(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
近年、薬効評価のスクリーニングや分化誘導因子の研究が盛んに行われている。このような研究では、種々の細胞凝集塊が評価に用いられる。そのため、細胞凝集塊を効率的に形成する培養方法が求められている。
また、スクリーニング等の評価では多検体を一度に、かつ、迅速に処理する必要がある。したがって、大量の細胞凝集塊の形成及び評価をすることができる培養容器が求められる。
【0003】
このような目的で多数のウェルが設けられたマイクロウェルプレートが用いられる。マイクロウェルプレートでは例えば96ウェルや384ウェル、1,536ウェルのものが市販されており、多数の検体を取り扱うことが可能である。
【0004】
しかしながら多数のウェルが設けられたマイクロウェルプレートには以下のような問題がある。マイクロウェルプレートの形状・大きさは規格化(ANSI/SBS-1 2004、ANSI/SBS-2 2004、ANSI/SBS-3 2004, ANSI/SBS-4 2004)されているため、ウェルの数が増えればウェルの容量は減少せざるを得ない。したがって、例えば特許文献1に開示されるような1,000を超えるウェルを有するマイクロウェルプレートでは、ウェル1つ当たりの容量が数μL程度となる。このような低容量のウェルで培養を行う場合、栄養因子の量の確保や培地の蒸発の影響から培養が非常に難しくなる。また、薬効評価の際にはウェルに培養液の半分から等量の試薬を加えることとなるが、低容量のウェルではこのような余裕がない。
【0005】
このような問題を回避し、ウェルの容量を増やすためにウェルの縦断面形状を四角形とすることが考えられる。しかしこのようなウェルの形状ではウェルの底面が平面であることから均一な細胞凝集塊の形成が困難である。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は上記の課題に鑑みてなされたものであり、細胞凝集塊の形成を良好に行うことができ、かつ、十分なウェル容量を確保することができるマイクロウェルプレートを提供するものである。
【課題を解決するための手段】
【0008】
このような目的は、下記(1)〜(5)に記載の本発明により達成される。
(1)一方の面に開放する開口を有するウェルを備えるマイクロウェルプレートであって、
前記ウェルは、前記開口から前記マイクロウェルプレートの内部に向かって形成された空間を画定し、前記空間は開口側部分と、前記開口側部分から前記マイクロウェルプレートの内部に向かって形成される底部側部分と、開口側部分41と底部側部分42とを滑らかに接続する遷移部分43とを有し、
前記開口側部分は、横断面が多角形状をなしており、
前記底部側部分は、内部に向かって横断面積が漸減するように形成されていることを特徴とするマイクロウェルプレート。
ここで、前記開口側部分の深さと、前記底部側部分と遷移部分との合計の深さの深さとの比が3:1〜4:1で
あってもよい。
(
2)前記開口側部分の前記開口に平行な断面は四角形、五角形又は六角形のいずれかである(1
)に記載のマイクロウェルプレート。
(
3)前記底部側部分の前記開口に平行な断面は円形である(1)
又は(2)に記載のマイクロウェルプレート。
(
4)前記ウェルの数は384個以上である、(1)乃至(
3)のいずれか一項に記載のマイクロウェルプレート。
(5)細胞凝集塊を用いた薬効評価のスクリーニング用である、(1)乃至(4)のいずれか一項に記載のマイクロウェルプレート。
【発明の効果】
【0009】
本発明のマイクロウェルプレートによれば、ウェルの形状を適正化することにより、細胞凝集塊の形成を良好に行うことができ、かつ、十分なウェル容量を確保することができる。
【発明を実施するための形態】
【0011】
以下、本発明のマイクロウェルプレートの好適な実施形態について、図面を参照しつつ詳細に説明する。
図1は、本発明の実施形態に係るマイクロウェルプレート1の上面図である。
図2は、
図1のII部の拡大図である。
図3は、本実施形態に係るウェル2の縦断面図である。なお、以下の説明では
図3中、図面の上方を上側、下方を下側と呼ぶことがある。
【0012】
まず、
図1を用いて、本実施形態に係るマイクロウェルプレート1について説明する。マイクロウェルプレート1は、通常小スケールの細胞培養や生化学実験等に用いられる。なお、本実施形態のマイクロウェルプレート1はウェル2の深さ以上の厚さを有する平板にウェル2を形成したものであるが、本発明はこれに限らず、ウェル2の深さ未満の厚さを有する平板の一部を凹没させてウェル2を形成するようにしてもよい。
【0013】
マイクロウェルプレート1は、
図1および3に示すように、樹脂製の平板の一方の面(上側の面)に開放するウェル2が形成されている。ウェル2は一般にn行m列に配置されており、その数は6、12、24、48、96、384、1536等のものが用いられている。以下では384ウェル(16行24列)のマイクロウェルプレート1を例として説明する。なお、本実施形態に係るマイクロウェルプレート1はこれに限られず様々な形状、寸法、ウェル数のものを用いてもよい。
【0014】
図1に示される本実施形態のマイクロウェルプレート1は、縦125mm程度、横83mm程度、厚さ14mm程度の平板状である。
マイクロウェルプレート1の材料としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、エチレン-プロピレン共重合体等のポリオレフィン系樹脂または環状ポリオレフィン系樹脂、ポリスチレン、アクリロニトリル−ブタジエン−スチレン系樹脂等のポリスチレン系樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタクリレート樹脂等のメタクリル系樹脂、塩化ビニル樹脂、ポリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリメチルペンテン樹脂、ポリアクリロニトリル等のアクリル系樹脂、プロピオネート樹脂等の繊維素系樹脂等が挙げられる。
これらの中でも、培養容器に求められる成形性、放射線滅菌耐性の点においてポリスチレン樹脂が好ましい。
また、細胞凝集塊の形状観察や吸光度測定を行う場合には透明性の樹脂を選択し、ウェルごとの発光測定や蛍光測定を行う場合には遮光性の樹脂を選択することが好ましい。
【0015】
ウェル2は細胞凝集塊を形成するための空間4を画定する部分である。すなわち、マイクロウェルプレート1の上面には凹部を画定するウェル2が形成されており、この凹部が空間4となる。本実施形態では
図3に示すように、ウェル2に画定される空間4は、開口側部分41と、マイクロウェルプレート1の内部に向かって形成される底部側部分42と、開口側部分41と底部側部分42とを滑らかに接続する遷移部分43とを有する。
より具体的には、開口側部分41は、ウェルプレート1の上面をその上端とし、その多角形状の横断面が円形に向けて変形し始めるところを下端とする部分である。上記円形に向けて変形し始めるところとは、つまり多角形状の内角のうち、いずれが一つの角度が増大し始めるところである。
底部側部分42は、内部に向かって横断面積が漸減し始める上端からウェルの底部である下端までを意味する。
そして遷移部分は、開口部側部分41の下端から底部側部分42の上端までの部分である。
【0016】
図2に示すように、本実施形態のウェル2の開口3は略正方形状をなしている。このように開口3を円形でなく多角形状とすることにより開口側部分41の容積を大きくすることができる。開口3の形状は多角形状であれば容積を増大させる効果はあるが、特に四角形、五角形又は六角形のいずれかとすると、円形の場合と比べて容量が大きくなるため好ましい。特にウェル2の数が384以上のマイクロウェルプレート1では、開口3を多角形とすることによる容量の増加の効果が大きい。
【0017】
なお、本実施形態では
図2に示すように開口3の形状は完全な多角形状ではなく、それぞれの角が丸く形成されている。このようにすると、ウェル2への表面処理等を良好に行うことができるため好ましい。
【0018】
空間4の開口側部分41は略多角錐台形状をなしている。すなわち、
図3に示すように、開口側部分41の縦断面において壁面が底部側に向かって傾斜している。傾斜角度は可能な限り小さいことが好ましく、例えば1〜2°程度である。このように多少の傾斜をつけることで製造時にマイクロウェルプレート1を成形型から抜きやすくなる。なお、例えば離型処理に工夫をするなどにより離型性が良好であればこの傾斜は設けなくともよい。
【0019】
空間4の底部側部分42は内部に向かって横断面積が漸減するように形成されている。本実施形態では、横断面形状は円形である。すなわち、底部側部分42はいわゆるU底形状をなしている。このような形状は細胞を最深部に集めやすく、細胞凝集塊の形成に有利である。なお、底部側部分42はU底に限られず、例えばV底としても、つまり底部側部分42の縦断面形状はU字状に限られず、例えばV字状にしても細胞凝集塊の形成を行うことができる。
【0020】
開口側部分41と底部側部分42との間には遷移部分43が位置している。遷移部分43は多角形状の横断面を有する開口側部分41と円形の横断面を有する底部側部分42とを滑らかに接続するよう形成されている。
【0021】
ここでウェル2の代表的な寸法例について説明する。
開口3は一辺が3.3mm程度の大きさである。また、開口側部分41の深さは8.8mm程度であり、底部側部分42と遷移部分43とを合せた深さは3.2mm程度である。したがって、開口側部分41と、底部側部分42と遷移部分43との合計の深さとの比は、3:1〜4:1程度となる。開口側部分41と、底部側部分42と遷移部分43との合計深さとの比を上記範囲とすると、細胞凝集塊の形成が可能な底部を有した上で十分にウェル2の容量を確保することができる。
【0022】
なお、本実施形態のウェル2形状とすると、ウェル2の容量は108.4μLとなる。一方、対応する大きさで開口が円形の場合にはウェルの容量は87.16μLとなる。細胞凝集塊の形成においてはウェル当たりの培地量として50μL程度が好ましいが、本実施形態のウェル形状とすれば、後の評価で培地と等量の試薬を添加することも可能となる。
【0023】
次に本実施形態のマイクロウェルプレート1の使用方法について説明する。
一例として本実施形態では、50μL/ウェルで培養を行う。したがって、細胞凝集塊を用いた評価の目的に合せて、50μL中に必要な細胞数が確保されるように細胞懸濁液の調製を行う。
【0024】
このように調整した細胞懸濁液を384ウェルのマイクロウェルプレート1に播種し、37℃、5%CO
2濃度で培養を開始する。播種した細胞は非接着の状態で増殖し、2日程度でウェル2の最深部で細胞凝集塊を形成する。
【0025】
次に細胞凝集塊を用いてマイクロウェルプレート1上で薬効評価のスクリーニングを行う。
一例として本実施形態では、培養液と同量のCellTiter-Glo(TM) Luminescent Cell Viability Assay(プロメガ株式会社製)を、製品添付のプロトコルに従って、得られた細胞凝集塊に添加し、ウェル毎の細胞内ATP量に比例した発光量を測定する。測定値を細胞数の指標とし、ウェル毎の細胞数の変化率を算出することができ、ウェル毎に異なる薬剤を加えた場合は、薬剤の細胞増殖に対する影響を評価することができる。
【0026】
以上のように本実施形態のマイクロウェルプレート1によれば、細胞凝集塊の形成から薬効評価のスクリーニングまで細胞凝集塊を移動させることなしに行うことができる。したがって、大量の検体を使用するスクリーニングであっても評価を迅速に行うことができる。
【実施例】
【0027】
次に、本発明を実施例を用いて説明する。
(実施例1)
透明のポリスチレン樹脂(PSジャパン社製、HF77)、および透明のポリスチレン樹脂に、白色色素チタンホワイト顔料(住化カラー製)を15%混合した着色樹脂を用いて、射出成形により透明、白色2種の384ウェルマイクロウェルプレートを成形した。
得られたマイクロウェルプレートの形状は、横127.7mm、縦85.5mm、高さ14.4mmであった。
また、各ウェルの形状は、
図3に示したとおりであり、開口部は一辺3.3mmの四角形、深さ12mm、底部の曲率半径は1.5mm、ウェル容量は108.4μLであった。
尚、開口側部分41の深さは8.8mm、底部側部分42と、遷移部分43との合計の深さは3.2mmであり、深さの比は15:4であった。
得られたプレートにプラズマ処理装置(BRANSON/IPC社製 SERIES7000)を用いてプラズマ処理(酸素プラズマ10分)を行い、プレート表面に濡れ性を付与した。
次に、着色樹脂にて遮光したポリプロピレン容器中で、水溶性樹脂であるBIOSURFINE(R)‐AWP(東洋合成工業社製)を、25容量%エタノール水溶液に溶解し、0.3重量%の水溶性樹脂溶液を調整した。 自動分注機(MolecularDevices社製、AquaMax 2000)により、上述の水溶性樹脂溶液を、上述のプレートに、1ウェルにつき80μL加え、3秒間浸漬した。
その後、同自動分注機で溶液を吸引除去し、25℃で17時間一次乾燥した。
次いで、UVランプで250nmのUV光を1.0mW/cm
2×30秒間照射して水溶性樹脂を硬化した。
その後、超純水で3回繰り返し洗浄し、乾燥後、γ線を吸収線量5.8kGyで照射(ラジエ工業株式会社)して、培養容器(プレート)を得た。
【0028】
(比較例1)
成形品として、市販品のマイクロウェルプレートを使用した以外は実施例1と同じ工程にて培養容器(プレート)を得た。市販品のマイクロウェルプレートとして、Greiner社製 781101を使用した。形状は、横127.7mm、縦85.5mm、高さ14.4mmであり、ウェルの開口部は一辺3.7mmの四角形であった。ウェルの形状は開口側部分41のみで構成された略多角錐台形状であり、深さは11.5mmであり、約1°の抜き勾配を有し、底面は遷移部分43および底部側部分42を持たない、一辺3.3mmの四角形の平面であった。
【0029】
実施例1および比較例1にて得られた培養容器について、以下の評価を行った。
(1)HepG2細胞(ヒト肝癌由来細胞)を用いた細胞凝集塊形成
細胞凝集塊培養の培養期間における細胞の栄養要求および、培養中の培地の蒸発の影響より50μL/ウェル以上の培養液量が必要であるため、以下の評価では培養液量50μL/ウェルで行った。
あらかじめ90mmφの培養シャーレで培養し増殖させたHepG2細胞を、培養液(ダルベッコ改変MEM+10%ウシ胎児血清)に2×10
3cells/mLの濃度で分散させた細胞懸濁液を調製した。
上述の細胞懸濁液を、透明樹脂で成形したプレートの全ウェルに、50μL/ウェルずつ分注し、37℃、5%CO2雰囲気下にて3日間培養した。
3日後、各ウェルの細胞凝集塊の状態を、顕微鏡観察により評価した。
【0030】
その結果、実施例1においてはプレート全ウェルで単一の細胞凝集塊が認められた。一方、比較例1においては、1ウェル内に複数の細胞凝集塊が観察された。
【0031】
単一の細胞凝集塊が得られた実施例1にて得られた培養容器について、以下の評価を行った。
(2)HepG2細胞を用いた細胞凝集塊のルシフェラーゼ活性測定による細胞数計数
HepG2細胞を培養液(ダルベッコ改変MEM+10%ウシ胎児血清)に2×103cells/mLの濃度で分散させた細胞懸濁液を調製した。
上述の着色樹脂で成形した白色のプレートに、50μL/ウェルずつ分注し、37℃、5%CO
2雰囲気下にて3日間培養した。
3日後、プロメガ社のCellTiter-Glo(TM)Luminescent Cell Viability Assay(プロメガ株式会社製)を、製品添付のプロトコルに従って、培養液と等量添加し、ウェル毎の細胞内ATP量に比例した発光量を測定した。
尚、評価はn=384で行い、あらかじめ測定した検量線より細胞数を求めた。
【0032】
実施例1においては初期細胞数1,000個に対して、細胞数平均値4,810個、CV値9.5%と均一な細胞の増殖が確認された。
【0033】
尚、ウェル毎に異なる薬剤を加えた場合は、薬剤の細胞増殖に対する影響を評価することができるものであり、本実施形態のマイクロウェルプレートによれば、細胞凝集塊の形成から薬効評価のスクリーニングまで細胞凝集塊を移動させることなしに行うことができる。したがって、大量の検体を使用するスクリーニングであっても評価を迅速に行うことができる。