を用いて行った。*CD318はCDCP1と称されることもある。
【0037】
細胞化学及び免疫細胞化学アッセイ 多重免疫細胞化学染色の際は、細胞を冷エタノールで30分間固定し、10%正常ヤギ血清(NGS)で60分間ブロッキングを行った後、一次抗体を1%NGS添加PBSで希釈し、湿室にて4℃で一晩反応させた。二次抗体を10%グリセロールを含むPBSで希釈し、湿室にて室温で60分間反応させた。細胞核をDAPIで染色し、FAマウント液で封入した。(画像は、Zeiss AxioImager顕微鏡で取得した。)
免疫細胞化学には、一次抗体としてマウス抗ヒトアルブミンmAb(SIGMA)、マウス抗ヒトCK19 mAb (Progen)、及びモルモット抗CK8/18 pAb (Progen)、マウス抗ヒトNuclei mAb (Millipore)。二次抗体としてAlexa488標識ヤギ抗guinea pig IgG、Alexa-555標識ヤギ抗マウスIgG
2a、Alexa647結合ヤギ抗マウスIgG
1 (Invitrogen, Molecular Probes)を用いた。
【0038】
リアルタイムPCR 細胞又は細胞コロニー由来の全RNAをIsogen試薬(Nippon Gene, Toyama, Japan)を用いて抽出した。逆転写(RT)の前に、150 ngのランダムプライマーと1 μlの10 mM dNTP混合物を全RNA溶液に添加した。反応混合物を65℃で5分間加熱し、氷上で1分間インキュベートした後、1x first-strand buffer、0.5 mM dNTP mix、5mM DTT及び200 unitsのSuper Script III (invitrogen)を加え、25℃で5分間、50℃で45分間、70℃で15分間インキュベートし、全RNA からcDNAを合成した。
【0039】
ALBUMIN (Hs00609411_m1)、AFP(Hs01040607_m1)、CYP3A4 (Hs01546612_m1)、CYP2C9 (Hs00426397_m1)、CYP2C19(Hs00426380_m1)及びhACTB (4326315E)用のTaqmanプローブ及びプライマーはTaqMan Gene Expression Assays (Applied Biosystems)から購入した。
【0040】
キメラマウス作成と解析 本研究で用いたマウスは、標的細胞ノックアウトマウス(Toxin Receptor Mediated Cell Knockout マウス: TRECKマウス)と重症免疫不全マウス(SCIDマウス)を交配して作出したTRECK/SCIDマウスをレシピエントとして用いた(東京都医学総合研究所より提供)。マウス肝実質細胞を標的とするため、マウスALBプロモーターにヒト由来のジフテリア毒素受容体を連結したDNA 組換え体を用いて、トランスジェネシスを施しており、ジフテリア毒素を投与すると、ヒトの受容体を発現した臓器のみを特異的に殺すことが可能である。このマウスの遺伝的背景を均一化するため、戻し交配を3回行い、安定的な状態を保っている。細胞移植には四週齢から八週齢のTRECK/SCIDマウスを用い、移植48時間前に1.5ug/kgのジフテリア毒素(Diphtheria toxin : DT)を投与し肝障害を引き起こし、1 mg/ml の抗アシアロ GM1 (Wako, Japan) 100ulを投与し、マウスのNK細胞活性除去を施した。48時間後に尾静脈から血液をサンプリングし、4000rpm 20分間 4℃で遠心分離を行い、血清成分を得た。得られた血清成分のトランスアミラーゼ(GOT)とアラニントランスアミナーゼ(GPT)の活性をFUJIFILM DRY-CHEM kitを用いて測定した。DT処理を施し、肝障害を引き起こしたTRECK/SCIDマウスの脾臓に1x10
6個の胎児肝幹細胞(hepatic stem cell : HSC)もしくは胎児肝臓細胞(fetal liver cell : FLC)を移植した。移植後のマウスは6週間後に肝臓をサンプリングし、免疫染色、H&E染色、遺伝子解析、ELISAを行った。ELISA解析は移植後4週間以上のキメラマウスの尾静脈から血液をサンプリングし、血清成分を分離し、サンプルとして用いた。ヒトアルブミンELISA kit (Bethyl Laboratories)を用いて血清中のヒトアルブミンの分泌量を測定した。
【0041】
2.実験結果
胎児肝臓細胞(FLC)より単離した肝幹細胞がin vivo で分化誘導能や機能性を有するかを検討した。本発明者らは、CDCP1陽性/CD90陽性/CD66陰性の肝幹細胞(HSC)を、DT投与によって肝障害を引き起こさせたTRECK/SCIDマウスに移植を行った。In vivo に定着し、肝幹細胞によって再構築されたマウスの肝臓を40日後にサンプリングし、組織学的な解析を行った。
【0042】
移植前後のTRECK/SCIDマウスの肝臓(図1)移植前後のTRECK/SCIDマウスの肝臓の状態を比較した。左上図はDT処理前の正常肝臓、左下図はDT投与後48時間が経過した肝臓である。DT投与後では肝臓が白く変色し、肝障害が引き起こされていることが見た目からも分かる。しかし、DT投与後に肝幹細胞を5週間移植した肝臓(右図)では、肝臓の血色も良くなり、正常肝臓へと回復しつつある。激しく損傷していた肝臓が、肝幹細胞を移植することによって組織を再構築し、肝障害を緩和していた。
【0043】
ヒト化キメラマウス肝臓の置換率(図2)移植した肝幹細胞が定着している状態をより正確に可視化するためにGFPを発現させた肝幹細胞を移植に用いた。移植後20日目の肝臓では肝組織の半分以上がGFP陽性を示す肝幹細胞由来の肝臓であった。置換効率は最大で84.5%となっていた。平均的な置換率は65.6±17.5%(n=3).
【0044】
ヒト化キメラマウス肝臓の組織学的解析(H&E染色と免疫染色)(図3及び4)作成したヒト由来キメラ肝臓の組織学的な解析を行った。H&E染色を行った結果、ヒト由来肝幹細胞が見られた(
図3の点線内)。
【0045】
より広範囲な組織学的解析を行うためH&E染色、免疫染色を行ったキメラ肝組織の“Scan large imaging”を行った。 H&E染色では広範囲に定着したヒト由来肝細胞が確認され、ヒト細胞由来のコロニーが多数確認された(
図4の左上図)。免疫染色では、ヒト核陽性細胞が、全組織中およそ50.0%が確認された(
図4の左下図)。さらにヒトアルブミン陽性、ヒト核陽性細胞が確認され、移植したヒト由来肝幹細胞が、TRECK/SCIDマウスの肝臓内で機能性を持っていることが確認された(
図4の右上図)。
【0046】
マウス肝臓におけるヒト肝幹細胞から肝細胞への分化(図5及び6)移植を行ったヒト肝幹細胞がin vivoの環境下で分化誘導されているかを検証するためにヒトアルブミン、humanCK19の免疫染色を行った。ヒトアルブミン陽性/CK19陰性細胞群は比較的アルブミン分泌が高く、成熟肝細胞と同程度の発現を示していた(
図5)。Human nuclear antigenとhuman CK8/18の免疫染色結果より、マウス肝臓にヒト由来細胞も大量に存在を示した(
図6)。この結果から、移植した肝幹細胞はレシピエントマウスの肝臓内において、肝細胞と胆管細胞の二方向へ分化することとなり、さらに組織再構築能を持っていることが示唆された。
【0047】
ヒト化キメラマウス肝臓の遺伝子解析(図7及び8) In vivoの解析からヒト由来キメラ肝臓が機能性を有している可能性が示唆された。そこで、このキメラ肝臓の遺伝子発現の解析を行った。薬物代謝酵素であるCYP3A4,CYP2C9,CYP2C19、肝特異的発現を示すhALBの発現を定量PCRにて解析を行った。その結果、移植前のドナー細胞と比較して、肝幹細胞(HSC)を移植した肝臓組織では、全ての遺伝子発現が上昇していた(
図7)。hALBの遺伝子発現では、およそ66万倍の上昇、CYP3A4の発現ではおよそ22.7 万倍と高い上昇が見られ、肝幹細胞がin vivoの環境下で分化誘導されていることが示唆された。さらに胎児肝臓細胞と比較した場合、肝幹細胞を移植した肝臓は遺伝子発現が高く、より分化が誘導されやすく、移植に適している細胞だと考えられた。
【0048】
さらに本発明者らは、ヒト化キメラマウス肝臓(Chimera)と成熟肝細胞(adult hepoatocyte : AH)、成熟肝臓組織(adult liver tissue : AL)、胎児肝臓組織(fetal liver tissue : FL)の遺伝子発現との比較を行った。成熟肝細胞と比較して、肝幹細胞由来キメラ肝臓組織ではhALBの遺伝子発現(1/18)以外は、CYPs遺伝子に関しては、同程度の発現が見られ、特にCYP2C19の発現はAHと比較して10倍高い発現を示していた(
図8)。
【0049】
ヒト由来キメラ肝臓のアルブミン分泌測定(図9)これまでの解析より、肝幹細胞由来キメラ肝臓が機能性を持っていることが示唆されている。そこで本発明者らは、キメラマウス血清中のヒトアルブミン分泌量をELISAにて解析した。コントロールとして使用した、非移植TRECK/SCIDマウス(Control)の血清中にはヒトアルブミンは検出されなかった。しかし、肝幹細胞を移植したヒト由来キメラ肝臓を持つマウス(#220, #221)では、移植50日後の血清中に1381ng/ml、1679ng/mlとヒトアルブミンの分泌が確認された。この結果から、移植した肝幹細胞は、TRECK/SCIDマウスの肝臓内で機能性を持った細胞に分化している事が示された。肝幹細胞と初代胎児肝細胞を移植して、ヒト化肝臓を持つキメラマウスの生存日数について120日を越えていることも観察された。
【0050】
ヒト化肝臓のマイクロアレイ解析(図10)マウス肝臓内で作成したヒト胎児肝幹細胞由来キメラ肝臓の分化度を検証するため、網羅的な遺伝子プロフィールの解析を行った。対象群としてドナー細胞である胎児肝幹細胞とヒト成人肝細胞(XenoTech CatNo: H1500.H15A+)を用い、発現パターンを比較検証した。その結果、胎児肝幹細胞では発現が確認されず、キメラ肝臓と成人肝細胞にのみに発現する1049遺伝子が確認された。その中には、肝臓特異的マーカーとして用いられるALB、AFP、HNF4aや、薬物代謝酵素であるCYP2C9、CYP2C19、CYP2D6の発現が確認された。マイクロアレイ中のCYP遺伝子プローブ全53個中、キメラ肝臓では27遺伝子の発現が見られた。成人肝細胞では49遺伝子、胎児肝幹細胞では15遺伝子の発現であったことから、キメラ肝臓は分化誘導が進み、成人肝細胞へと分化していると考えられる。その他にも脂質代謝、アンモニア代謝、アルコール代謝に関与する機能性遺伝子の発現が確認された。キメラ肝臓と胎児肝幹細胞との間で、2倍以上の発現上昇が見られる遺伝子を検証したところ、各種CYP遺伝子、肝臓マーカーであるCEBPAやKRT遺伝子、各種代謝に関与する遺伝子の上昇が見られた。このことから、ヒト胎児肝幹細胞はマウス生体内環境下において分化誘導が促進し、成人肝細胞へ近づきながら、肝臓組織を再構築していることが示唆された。
なお、ドナー細胞としては、大日本製薬株式会社から初代ヒト胎児肝細胞 (Human primary fetal hepatocytes; Cat No. CS-ABI-3716)として供給されている細胞、その培養細胞や継代培養細胞からFACSで分離したCDCP1陽性/CD90陽性/CD66陰性の細胞を用いた。この細胞の調製方法は、WO2009/139419に記載されている。
【0051】
キメラマウスの生存率(図11)作成したヒト肝細胞キメラマウスの肝臓が機能を有し、肝障害に対する治療効果を有するか否かを検討するため、生存率解析を行った。その結果、移植を行わなかったコントロール(SHAM)群と比較して、移植群では優位に生存率が高く、マウス肝臓内でヒト胎児肝細胞が機能性を有していることが示唆された。コントロール群(SHAM)と比べて、ヒト肝幹細胞を移植したマウスは有意な長期間生存ができた(P=0.0169, Log-rank (Mantel-Cox)test)。ヒト肝細胞に対する毒性や薬効のin vivo評価系としてもその利用対象になりうる。
【0052】
薬物代謝能(ヒト化キメラマウスにおけるヒト特異的代謝産物の確認(図12)ヒト肝細胞を移植したTRECK/SCIDマウスにケトプロフェン(15 mg/kg)を静脈内投与した。対照として、偽手術したマウスを用いた。尿(0-4時間)を0.5 M 酢酸バッファー (pH 5.0)中に集めた。尿サンプルに1 N KOHを添加し、80℃で3時間インキュベーションし、その後、等容量の1 N HCLを用いて中和した。1%酢酸を含むアセトニトリルを添加し、遠心にかけた(15000 rpm, 4oC, 5分)。上清を液体クロマトグラフィー-タンデム質量分析(LC/MS/MS)にかけた。液体クロマトグラフィー実験には、Intersil ODS-3カラム(ジーエルサイエンス株式会社、東京、日本)を備えたLC-20Aシリーズ(島津、京都、日本)を用いた。クロマトグラフィーによる分離は、Intersil ODS-3カラム(5 μm, 4.6 x 150 mm I.D.; ジーエルサイエンス株式会社、東京、日本)を用いて達成した。カラム温度は40℃に維持した。0.1%酢酸(溶媒A)および0.1%酢酸含有アセトニトリル(溶媒B)からなる移動相を、以下の勾配スケジュールに従って、流速0.5 mL/分で注入した:25-80%溶媒Bの直線勾配(0-15分)、80%溶媒B(15-25分)、80-25%溶媒Bの直線勾配(25-26分)、および25%溶媒B(26-35分)。液体クロマトグラフィーは、4000 Q Trapシステム(AB SCIEX, Foster City, CA)に連結し、陰性エレクトロスプレーイオン化モードで操作した。turboガスは600℃に維持した。親および/または断片イオンは第一の四極子でろ過し、そして衝突ガスとして窒素を用いて衝突セル内で解離した。イオンスプレー電圧は-4500Vで、ケトプロフェンおよび1-ヒドロキシケトプロフェンの分析された m/z移行(Q1/Q3)は、それぞれ253.1/209.3 および 269.1/209.3であった。
【0053】
KTPはマウス中でシトクロームP450によって第一に代謝され、1-ヒドロキシケトプロフェン(OH-KTP)を形成する。他方、ヒトにおいては、KTPは主としてUDP-グルコロノシルトランスフェラーゼ(UGT)によって代謝され、ケトプロフェングルクロニド(KTP-G)を形成する。
【0054】
肝臓ヒト化マウスは、ヒト特異的薬物代謝を研究する上で有用なツールである。肝臓ヒト化マウスにおけるヒト特異的薬物代謝機能は、高品質の成体肝細胞および酷く損傷した肝臓を有する免疫不全マウスを用いて、以前に報告されている。KTPの投与後、UGTがKTPグルクロニド化を容易にすること、および加水分解によりKTPがKTP-Gに代謝されること、が観察された。KTP/OH-KTPピーク面積比を計算し、加水分解サンプルと非加水分解サンプルの間でこの面積比を比較した。KTP/OH-KTPピーク面積比の倍増は、サンプル中におけるKTP-Gの形成を示唆する。ヒト肝細胞を移植されたTRECK/SCIDマウス(n=8)および対照マウス(n=3)における尿中の倍増は、ヒト肝細胞を移植したTRECK/SCIDマウスにおいてKTPグルクロニド化(ヒト特異的薬物代謝機能)が観察されることを示唆している。
【0055】
ヒトCYP2D6に対する一般的な表現型検査剤として働くデブリソキンは、ヒトの中で4-ヒドロキシデブリソキン(4-OHDB)に代謝されるが、マウスでは無視できる。重要なことに、ヒトCYP2D6は公知薬物の25%の代謝に関与しており、そして多型が多数存在することにより、顕著な個体差に寄与している。デブリソキンの経口投与後、4-OHDBの血漿濃度は、偽手術群におけるそれよりも高く、これはヒト特異的薬物代謝物の産生を反映している。
キメラマウス(n=3)およびコントロールマウス(n=4)におけるデブリソキンに対するデブリソキン代謝物4-OHDBの血清比。デブリソキン(2.0 mg/kg)を経口投与した。データは経口投与8時間後、平均値±標準偏差で表す。
【0056】
ヒト化キメラマウス肝臓の置換率(図13)ヒト胎児肝細胞、肝幹細胞或いは自己複製能強化したBMI導入し幹細胞株(WO2009/139419参照)を用い、肝障害を引き起こしたTRECK/Scidマウスに移植を行い、再構築されたマウスの肝臓を40日後にサンプリング、組織学的解析を行った。移植後約3から7週後にサンプリング、組織学的解析を行った。さらに詳しく置換率を検討するため、定量PCRを用いて検討した。プライマー設計をマウスACTB特異的配列とヒトACTB特異的配列、両種のACTBを検出する配列で作成し、置換率を求めた。その結果、平均置換率はFLC: 79.9±26.4% (mean±SD, n=10); HSC: 65.5±28.9% (n=9), BMI1 clone3: 69.3±32.9% (n=5)と高く、最も高い個体ではHSC由来、99.9%と98.4%と、高効率でマウス肝細胞と置き換わっていた。
【0057】
ヒトACTB特異的配列を検出するプライマー:
hACTB F gcacaatgaagatcaagatcattg(配列番号1)
hACTB R taaagccatgccaatctcatc(配列番号2)
【0058】
マウスACTB特異的配列を検出するプライマー:
mACTB F aagatcaagatcattgctcctcct(配列番号3)
mACTB R gccatgccaatgttgtctctta(配列番号4)
【0059】
ヒト及びマウスの両種のACTBを検出するプライマー:
hm ACTB F gcaccacaccttctacaatga(配列番号5)
hm ACTB R gctggggtgttgaaggtctc(配列番号6)
【0060】
〔実施例2〕
uPA-NOGを用いたキメラマウスの作成マウスアルブミン遺伝子エンハンサー/プロモーターを用いて肝臓特異的にmouse urokinase -type plasminogen activator(uPA)を発現させる自然発症型肝傷害uPA-NOG(uPA-NOD/scid Il2KO)免疫不全マウスは(財)実験動物中央研究所から提供された。
【0061】
ヒト化キメラマウス肝臓の組織学的解析(H&E染色と免疫染色)(図14)移植した肝幹細胞が定着している状態をより正確に可視化するためにGFPを発現させた肝幹細胞を移植に用いた。移植後30日目の肝臓では肝組織のほぼ100%がGFP陽性を示す肝幹細胞由来の肝臓であった。より広範囲な組織学的解析を行うためH&E染色、免疫染色を行ったキメラ肝組織の“Scan large imaging”を行った。H&E染色では広範囲に定着したヒト由来肝細胞が確認され、ヒト細胞由来のコロニーが多数確認された。免疫染色では、ヒト核陽性細胞が、全組織中およそ50.0%以上が確認された。さらにヒトアルブミン陽性、ヒト核陽性細胞が確認され、移植したヒト由来肝幹細胞が、uPA-NOGマウスの肝臓内で機能性を持っていることが確認された。肝実質細胞マーカーであるALBと胆管上皮細胞マーカーであるCK19共発現細胞が見られ、肝細胞、胆管上皮細胞の双方向に分化した細胞が存在することが示唆された。
【0062】
ヒト化キメラマウス肝臓の置換率とヒトアルブミンの分泌(図15)未熟ヒト肝細胞を用いて、自然発症型肝傷害uPA-NOGマウスに移植を行い、再構築されたマウスの肝臓を4から7週間後に肝臓組織と血清をサンプリング、置換率を検討するため、定量PCRを用いて検討した。プライマー設計をマウスACTB特異的配列とヒトACTB特異的配列、両種のACTBを検出する配列で作成し、置換率を求めた。その結果、平均置換率は76.6±17.7% (mean±SD, n=10)と高く、最も高い個体ではHSC由来、93.3%と、高効率でマウス肝細胞と置き換わっていた。更に、ヒトアルブミンをマウス血清に存在するか、ELISA法で調べました。移植しないマウスに、ヒトのアルブミンを全く検出されない、ヒト肝幹細胞由来移植群は1000ng/mlの血清アルブミンとヒトアルブミン分泌が確認された。
【0063】
ヒト化キメラマウス肝臓の遺伝子解析(図16)In vivoの解析からヒト由来キメラ肝臓が機能性を有している可能性が示唆された。そこで、このキメラ肝臓の遺伝子発現解析を行った。薬物代謝酵素であるCYP2C9, CYP2C18,CYP2C19,CYP3A4,CYP3A7肝特異的発現を示すhALBの発現を定量PCRにて解析を行った。その結果、移植前ドナー細胞と比較して、移植した肝臓組織では、全ての遺伝子発現が上昇していた。成熟肝細胞(adult hepoatocyte)の遺伝子発現と比較して、一部サンプルは、CYPs遺伝子に関しては、同程度の発現が見られ、未熟肝細胞in vivoの環境下で分化誘導されていることが示唆された。
【0064】
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。