(58)【調査した分野】(Int.Cl.,DB名)
前記出力回路は、前記二次電池の電圧が前記第1比較電圧以上かつ前記第2比較電圧未満の場合には、前記第3トランジスタをオフし、前記第2トランジスタのみをスイッチングして、前記昇圧型DC−DCコンバータに昇圧動作をさせることを特徴とする請求項1に記載の充電制御回路。
【発明を実施するための形態】
【0010】
本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
【0011】
<第1実施形態>
===充電回路の構成===
以下、
図1を参照して、本発明の第1の実施形態における充電回路の構成について説明する。
【0012】
図1に示されている充電回路は、入力電源から供給される電力(入力電圧Vin)を、二次電池BTを充電するための電力(出力電圧Vout)に変換して出力する回路であり、充電制御回路1a、コンデンサC1、C2、およびインダクタLを含んで構成されている。ここで、二次電池BTの満充電電圧は入力電圧Vinより高く、一例として、入力電源はUSB電源であり、入力電圧Vinは約5V(4.75Vないし5.25V)であり、二次電池BTは2セルのリチウムイオン二次電池であり、その満充電電圧は8.4Vであるものとする。
【0013】
充電制御回路1aは、コンパレータ回路11、電流検出回路12、電流制御回路13、スイッチング制御回路14a、およびトランジスタM1ないしM3を含み、端子21ないし25を備えた集積回路として構成されている。なお、以下においては、一例として、トランジスタM1ないしM3がいずれもNMOS(N-channel Metal-Oxide Semiconductor:Nチャネル金属酸化膜半導体)トランジスタである場合について説明する。
【0014】
端子21は、入力電源が接続される入力端子であり、端子24は、二次電池BTが接続される出力端子である。また、コンパレータ回路11(第1コンパレータ回路)の非反転入力は、入力端子21に接続されて入力電圧Vinが印加され、反転入力は、出力端子24に接続されて出力電圧Voutが印加されている。そして、コンパレータ回路11から出力される比較結果信号CP1は、電流制御回路13(第1制御回路)およびスイッチング制御回路14a(第2制御回路)に入力されている。
【0015】
トランジスタM1(第1トランジスタ)のドレインは、入力端子21に接続されて入力電圧Vinが印加され、ソースは、端子22に接続されている。また、電流制御回路13には、電流検出回路12から検出信号Isnが入力され、電流制御回路13から出力される制御信号S1は、トランジスタM1のゲートに入力されている。さらに、電流制御回路13からスイッチング制御回路14aには、電流制限信号LIMが入力されている。
【0016】
コンデンサC1、C2、インダクタL、およびトランジスタM2、M3は、昇圧型DC−DCコンバータを構成する。なお、トランジスタM2およびM3を外付け部品としてもよい。
【0017】
入力側コンデンサC1の一端は、インダクタLの一端に接続され、当該接続点は、端子22を介してトランジスタM1のソースに接続されている。また、コンデンサC1の他端は、接地され、インダクタLの他端は、端子23に接続されている。
【0018】
トランジスタM2(第2トランジスタ)のドレインは、トランジスタM3(第3トランジスタ)のソースに接続され、当該接続点は、端子23を介してインダクタLの他端に接続されている。また、トランジスタM2のソースは、端子25を介して接地され、トランジスタM3のドレインは、出力端子24に接続されている。さらに、出力側コンデンサC2の一端は、出力端子24を介してトランジスタM3のドレインに接続され、他端は、接地されている。そして、スイッチング制御回路14aには、出力端子24の電圧(出力電圧Vout)が入力され、スイッチング制御回路14aから出力される制御信号S2およびS3は、それぞれトランジスタM2およびM3のゲートに入力されている。
【0019】
===スイッチング制御回路の構成===
以下、
図2を参照して、本実施形態におけるスイッチング制御回路の構成について説明する。
【0020】
図2に示されているスイッチング制御回路14aは、エラーアンプ(誤差増幅器)141、発振回路142、PWM(Pulse Width Modulation:パルス幅変調)コンパレータ143、出力回路144、および抵抗R1、R2を含んで構成されている。
【0021】
抵抗R1およびR2は、直列に接続されている。また、抵抗R1の一端には、出力電圧Voutが印加され、抵抗R2の一端は、接地されている。
【0022】
エラーアンプ141は、1つの反転入力と2つの非反転入力とを備えている。また、エラーアンプ141の反転入力には、出力電圧Voutを抵抗R1およびR2で分圧した帰還電圧Vfbが印加され、第1の非反転入力には、基準電圧Vrefが印加され、第2の非反転入力には、電流制限信号LIMが入力されている。そして、エラーアンプ141からは、誤差信号ERが出力されている。
【0023】
発振回路142からは、三角波TWが出力されている。また、PWMコンパレータ143の非反転入力には、誤差信号ERが入力され、反転入力には、三角波TWが入力され、PWMコンパレータ143からは、PWM信号が出力されている。そして、出力回路144には、PWM信号および比較結果信号CP1が入力され、出力回路144からは、制御信号S2およびS3が出力されている。なお、発振回路142からPWMコンパレータ143の反転入力には、三角波TWに代えて、のこぎり波(鋸歯状波)など、他の傾斜波(ランプ波)が入力されていてもよい。
【0024】
===充電回路の動作===
以下、本実施形態における充電回路の動作について説明する。
【0025】
コンパレータ回路11は、二次電池BTの電圧(出力電圧Vout)を入力電源の電圧(入力電圧Vin)と比較し、比較結果信号CP1は、Vout<Vinの場合にハイ・レベルとなる。そして、充電制御回路1aは、比較結果信号CP1に応じて動作モードを切り替える。
【0026】
まず、比較結果信号CP1がハイ・レベル(Vout<Vin)の場合の動作について説明する。以下、この場合の動作モードを定電流モードと称する。
【0027】
電圧が入力電源の電圧(例えば5V)未満の二次電池BTが出力端子24に接続された状態で、入力電源が入力端子21に接続されると、入力電源からの電力供給が開始され、充電制御回路1aが起動する。このとき、Vout<Vinとなるため、充電制御回路1aの動作モードは、ハイ・レベルの比較結果信号CP1によって定電流モードとなる。
【0028】
充電制御回路1aが定電流モードで起動すると、まず、電流制御回路13は、トランジスタM1をオフし、スイッチング制御回路14aの出力回路141は、トランジスタM2をオフするとともに、トランジスタM3をオンする。これにより、コンデンサC1は、インダクタLおよびトランジスタM3を介して二次電池BTに接続され、二次電池BTの電圧まで充電される。すなわち、端子22の電圧Vinp=Voutとなる。なお、二次電池BTが完全に放電されている場合でも、コンデンサC1が充電されないものの、Vinp=Voutとなる。
【0029】
電流制御回路13は、コンデンサC1が二次電池BTの電圧まで充電され、Vinp=Voutとなった後に、トランジスタM1に流れる入力電流Iinが所定値(例えば100mA程度)となるようにトランジスタM1を制御する。
【0030】
より具体的には、電流検出回路12は、電流検出抵抗やカレントミラー回路などを用いて入力電流Iinに応じた検出信号Isnを出力し、電流制御回路13は、検出信号Isnに基づいて、入力電流Iinが所定値となるように制御信号S1を出力する。そして、当該所定値に制御された入力電流Iinを、インダクタLおよびトランジスタM3を介して出力端子24から出力し、二次電池BTを定電流充電する。
【0031】
このように、定電流モードでは、起動時に、まず、Vinp=VoutとなるまでコンデンサC1を充電するため、その後、トランジスタM1の定電流制御を開始して、入力電流Iinが流れ始めても、トランジスタM1のソース電圧が大きく変動することはない。これにより、入力電流Iinが流れ始めた直後にコンデンサC1が充電されて、トランジスタM1のソース電圧が急激に変動するのを防止している。
【0032】
なお、Vinp=Voutとなったことを検出する回路を設けてもよいが、これに代えて、コンデンサC1を0Vから出力電圧Vout(または、定電流モードにおける出力電圧Voutの最大値である入力電圧Vin)まで充電するのに十分な所定時間が経過した後にトランジスタM1の定電流制御を開始するようにしてもよい。
【0033】
次に、比較結果信号CP1がロー・レベル(Vout≧Vin)の場合の動作について説明する。以下、この場合の動作モードを昇圧モードと称する。
【0034】
電圧が入力電源の電圧(例えば5V)以上の二次電池BTが出力端子24に接続された状態で、入力電源が入力端子21に接続されると、入力電源からの電力供給が開始され、充電制御回路1aが起動する。このとき、Vout≧Vinとなるため、充電制御回路1aの動作モードは、ロー・レベルの比較結果信号CP1によって昇圧モードとなる。
【0035】
充電制御回路1aが昇圧モードで起動すると、まず、スイッチング制御回路14aの出力回路144は、トランジスタM2およびM3をオフし、電流制御回路13は、トランジスタM1をオンする。これにより、コンデンサC1は、トランジスタM1を介して入力電源に接続され、トランジスタM1に流れる入力電流Iinによって入力電圧Vinまで充電される。すなわち、端子22の電圧Vinp=Vinとなる。
【0036】
スイッチング制御回路14aは、コンデンサC1が入力電圧Vinまで充電され、Vinp=Vinとなった後に、トランジスタM2とトランジスタM3とを相補的にスイッチングして、昇圧型DC−DCコンバータに昇圧動作を開始させる。
【0037】
より具体的には、エラーアンプ141は、帰還電圧Vfbと、基準電圧Vrefおよび電流制限信号LIMの電圧(電流制限電圧)のうち低い方の電圧との誤差を増幅して誤差信号ERを生成し、PWMコンパレータ143は、誤差信号ERと三角波TWとを比較してPWM信号を生成する。そして、出力回路144は、PWM信号に基づいて制御信号S2およびS3を出力し、第1期間にトランジスタM2をオンするとともに、トランジスタM3をオフし、第2期間にトランジスタM2をオフするとともに、トランジスタM3をオンする。
【0038】
これにより、インダクタLは、第1期間には、トランジスタM2を介してグランドに接続され、インダクタ電流ILが増加し、エネルギーを蓄積する。また、インダクタLは、第2期間には、トランジスタM3を介して出力端子24に接続され、インダクタ電流ILが減少し、第1期間に蓄積されたエネルギーを放出する。そして、トランジスタM1を介してインダクタLに入力電流Iinを供給しつつ、第1期間と第2期間とを交互に繰り返して昇圧動作を制御する。
【0039】
このように、昇圧モードでは、起動時に、まず、Vinp=VinとなるまでコンデンサC1を充電し、その後、昇圧型DC−DCコンバータの昇圧動作によって入力電圧Vinより高い出力電圧Voutを生成して出力端子24から出力する。
【0040】
なお、エラーアンプ141の第1の非反転入力には、二次電池BTの満充電電圧(例えば8.4V)に応じた基準電圧Vrefが印加され、第2の非反転入力には、検出信号Isn(入力電流Iin)に応じた電流制限信号LIMが入力されている。したがって、昇圧モードにおける二次電池BTの充電は、出力電圧Voutが満充電電圧に達する(帰還電圧Vfbが基準電圧Vrefに達する)までは、電流制限信号LIMに基づいて定電流充電となり、出力電圧Voutが満充電電圧に達すると、基準電圧Vrefに基づいて定電圧充電となる。
【0041】
また、Vinp=Vinとなったことを検出する回路を設けてもよいが、これに代えて、コンデンサC1を0Vから入力電圧Vinまで充電するのに十分な所定時間が経過した後に昇圧型DC−DCコンバータの昇圧動作を開始するようにしてもよい。
【0042】
以上のように、本実施形態の充電回路は、二次電池BTの電圧(出力電圧Vout)を入力電源の電圧(入力電圧Vin)と比較し、Vout<Vinの場合には、入力電流Iinを所定値に制御しながら出力し、二次電池BTを定電流充電する。また、Vout≧Vinの場合には、入力電圧Vinを昇圧して出力電圧Voutを生成し、出力電圧Voutが満充電電圧に達するまでは、二次電池BTを定電流充電し、出力電圧Voutが満充電電圧に達すると、二次電池BTを定電圧充電する。
【0043】
なお、入力電源がUSB電源である場合の入力電圧Vinは、4.75Vないし5.25Vの範囲で変動し得る。また、出力電圧Voutが二次電池BT以外の負荷にも供給されている場合には、当該負荷の状態によって出力電圧Voutが変動しやすくなる。そのため、これらの電圧変動や、さらに比較の精度などを考慮して、コンパレータ回路11は、出力電圧Voutを入力電圧Vinと直接比較するのではなく、入力電圧Vinに応じた1つ以上の比較電圧(第1比較電圧)と比較するようにしてもよい。例えば、出力電圧Voutが入力電圧Vinより若干低い比較電圧以上の場合に、昇圧モードとなるようにしてもよい。
【0044】
<第2実施形態>
===充電回路およびスイッチング制御回路の構成===
以下、
図3および
図4を参照して、本発明の第2の実施形態における充電回路およびスイッチング制御回路の構成について説明する。
【0045】
図3に示されている充電回路は、第1実施形態の充電回路に対して、充電制御回路1aの代わりに充電制御回路1bを含んで構成されている。また、充電制御回路1bは、充電制御回路1aに対して、スイッチング制御回路14aの代わりにスイッチング制御回路14bを含み、コンパレータ回路15をさらに含んで構成されている。
【0046】
コンパレータ回路15(第2コンパレータ回路)の非反転入力には、入力電圧Vinより所定電圧Vaだけ高い電圧Vin+Va(第2比較電圧)が印加され、反転入力は、出力端子24に接続されて出力電圧Voutが印加されている。そして、
図4に示すように、コンパレータ回路15から出力される比較結果信号CP2は、スイッチング制御回路14bの発振回路142に入力されている。なお、コンパレータ回路11が出力電圧Voutを入力電圧Vinに応じた第1比較電圧と比較する場合、第2比較電圧は、第1比較電圧より高く、かつ、入力電圧Vinより所定電圧Vaだけ高い電圧となる。
【0047】
===充電回路の動作===
以下、
図5および
図6を適宜参照して、本実施形態における充電回路の動作について説明する。なお、本実施形態において、定電流モードにおける充電回路の動作は、第1実施形態の充電回路と同様である。
【0048】
前述したように、第1実施形態の充電回路では、二次電池BTの電圧(出力電圧Vout)と入力電源の電圧(入力電圧Vin)との比較結果に応じて、充電制御回路1aの動作モードを切り替えている。したがって、定電流モードにおいて二次電池BTを定電流充電して、出力電圧Voutが入力電圧Vinに達すると、昇圧モードに切り替わる。
【0049】
しかしながら、定電流モードから昇圧モードに移行した直後は、Vout≒Vinとなっているため、PWM信号のデューティ幅が狭くなる。そのため、例えば
図5に示すように、PWM信号に基づくトランジスタM2およびM3のスイッチングが間欠的に停止してしまい、ブロッキング発振を起こしやすくなる。そして、当該ブロッキング発振が収まるには、二次電池BTがさらに充電されて、Vout≒Vinでなくなる必要があるため、この状態が暫く継続することとなる。
【0050】
そこで、本実施形態では、定電流モードから昇圧モードに移行して、昇圧型DC−DCコンバータの昇圧動作を開始する際に、Vout≒Vinの場合には、発振回路142から出力される三角波TWの傾きを急峻にする。より具体的には、比較結果信号CP1がロー・レベルであり、かつ、比較結果信号CP2がハイ・レベルである場合、すなわち、Vin≦Vout<Vin+Vaの場合には、発振回路142におけるコンデンサの充電電流を増加させて、三角波TWの傾きを急峻にする。これにより、例えば
図6に示すように、PWMコンパレータ143は、より狭いデューティ幅のPWM信号を生成することができるため、ブロッキング発振を抑制することができる。
【0051】
なお、昇圧モードで起動してVinp=Vinとなった後に、昇圧型DC−DCコンバータの昇圧動作を開始する際に、Vout≒Vinの場合にも、同様に三角波TWの傾きを急峻にする。
【0052】
===スイッチング制御回路の他の構成例===
上記第2実施形態では、昇圧モードにおいてVin≦Vout<Vin+Vaの間、発振回路142から出力される三角波TWの傾きを急峻にすることによってブロッキング発振を抑制しているが、これに限定されるものではない。例えば
図7に示すスイッチング制御回路14cように、比較結果信号CP2を出力回路144に入力し、トランジスタM3をオフに固定することによっても、ブロッキング発振を抑制することができる。より具体的には、昇圧モードにおいてVin≦Vout<Vin+Vaの間、制御信号S3をロー・レベルに固定して、トランジスタM3をオフし続ける。
【0053】
したがって、昇圧型DC−DCコンバータは、スイッチング制御されるトランジスタM2とオフに固定されるトランジスタM3のボディダイオードとを用いて、ダイオード整流方式の昇圧動作を行うこととなる。これにより、トランジスタM2がオフの間の端子23の電圧Vswは、出力電圧Voutよりボディダイオードの順方向降下電圧(例えば0.7V程度)だけ高くなり、見かけ上Vout≒Vinでなくなるため、ブロッキング発振を抑制することができる。
【0054】
なお、昇圧モードで起動してVinp=Vinとなった後に、昇圧型DC−DCコンバータの昇圧動作を開始する際に、Vout≒Vinの場合にも、同様にトランジスタM3をオフに固定する。
【0055】
また、三角波TWの傾きを急峻にするブロッキング発振の抑制方法(以下、方法1と称する)と、トランジスタM3をオフに固定するブロッキング発振の抑制方法(以下、方法2と称する)とを組み合わせて用いてもよい。ここで、USB2.0規格における給電能力は最大500mAであり、USB3.0規格における給電能力は最大900mAである。そこで、例えば、入力電流Iinが500mAより大きい場合には、トランジスタM3のボディダイオードに大きな電流が流れないよう、方法1を用いることとする。そして、入力電流Iinが500mA以下の場合には、方法1に代えて、または方法1に追加して、方法2を用いるようにしてもよい。
【0056】
前述したように、充電制御回路1bにおいて、二次電池BTの電圧(出力電圧Vout)を入力電源の電圧(入力電圧Vin)と比較し、Vout<Vin(定電流モード)の場合には、トランジスタM1に流れる入力電流Iinを所定値に制御しながら出力し、Vout≧Vin(昇圧モード)の場合には、トランジスタM1を介して昇圧型DC−DCコンバータのインダクタLに入力電流Iinを供給しつつ、トランジスタM2とトランジスタM3とを相補的にスイッチングし、入力電圧Vinを昇圧して出力電圧Voutを生成して出力することによって、満充電電圧が入力電圧Vinより高い二次電池BTを充電するための出力電圧Voutを生成することができる。さらに、出力電圧Voutを入力電圧Vinより所定電圧Vaだけ高い電圧Vin+Vaと比較し、Vin≦Vout<Vin+Vaの場合に、PWMコンパレータ143において誤差信号ERと比較される三角波TWの傾きを急峻にすることによって、定電流モードから昇圧モードに移行した直後など、Vout≒Vinとなっている場合に、より狭いデューティ幅のPWM信号を生成することができ、ブロッキング発振を抑制することができる。
【0057】
また、Vin≦Vout<Vin+Vaの場合に、トランジスタM3をオフに固定することによって、ダイオード整流方式の昇圧動作を併用して、より確実にブロッキング発振を抑制することができる。さらに、トランジスタM3のボディダイオードに大きな電流が流れないよう、入力電流Iinの大きさに応じてダイオード整流方式の昇圧動作を併用してもよい。
【0058】
また、前述したように、
図3に示した充電回路において、定電流モード(Vout<Vin)では、トランジスタM1に流れる入力電流Iinを所定値に制御しながら出力して二次電池BTを定電流充電し、昇圧モード(Vout≧Vin)では、トランジスタM1を介して昇圧型DC−DCコンバータのインダクタLに入力電流Iinを供給しつつ、トランジスタM2とトランジスタM3とを相補的にスイッチングし、入力電圧Vinを昇圧して出力電圧Voutを生成して二次電池BTを充電することによって、満充電電圧が入力電圧Vinより高い二次電池BTを充電することができる。さらに、Vin≦Vout<Vin+Vaの場合に、誤差信号ERと比較される三角波TWの傾きを急峻にしてより狭いデューティ幅のPWM信号を生成することによって、定電流モードから昇圧モードに移行した直後など、Vout≒Vinとなっている場合に、ブロッキング発振を抑制することができる。
【0059】
また、前述したように、充電制御回路1bにおいて、スイッチング制御回路14bの代わりにスイッチング制御回路14cを用いて、Vin≦Vout<Vin+Vaの場合に、トランジスタM3をオフに固定し、トランジスタM2のみをスイッチングすることによって、定電流モードから昇圧モードに移行した直後など、Vout≒Vinとなっている場合に、昇圧型DC−DCコンバータにダイオード整流方式の昇圧動作をさせ、ブロッキング発振を抑制することができる。
【0060】
また、前述したように、
図3に示した充電回路において、スイッチング制御回路14bの代わりにスイッチング制御回路14cを用いて、Vin≦Vout<Vin+Vaの場合に、トランジスタM3をオフに固定し、トランジスタM2のみをスイッチングして、昇圧型DC−DCコンバータにダイオード整流方式の昇圧動作をさせることによって、定電流モードから昇圧モードに移行した直後など、Vout≒Vinとなっている場合に、ブロッキング発振を抑制することができる。
【0061】
なお、上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。