【実施例】
【0050】
次に、実施例及び比較例に基づいて、本発明について更に説明するが、本発明が以下に示す実施例に限定されるものではない。
【0051】
<第1次酸素放出温度の測定>
マンガン酸リチウム粉体を40mg秤量してAl
2O
3製深皿容器に入れ、空気を100ml/minの流量でフローさせた状態(酸素分圧0.021MPa、酸素濃度21%)で、昇温速度を5℃/minとして1100℃まで加熱測定し、得られたTG曲線から600℃〜900℃の範囲で重量減少した開始温度を「第一次酸素放出温度」として求めた。
熱分析には、TG−DTA装置(株式会社マック・サイエンス製「TG−DTA2000S」)を用いた。
【0052】
<化学分析測定>
実施例及び比較例で得たマンガン酸リチウム粉体(サンプル)のホウ素(B)量、硫酸根(SO
4)量、硫黄(S)量及びNa量を、通常のICP発光分光分析法で測定した。
【0053】
<水分量の測定>
実施例及び比較例で得たマンガン酸リチウム粉体(サンプル)の水分量(ppm)を、電量滴定方式自動水分装置(CA-100型、三菱化学株式会社製)を用いて測定した。
測定の範囲は常温から300℃とした。
【0054】
<水分量増加度の測定>
実施例及び比較例で得たマンガン酸リチウム粉体(サンプル)を60℃×湿度80%の環境試験機に45分間静置し、取り出した粉体の水分量は電量滴定方式自動水分装置を用いて測定した。
保存後の水分量を、初期の水分量で割り算して求めた数値を水分量増加度(%)として求めた。
【0055】
<電池評価>
(電池の作製)
実施例及び比較例で得たマンガン酸リチウム粉体(サンプル)又は5V級スピネル粉体(サンプル)8.80gと、アセチレンブラック(電気化学工業製)0.60g及びNMP(N-メチルピロリドン)中にPVDF(キシダ化学製)12wt%溶解した液5.0gとを正確に計り取り、そこにNMPを5ml加え十分に混合し、ペーストを作製した。このペーストを集電体であるアルミ箔上にのせ、250μmのギャップに調整したアプリケーターで塗膜化し、120℃一昼夜真空乾燥した後、φ16mmで打ち抜き、4t/cm
2でプレス厚密し、正極とした。電池作製直前に120℃で120min以上真空乾燥し、付着水分を除去し電池に組み込んだ。また、予めφ16mmのアルミ箔の重さの平均値を求めておき、正極の重さからアルミ箔の重さを差し引き正極合材の重さを求め、また正極活物質とアセチレンブラック、PVDFの混合割合から正極活物質の含有量を求めた。
負極はφ20mm×厚み1.0mmの金属リチウムとし、これらの材料を使用して
図1に示す電気化学評価用セルTOMCEL(登録商標)を作製した。
【0056】
図1の電気化学用セルは、耐有機電解液性のステンレス鋼製の下ボディ1の内側中央に、前記正極合材からなる正極3を配置した。この正極3の上面には、電解液を含浸した微孔性のポリプロピレン樹脂製のセパレータ4を配置し、テフロン(登録商標)スペーサー5によりセパレータを固定した。更に、セパレータ上面には、下方に金属リチウムからなる負極6を配置し、負極端子を兼ねたスペーサー7を配置し、その上に上ボディ2を被せて螺子で締め付け、電池を密封した。
電解液は、ECとDMCを3:7体積混合したものを溶媒とし、これに溶質としてLiPF
6を1moL/L溶解させたものを用いた。
【0057】
(初期放電容量)
上記のようにして準備した電気化学用セルを用いて次に記述する方法で初期放電容量を求めた。すなわち、20℃にて4.3Vまで0.1Cで充電した状態で、正極中の正極活物質の含有量から、0.1C放電レートになるように電流値を算出した。定電流放電した時の3.0Vまでの放電容量(mAh/g)を測定した。
なお、5V級スピネル粉体(サンプル)に関しては、20℃にて5.2Vまで0.1Cで充電した状態で、正極中の正極活物質の含有量から、0.1C放電レートになるように電流値を算出した。定電流放電した時の3.0Vまでの放電容量(mAh/g)を測定した。
【0058】
また、高温特性評価は以下の方法で行った。
実施例及び比較例で得た正極活物質としてのマンガン酸リチウム粉体(サンプル)又は5V級スピネル粉体(サンプル)8.80gと、アセチレンブラック(電気化学工業製)0.60gと、NMP(N-メチルピロリドン)中にPVDF(キシダ化学製)12wt%溶解した液5.0gとを正確に計り取り、そこにNMPを5ml加え十分に混合し、ペーストを作製した。このペーストを集電体であるアルミ箔上にのせ、200μm〜310μmのギャップに調整したアプリケーターで塗膜化し、120℃一昼夜真空乾燥した後、φ16mmで打ち抜き、4t/cm
2でプレス厚密し、正極とした。電池作製直前に120℃で120min以上真空乾燥し、付着水分を除去し電池に組み込んだ。また、予めφ16mmのアルミ箔の重さの平均値を求めておき、正極の重さからアルミ箔の重さを差し引き正極合材の重さを求め、また正極活物質とアセチレンブラック、PVDFの混合割合から正極活物質の含有量を求めた。
負極はφ17.5mmの天然球状グラファイト(パイオニクス株式会社 電極容量1.6mAh/cm
2)とし、負極容量/正極容量比を1.1〜1.15に調整し、電解液は、ECとDMCを3:7体積混合+VC0.5%添加したものを溶媒とし、これに溶質としてLiPF
6を1moL/L溶解させたものを用い、
図1に示す電気化学評価用セルTOMCEL(登録商標)を作製した。
【0059】
(初期活性処理)
上記のようにして準備した電気化学用セルを用いて下記に記述する方法で充放電試験し、初期活性処理を行った。初期活性処理はリチウムイオン電池においては重要である。
電池充放電する環境温度を25℃となるように設定した環境試験機内にセルを入れ、充放電できるように準備し、セル温度が環境温度になるように1時間静置後、充放電範囲を、マンガン酸リチウム粉体(サンプル)については3.0V〜4.2Vとし、5V級スピネル粉体(サンプル)については3.0〜5.1Vとし、1サイクル目は0.05C 定電流定電圧充電を行い、50〜100時間程度エージング行った後、0.05Cで定電流放電行った後、その後は、0.1Cで定電流定電圧充電 0.1Cで定電流放電を2サイクル行った。
【0060】
(高温サイクル寿命評価)
上記のようにして準備した電気化学用セルを用いて下記に記述する方法で充放電試験し、高温サイクル寿命特性を評価した。
電池充放電する環境温度を45℃となるように設定した環境試験機内にセルを入れ、充放電できるように準備し、セル温度が環境温度になるように4時間静置後、充放電範囲を、マンガン酸リチウム粉体(サンプル)については3.0V〜4.2Vとし、5V級スピネル粉体(サンプル)については3.0〜5.1Vとし、充電は1.0C定電流定電位、放電は0.1C定電流で1サイクル充放電行った後、SOC0−100%の充放電深度で、1Cにて充放電サイクルを99回行い、100サイクル目は容量確認の為、放電レート0.1Cにて放電を行った。
100サイクル目の放電容量を1サイクル目の放電容量で割り算して求めた数値の百分率(%)を高温サイクル寿命特性値(0.1C)として求めた。
【0061】
(サイクル前後出力低下率)
上記初期活性処理行った電気化学用セルを用い、下記に記述する方法で充放電試験行い、出力低下率を求めた。
初期活性処理した電池を25℃となるように設定した環境試験機内にセルを入れ、初期活性処理で得られて放電容量から、SOC50%となるように充電を行った後、電気化学測定機で3.0C 10秒放電行い、初期出力を求めた。高温(45℃)でサイクル行ったセルを25℃となるように環境試験にセットし、SOC50%となるように充電を行った後、電気化学測定機で3.0C 10秒放電行い、サイクル後の出力を求めた。
100サイクル後の出力を初期の出力で割り算して求めた数値を「出力低下率(%)」として求めた。
【0062】
<実施例1>
炭酸リチウム、電解二酸化マンガン(200℃-400℃加熱時のTG減量:3.0%)、酸化マグネシウム、四ホウ酸リチウムおよび水酸化アルミニウムを、表1に示す組成となるように秤量し、精密混合機で混合後、混合原料を得た。
得られた混合原料を、焼成容器(アルミナ製のルツボ大きさ=たて*よこ*たかさ=10*10*5(cm))内に、開放面積と充填高さの比(開放面積cm
2/充填高さcm)が100となるように充填した。この際の原料見掛密度は1.1g/cm
3であった。電気炉中で900℃で15時間焼成し、せん断式破砕機で解砕してスピネル型マンガン酸リチウムの粉末を作製した。
【0063】
【表1】
【0064】
このスピネル型マンガン酸リチウムの粉末7000gとイオン交換水(pH5.8)13.5Lとを混合し、10分間攪拌してマンガン酸リチウムのスラリーとした(スラリー濃度34質量%)。この時の液温は25℃であった。このスラリーを湿式磁選器(スラリーが接触する箇所の磁石の磁力:17000G)内に1.0m/secの速度で流通させた後、減圧ろ過した。
続いて、濾別したマンガン酸リチウムを大気中で350℃(品温)に加熱して5時間、水蒸気排出速度1.0g/secで乾燥させた後、分級機によって分級行い、325メッシュアンダーのマンガン酸リチウムの粉末(サンプル)を得た。
なお、乾燥する前のマンガン酸リチウムの粉末を一部採取して測定したところ、その第1次酸素放出温度は722℃であった。
【0065】
<実施例2>
水洗温度を50℃に変更した以外は、実施例1と同様にマンガン酸リチウムの粉末(サンプル)を得た。
乾燥する前のマンガン酸リチウムの粉末を一部採取して測定したところ、その第1次酸素放出温度は721℃であった。
【0066】
<実施例3>
磁選後の乾燥温度を300℃に変更し、水蒸気排出速度を0.008g/secに変更した以外は、実施例1と同様にマンガン酸リチウムの粉末(サンプル)を得た。
乾燥する前のマンガン酸リチウムの粉末を一部採取して測定したところ、その第1次酸素放出温度は723℃であった。
【0067】
<実施例4>
水洗後のスラリー濃度を50質量%とし、磁選後の乾燥温度を400℃に変更し、水蒸気排出速度を150g/secに変更した以外は、実施例1と同様にマンガン酸リチウムの粉末(サンプル)を得た。
乾燥する前のマンガン酸リチウムの粉末を一部採取して測定したところ、その第1次酸素放出温度は722℃であった。
【0068】
<実施例5>
炭酸リチウム、電解二酸化マンガン(200℃-400℃加熱時のTG減量:3.0%)及び水酸化ニッケルを、総量10kgとなるように表1に示す量を秤量し、水20kg、分散剤1.2kgの中へ攪拌しながら投入した。そのスラリーを湿式粉砕機(SCミル SC220/70A−VB−ZZ 三井鉱山株式会社)中を循環させて、回転数1300rpm45分粉砕し、スラリー中の中心粒径が0.6μm以下とした。得られたスラリーを、噴霧熱乾燥機(OC-16 大川原化工機株式会社)でアトマイザー24000rpm、流量50mL/min 入口温度190℃で乾燥行い、中心粒径15μmの前駆体を得た。
得られた前駆体を、焼成容器(アルミナ製のルツボ大きさ=たて*よこ*たかさ=10*10*5(cm))内に、開放面積と充填高さの比(開放面積cm
2/充填高さcm)が100となるように充填した。この際の原料見掛密度は1.1g/cm
3であった。電気炉中で950℃72時間焼成し、せん断式破砕機で解砕してスピネル型マンガン酸リチウムの粉末(5V級スピネル粉体)を作製した。
【0069】
この5V級スピネル粉体7000gとイオン交換水(pH5.8)13.5Lとを混合し、10分間攪拌してマンガン酸リチウムのスラリーとした(スラリー濃度34質量%)。この時の液温は25℃であった。このスラリーを湿式磁選器(スラリーが接触する箇所の磁石の磁力:17000G)内に1.0m/secの速度で流通させた後、減圧ろ過した。
続いて、濾別したマンガン酸リチウムを大気中で500℃(品温)に加熱して5時間、水蒸気排出速度1.0g/secで乾燥させた後、分級機によって分級行い、325メッシュアンダーの5V級スピネル粉体(サンプル)を得た。
なお、乾燥する前の5V級スピネル粉体の粉末を一部採取して測定したところ、その第1次酸素放出温度は730℃であった。
【0070】
<実施例6>
炭酸リチウム、電解二酸化マンガン(200℃-400℃加熱時のTG減量:3.0%)、酸化マグネシウム、四ホウ酸リチウムおよび水酸化アルミニウムを、表1に示す組成となるように秤量し、精密混合機で混合後、混合原料を得た。
得られた混合原料を、焼成容器(アルミナ製のルツボ大きさ=たて*よこ*たかさ=10*10*5(cm))内に、開放面積と充填高さの比(開放面積cm
2/充填高さcm)が100となるように充填した。この際の原料見掛密度は1.1g/cm
3であった。電気炉中で850℃20時間焼成し、せん断式破砕機で解砕してスピネル型マンガン酸リチウムの粉末を作製した。
このスピネル型マンガン酸リチウムの粉末7000gとイオン交換水(pH5.8)13.5Lとを混合し、10分間攪拌してマンガン酸リチウムのスラリーとした(スラリー濃度34質量%)。この時の液温は25℃であった。このスラリーを湿式磁選器(スラリーが接触する箇所の磁石の磁力:17000G)内に1.0m/secの速度で流通させた後、減圧ろ過した。
続いて、濾別したマンガン酸リチウムを大気中で350℃(品温)に加熱して5時間、水蒸気排出速度50.0g/secで乾燥させた後、分級機によって分級行い、325メッシュアンダーのマンガン酸リチウムの粉末(サンプル)を得た。なお、乾燥する前のマンガン酸リチウムの粉末を一部採取して測定したところ、その第1次酸素放出温度は705℃であった。
【0071】
<実施例7>
炭酸リチウム、電解二酸化マンガン(200℃-400℃加熱時のTG減量:3.0%)、酸化マグネシウム、四ホウ酸リチウムおよび水酸化アルミニウムを、表1に示す組成となるように秤量し、精密混合機で混合後、混合原料を得た。
得られた混合原料を、焼成容器(アルミナ製のルツボ大きさ=たて*よこ*たかさ=10*10*5(cm))内に、開放面積と充填高さの比(開放面積cm
2/充填高さcm)が100となるように充填した。この際の原料見掛密度は1.1g/cm
3であった。電気炉中で850℃20時間焼成し、せん断式破砕機で解砕してスピネル型マンガン酸リチウムの粉末を作製した。
このスピネル型マンガン酸リチウムの粉末7000gとイオン交換水(pH5.8)13.5Lとを混合し、10分間攪拌してマンガン酸リチウムのスラリーとした(スラリー濃度34質量%)。この時の液温は5℃であった。このスラリーを湿式磁選器(スラリーが接触する箇所の磁石の磁力:17000G)内に1.0m/secの速度で流通させた後、減圧ろ過した。
続いて、濾別したマンガン酸リチウムを大気中で350℃(品温)に加熱して5時間、水蒸気排出速度1.0g/secで乾燥させた後、分級機によって分級行い、325メッシュアンダーのマンガン酸リチウムの粉末(サンプル)を得た。なお、乾燥する前のマンガン酸リチウムの粉末を一部採取して測定したところ、その第1次酸素放出温度は700℃であった。
【0072】
<実施例8>
炭酸リチウム、電解二酸化マンガン(200℃-400℃加熱時のTG減量:3.0%)、酸化マグネシウム、四ホウ酸リチウムおよび水酸化アルミニウムを、表1に示す組成となるように秤量し、精密混合機で混合後、混合原料を得た。
得られた混合原料を、焼成容器(アルミナ製のルツボ大きさ=たて*よこ*たかさ=10*10*5(cm))内に、開放面積と充填高さの比(開放面積cm
2/充填高さcm)が100となるように充填した。この際の原料見掛密度は1.1g/cm
3であった。電気炉中で800℃20時間焼成し、せん断式破砕機で解砕してスピネル型マンガン酸リチウムの粉末を作製した。
このスピネル型マンガン酸リチウムの粉末7000gとイオン交換水(pH5.8)13.5Lとを混合し、10分間攪拌してマンガン酸リチウムのスラリーとした(スラリー濃度34質量%)。この時の液温は25℃であった。このスラリーを湿式磁選器(スラリーが接触する箇所の磁石の磁力:17000G)内に1.0m/secの速度で流通させた後、減圧ろ過した。
続いて、濾別したマンガン酸リチウムを大気中で350℃(品温)に加熱して5時間、水蒸気排出速度1.0g/secで乾燥させた後、分級機によって分級行い、325メッシュアンダーのマンガン酸リチウムの粉末(サンプル)を得た。なお、乾燥する前のマンガン酸リチウムの粉末を一部採取して測定したところ、その第1次酸素放出温度は700℃であった。
【0073】
<実施例9>
炭酸リチウム、電解二酸化マンガン(200℃-400℃加熱時のTG減量:3.0%)、酸化マグネシウム、四ホウ酸リチウムおよび水酸化アルミニウムを、表1に示す組成となるように秤量し、精密混合機で混合後、混合原料を得た。
得られた混合原料を、焼成容器(アルミナ製のルツボ大きさ=たて*よこ*たかさ=10*10*5(cm))内に、開放面積と充填高さの比(開放面積cm
2/充填高さcm)が100となるように充填した。この際の原料見掛密度は1.1g/cm
3であった。電気炉中で750℃20時間焼成し、せん断式破砕機で解砕してスピネル型マンガン酸リチウムの粉末を作製した。
このスピネル型マンガン酸リチウムの粉末7000gとイオン交換水(pH5.8)13.5Lとを混合し、10分間攪拌してマンガン酸リチウムのスラリーとした(スラリー濃度34質量%)。この時の液温は10℃であった。このスラリーを湿式磁選器(スラリーが接触する箇所の磁石の磁力:17000G)内に1.0m/secの速度で流通させた後、減圧ろ過した。
続いて、濾別したマンガン酸リチウムを大気中で350℃(品温)に加熱して5時間、水蒸気排出速度120g/secで乾燥させた後、分級機によって分級行い、325メッシュアンダーのマンガン酸リチウムの粉末(サンプル)を得た。なお、乾燥する前のマンガン酸リチウムの粉末を一部採取して測定したところ、その第1次酸素放出温度は695℃であった。
【0074】
<比較例1>
炭酸リチウム、電解二酸化マンガン(200℃-400℃加熱時のTG減量:3.0%)、酸化マグネシウム、四ホウ酸リチウムおよび水酸化アルミニウムを、表1に示すように秤量し、精密混合機で混合後、混合原料を得た。
得られた混合原料を、焼成容器(アルミナ製のルツボ大きさ=たて*よこ*たかさ=10*10*5(cm))内に、開放面積と充填高さの比(開放面積cm
2/充填高さcm)が100となるように充填した。この際の原料見掛密度は1.1g/cm
3であった。電気炉中で900℃で15時間焼成し、せん断式破砕機により解砕し、分級機によって分級行い、325メッシュアンダーのスピネル型マンガン酸リチウムの粉末を作製した。
【0075】
<比較例2>
炭酸リチウム、電解二酸化マンガン(200℃-400℃加熱時のTG減量:3.0%)、酸化マグネシウム、四ホウ酸リチウムおよび水酸化アルミニウムを、比較例1と同量秤量し、精密混合機で混合後、混合原料を得た。
得られた混合原料を、焼成容器(アルミナ製のルツボ大きさ=たて*よこ*たかさ=10*10*5(cm))内に、開放面積と充填高さの比(開放面積cm
2/充填高さcm)が100となるように充填した。この際の原料見掛密度は1.1g/cm
3であった。電気炉中で900℃で15時間焼成し、せん断式破砕機により解砕してスピネル型マンガン酸リチウムの粉末を作製した。
【0076】
このようにして得たスピネル型マンガン酸リチウム粉末7000gとイオン交換水13.5Lとを混合し、10分間攪拌してマンガン酸リチウムのスラリーとした(スラリー濃度34質量%)。この時の液温は25℃であった。このスラリーを湿式磁選器(スラリーが接触する箇所の磁石の磁力:17000G)内に流通させ、減圧ろ過した。
続いて、濾別したマンガン酸リチウムを真空中で200℃(品温)に加熱して一昼夜乾燥させた後、分級機によって分級行い、325メッシュアンダーのマンガン酸リチウムの粉末(サンプル)を得た。
【0077】
<比較例3>
磁選後の乾燥条件を、大気中で200℃(品温)に加熱して5時間乾燥させ、水蒸気排出速度を1.0g/secに変更した以外は、実施例1と同様にマンガン酸リチウムの粉末(サンプル)を得た。
【0078】
<比較例4>
炭酸リチウム、電解二酸化マンガン(200℃-400℃加熱時のTG減量:3.0%)及び水酸化ニッケルを、総量10kgとなるように表1に示す量を秤量し、水20kg、分散剤1.2kgの中へ攪拌しながら投入した。そのスラリーを湿式粉砕機(SCミル SC220/70A−VB−ZZ 三井鉱山株式会社)中を循環させて、回転数1300rpm45分粉砕し、スラリー中の中心粒径が0.6μm以下とした。得られたスラリーを、噴霧熱乾燥機(OC-16 大川原化工機株式会社)でアトマイザー24000rpm、流量50mL/min 入口温度190℃で乾燥行い、中心粒径15μmの前駆体を得た。
得られた前駆体を、焼成容器(アルミナ製のルツボ大きさ=たて*よこ*たかさ=10*10*5(cm))内に、開放面積と充填高さの比(開放面積cm
2/充填高さcm)が100となるように充填した。この際の原料見掛密度は1.1g/cm
3であった。電気炉中で950℃72時間焼成し、せん断式破砕機で解砕してスピネル型マンガン酸リチウムの粉末(5V級スピネル粉体)を作製し、これを5V級スピネル粉体(サンプル)とした。
【0079】
【表2】
【0080】
【表3】
【0081】
(考察)
今回の試験結果から、焼成後のスピネル型(Fd−3m)リチウム遷移金属酸化物を極性溶媒で洗浄し、その後、酸素を含有する雰囲気下で300〜700℃に加熱乾燥することによって、寿命特性や高温サイクル特性をより一層向上させることができることが確認できた。
また、表3に示すように、5V級スピネル粉体(サンプル)を作製した実施例5と比較例4とを比較すると、5V級スピネル粉体についても、極性溶媒で洗浄し、その後、酸素を含有する雰囲気下で300〜700℃に加熱乾燥することによって、寿命特性や高温サイクル特性をより一層向上させることができることが確認できた。