(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5954823
(24)【登録日】2016年6月24日
(45)【発行日】2016年7月20日
(54)【発明の名称】繊維状金属吸着材
(51)【国際特許分類】
B01J 20/26 20060101AFI20160707BHJP
B01J 20/30 20060101ALI20160707BHJP
C02F 1/28 20060101ALI20160707BHJP
C08F 8/30 20060101ALI20160707BHJP
C08G 81/02 20060101ALI20160707BHJP
D01D 5/08 20060101ALI20160707BHJP
【FI】
B01J20/26 E
B01J20/30
C02F1/28 B
C08F8/30
C08G81/02
D01D5/08
【請求項の数】4
【全頁数】10
(21)【出願番号】特願2012-194640(P2012-194640)
(22)【出願日】2012年9月5日
(65)【公開番号】特開2014-50763(P2014-50763A)
(43)【公開日】2014年3月20日
【審査請求日】2015年1月15日
(73)【特許権者】
【識別番号】000229818
【氏名又は名称】日本フイルコン株式会社
(74)【代理人】
【識別番号】100106703
【弁理士】
【氏名又は名称】産形 和央
(72)【発明者】
【氏名】井上 嘉則
(72)【発明者】
【氏名】加藤 敏文
(72)【発明者】
【氏名】梶原 健寛
(72)【発明者】
【氏名】齊藤 満
【審査官】
岩下 直人
(56)【参考文献】
【文献】
特開2001−123381(JP,A)
【文献】
特開昭55−050032(JP,A)
【文献】
特開昭49−000186(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01J 20/26
B01J 20/30
C02F 1/28
C08F 8/30
C08G 81/02
D01D 5/08
WPI
(57)【特許請求の範囲】
【請求項1】
グリシジル基を有するアクリル酸エステル系高分子と、融点が200℃以下の低融点の繊維母材高分子とを、溶融混合紡糸法により紡糸して繊維状とした後、繊維表面のグリシジル基にアミノ基またはイミノ基をもつ長鎖型配位子を反応させて金属吸着性官能基を導入することを特徴とする繊維状金属吸着材の製造方法。
【請求項2】
アミノ基またはイミノ基をもつ長鎖型配位子がポリエチレンイミンあるいはポリアリルアミン、およびそれらの部分カルボキシメチル化物であることを特徴とする請求項1記載の繊維状金属吸着材の製造方法。
【請求項3】
グリシジル基を有するアクリル酸エステル系高分子が、グリシジル基を有するアクリル酸エステル系モノマーのホモポリマーあるいはコポリマーであることを特徴とする請求項1乃至請求項2記載の繊維状金属吸着材の製造方法。
【請求項4】
融点が200℃以下の低融点の繊維母材高分子が、ポリエチレン、ポリプロピレン、ポリ[エチレン−酢酸ビニル]、ポリ[エチレン−ビニルアルコール]のいずれかであることを特徴とする請求項1乃至請求項3記載の繊維状金属吸着材の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、工場排水、用水、環境水、製造工程水などの広範囲な溶液中の金属の吸着・回収に好適な、耐久性が高く、多様化が容易で、多彩な形態に加工可能な繊維状金属吸着材の製造方法に関するものである。
【背景技術】
【0002】
ハイテク産業拡大に伴い、金属資源の確保が大きな問題となっている。希土類元素、インジウム、ニオブ、マンガンなどのレアメタルをはじめ、白金族、銅、亜鉛、アルミニウムなども含めた金属元素は「クリティカルメタル」と呼ばれ、我が国における様々な産業において極めて重要なキーマテリアルである。しかしながら、これらの金属元素は我が国では産出しないため、これらのほとんどを輸入に依存している。レアメタルを含むクリティカルメタルの消費量は今後も大幅に増加すると予想されているが、これらの埋蔵量は地域偏在性が高く、また社会情勢などの影響により急激に価格変動するため、供給状態は非常に不安定である。経済産業省は、平成20年度よりレアメタルの安定供給に向けた総合的戦略に関して審議を重ね、平成21年に「レアメタル確保戦略」を策定している。この中で、海外資源確保(探鉱開発)、代替材料開発、備蓄とともにリサイクルの重要性が述べられている。また、いわゆる「都市鉱山」の膨大な金属資源の活用にも大きな関心がもたれており、環境省と経済産業省は、平成20年度より「使用済小型家電からのレアメタル回収および適正処理に関する研究会」を立ち上げ、希少金属元素の回収および循環利用の促進を図るべく検討が進められている。さらに、メッキ洗浄廃水や金属加工処理排水中にも微量ではあるが有価金属が含まれており、金属資源を取り巻く社会情勢を鑑みると、これらの排水中の回収・再利用も重要課題である。このような有価金属の回収・リサイクルシステムの構築において、効率の良い有価金属の吸着・分離技術の開発・確立が急務となっている。
【0003】
一般に、金属の除去・回収には、凝集、共沈、溶媒抽出、粒子状吸着材などの方法が用いられている。設備や環境負荷、さらに再生利用までを考慮すると、イオン交換樹脂やキレート樹脂などの粒子状吸着材を用いる方法が有効である。これらの吸着材は金属の除去・回収に広く利用されているが、特にキレート樹脂はイオン交換樹脂よりも高い親和性を有しているため、最適な吸着材であるといえる(非特許文献1〜4)。キレート樹脂は、イオン交換樹脂では困難な高濃度塩類を含む溶液中の重金属の吸着・回収が可能とされている。現在、イミノ二酢酸基、低分子ポリアミン基、アミノリン酸基、イソチオニウム基、ジチオカルバミン酸基、グルカミン基などの種々の官能基をもつキレート樹脂が市販されている。この内、広範囲な金属の吸着に適用可能なイミノ二酢酸基が導入されたキレート樹脂が主に利用されている。しかし、イミノ二酢酸型キレート樹脂には、被処理溶液中にしばしば大量に含まれるカルシウムなどのアルカリ土類元素も捕捉されてしまい、目的元素の捕捉を妨害したり、分離効率を低下させたりする。また、イミノ二酢酸型キレート樹脂は金属元素との錯形成力がそれほど大きくなく、実際の使用においては高い回収率が得られないという場合が少なくない。もし、アルカリ土類元素などを捕捉せず、回収対象の金属元素を選択的に確実かつ高速で捕捉するキレート樹脂が開発できれば、高濃度で不純物の少ない回収液(溶離液)を得ることができるため、有価金属回収プロセスにおける回収率、コスト、高純度化などに係わる課題を解消することが可能となる。また、金属溶離後のキレート樹脂は、酸洗浄により再度吸着処理に使用可能であるため、吸着回収に係わるコストの低減も可能である。しかし、現状のイミノ二酢酸型キレート樹脂は、上述したとおり、選択性が乏しく、共存元素の妨害を受けやすいため、高純度・高濃度溶液が要求される有価金属回収プロセスへの適用は困難である。
【0004】
キレート樹脂は、活性炭やイオン交換樹脂と同様に粒子状の吸着材である。これらの粒子状吸着材を用いる水処理技術は既に確立されており、今後も多用されるものと考えられる。しかしながら、粒子状であるがために特定の缶体に充填して使用しなければならず、使用条件や設置環境によっては適用し難い場合もある。また、吸着速度も遅いため、迅速に大量の処理水を処理することが難しい。そのため、多彩な要求に対応するには、金属吸着特性の改善とともに、吸着材形態の多様化についても検討が必要である。
【0005】
このような課題に対して、種々の形態に容易に加工でき、多彩な要求に対応可能な繊維状のキレート性吸着材の製造方法に関する開示がある。特許文献1には化学的なグラフト法によるキレート性官能基の導入方法が開示されており、特許文献2および特許文献3には放射線照射によるラジカル生成・グラフト重合法によるキレート性官能基の導入方法が、特許文献4には高温高圧下での汎用繊維への低分子キレート剤の注入方法がそれぞれ開示されている。これらのキレート性繊維は十分な機能をもち、吸着速度が速いため迅速な処理が可能であると考えられるが、製造上での問題がある。化学的グラフト法は、グラフト可能な繊維種が限定されるとともに製造工程が煩雑である。放射線グラフト法は、化学的グラフト法に比べ種々の繊維に適用できるという利点があるが、放射線の取り扱い上から特定環境下での作業となるため、簡便かつ安価な製造方法とはいえない。また、キレート剤の注入・含浸法も種々の繊維を利用できるという利点があるが、高温高圧下での含浸であるため汎用性は乏しい。
【0006】
特許文献5には、混合紡糸法を用いた繊維状金属吸着材の製造法が開示されている。この方法では長鎖型配位子(分子鎖長の長い金属吸着能を示す化合物)をビスコースと湿式混合紡糸するものであり、既存設備を用いて安価にかつ大量に製造することが可能である。この繊維状金属吸着材を不織布化したものは混紡量に応じた金属吸着容量を示すため、多彩な形態の金属吸着材を製造することが可能となる(特許文献6)。この方法は簡便な製造方法であるとともに、混合する長鎖型配位子を変更することで金属吸着特性の多様化も可能である。また、特許文献5および6に開示されている繊維状金属吸着材は製造方法としての優位性をもつだけでなく、長鎖型配位子を使用しているため、イミノ二酢酸型キレート樹脂と比べて高い錯形成能力を示すとともに、高い元素選択性を示すという特徴もある。さらに、金属吸着性官能基は繊維表面にのみ存在しているため、細孔内部にまで金属吸着性官能基をもつ粒子状吸着材と比べて、通液速度を大きくしても金属吸着能が低下しないという特徴も合わせもっている。しかしながら、一般に、金属回収の対象となる被処理溶液は塩酸、硫酸、硝酸などが含まれる酸性溶液である。レーヨンは強酸性下に曝されると分解してしまう。したがって、特許文献5および特許文献6に開示されているレーヨンを母材とした繊維状金属吸着材は、酸性条件下での使用が制限されてしまう。また、レーヨンは環境中の微生物などによっても分解するため、長期間にわたる連続使用、さらには複数回の再生使用に耐えることができないという問題を抱えている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2001−113272号公報
【特許文献2】特許4119966号公報
【特許文献3】特許3247704号公報
【特許文献4】特開2007−247104号公報
【特許文献5】特開2011−056349号公報
【特許文献6】特開2011−056350号公報
【非特許文献】
【0008】
【非特許文献1】北条舒正、「キレート樹脂・イオン交換樹脂」、講談社サイエンティフィク(1976).
【非特許文献2】妹尾学、阿部光雄、鈴木喬、「イオン交換−高度分離技術の基礎」、講談社サイエンティフィク(1991).
【非特許文献3】戸嶋直樹、遠藤剛、山本隆一、「機能性高分子材料の化学」、朝倉書店(1998).
【非特許文献4】神崎榿監修、日本イオン交換学会、「最先端イオン交換技術のすべて」、工業調査会(2009).
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、上記の問題点を鑑みてなされたもので、溶液中の金属の吸着・回収に用いられる繊維状金属吸着材において、特殊な設備や煩雑な操作を用いることなく既存の製造設備を用いて製造することが可能で、耐久性が高く、多様化が容易で、多彩な形態に加工可能な繊維状金属吸着材を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の発明者が鋭意研究を行った結果、グリシジル基を
有するアクリル酸エステル系高分子と、融点が200℃以下の低融点の繊維母材高分子とを、溶融混合紡糸法により紡糸して繊維状とした後、得られた繊維表面のグリシジル基にアミノ基またはイミノ基をもつ長鎖型配位子を反応させて金属吸着性官能基を導入することにより、耐久性が高く、多様化が容易で、多彩な形態に加工可能な繊維状金属吸着材を製造できることを見出した。
【0011】
本発明において、溶融混合紡糸されたグリシジル基を
有するアクリル酸エステル系高分子混合繊維のグリシジル基に反応させるアミノ基またはイミノ基をもつ長鎖型配位子としては、ポリエチレンイミンあるいはポリアリルアミン、およびそれらの部分カルボキシメチル化物である。
【0012】
本発明において、グリシジル基を
有するアクリル酸エステル系高分子としては、グリシジル基を有するアクリル酸エステル系モノマーのホモポリマーあるいはコポリマーである。
【0013】
本発明において、融点が200℃以下の低融点の繊維母材高分子が、ポリエチレン、ポリプロピレン、ポリ[エチレン−酢酸ビニル]、ポリ[エチレン−ビニルアルコール]のいずれかである。
なお、これらの要件については、発明を実施するための形態のところで詳しく説明する。
【発明の効果】
【0014】
本発明によれば、a)分子内にグリシジル基を多数有するアクリル酸エステル系高分子を用意する、b)低融点の繊維母材高分子と混練する、c)溶融混合紡糸法により繊維状にする、d)繊維表面のグリシジル基にアミノ基またはイミノ基をもつ長鎖型配位子を反応させて金属吸着性官能基を導入する、という簡便な方法により、耐久性が高く、多様化が容易で、多彩な形態に加工可能な繊維状金属吸着材を製造できる。
【図面の簡単な説明】
【0015】
【
図1】
図1は、本発明の繊維状金属吸着材の基本的な製造工程を示す。
【
図2】
図2は、実施例1により得られたグリシジル基を多数有するアクリル酸エステル系高分子混合ポリエチレン繊維の電子顕微鏡写真を示す。
【
図3】
図3は、実施例1により得たペンタエチレンヘキサミン導入繊維状金属吸着材に銅を吸着させた後、エネルギー分散型蛍光X線装置により測定した銅のEDXパターンを示す。
【発明を実施するための形態】
【0016】
本発明は、
図1の繊維状金属吸着材の基本的な製造工程に示すとおり、グリシジル基を
有するアクリル酸エステル系高分子と、低融点の繊維母材高分子とを、溶融混合紡糸法により紡糸して繊維状とした後、繊維表面のグリシジル基にアミノ基またはイミノ基を有する長鎖型配位子を反応させて金属吸着性官能基を導入することにより、耐久性が高く、多様化が容易で、多彩な形態に加工可能な繊維状金属吸着材を作り出すというところに特徴を有している。
【0017】
本発明において使用されるグリシジル基を多数有するアクリル酸エステル系高分子は、アミノ基あるいはイミノ基と反応可能なグリシジル基を有するアクリル酸エステル系モノマーのホモポリマーあるいはアクリル酸エステル系モノマーと共重合が可能なモノマーとのコポリマーである。グリシジル基を有するアクリル酸エステル系モノマーとしては、例えば、グリシジルアクリレートやグリシジルメタクリレートが挙げられる。本発明においては、アクリル酸エステル系モノマーのホモポリマーあるいはコポリマーが低融点の繊維母材高分子と混練され、溶融混合紡糸される。アクリル酸エステル系モノマーと共重合が可能なモノマーとしては、スチレン、グリシジル基を有しないアクリル酸エステル、グリシジル基を有しないメタクリル酸エステル、アクリルアミド、メタクリルアミドなどがある。これらの共重合可能なモノマーの配合比が多い場合には、グリシジル基の含有量が低くなって金属吸着性官能基の導入量が低くなるため、グリシジル基を多数有するアクリル酸エステル系高分子中のグリシジル基を有するアクリル系モノマーの比率は、10〜100重量%、好ましくは20〜100重量%である。また、グリシジル基を多数有するアクリル酸エステル系高分子の分子量に関しては特に限定するものではないが、高分子量である場合には脆性が高くなり、混錬性および紡糸性が低下するとともに、柔軟性の低い吸着材となってしまう。本発明では、合成および入手が容易な10,000〜数十万の分子量のものを利用する。
【0018】
本発明において、グリシジル基を多数有するアクリル酸エステル系高分子と溶融混合紡糸する低融点の繊維母材高分子としては、融点が200℃以下の繊維母材高分子を用いる。一般に、グリシジル基は200℃以上で分解が生じるため、融点が200℃を越える繊維母材との溶融混合紡糸では本発明の目的を達成することはできない。融点が200℃以下の低融点の繊維母材高分子としては、ポリエチレン、ポリプロピレン、ポリ[エチレン−酢酸ビニル]、ポリ[エチレン−ビニルアルコール]のいずれかを用いる。これらの繊維母材高分子は、一般的な被処理溶液中の酸やアルカリには侵されにくく、耐溶媒性ももち合わせているため、耐久性の高い繊維状金属吸着材の繊維母材高分子として適している。また、これらのオレフィン系繊維母材高分子よりは若干耐薬品性が落ちるが、ナイロン11やナイロン12も本発明の繊維母材高分子として使用可能である。
【0019】
本発明の繊維状金属吸着材の金属吸着容量は、低融点の繊維母材高分子へのグリシジル基を多数有するアクリル酸エステル系高分子の混合比率およびグリシジル基に反応させるアミノ基またはイミノ基を有する長鎖型配位子の導入量に依存する。グリシジル基を多数有するアクリル酸エステル系高分子の混合比率が低い場合には、アミノ基またはイミノ基を有する長鎖型配位子の導入量が低くなり、結果として金属吸着容量は低くなる。したがって、グリシジル基を多数有するアクリル酸エステル系高分子の混合比率は高いほうが好ましいが、本発明に用いられるグリシジル基を多数有するアクリル酸エステル系高分子は脆性が高いため、混合比率を高くすると紡糸性が低下し、延伸ができなくなってしまうという問題が発生する。また、紡糸ができたとしても、柔軟性の乏しい繊維となり、二次加工が困難となる恐れもある。さらに、グリシジル基を多数有するアクリル酸エステル系高分子の一部は低融点の繊維母材高分子中に取り込まれているため、混合したアクリル酸エステル系高分子中のすべてのグリシジル基にアミノ基またはイミノ基を有する長鎖型配位子を導入できるというわけではない。本発明においては、グリシジル基を多数有するアクリル酸エステル系高分子と繊維母材高分子との混合比率は、5:95〜60:40、好ましくは10:90〜50:50である。
【0020】
グリシジル基を多数有するアクリル酸エステル系高分子を含む繊維への金属吸着性官能基の導入は、公知のグリシジル基の反応を利用できる。金属吸着性官能基となる種々の金属配位性低分子化合物が知られており、グリシジル基に導入可能なものも多数ある。しかしながら、低分子型配位子を導入した場合には、金属錯体の安定度定数および官能基の自由度の点から有効であるとは言い難い。本発明においては、金属錯体の安定度定数、官能基の自由度、元素選択性、吸脱着速度を向上させるため、C、N、O等の元素からなる主鎖の長さが、元素数12以上の長鎖型配位子を金属吸着性官能基として導入する。
【0021】
グリシジル基を多数有するアクリル酸エステル系高分子混合繊維に金属吸着性官能基を導入するためのアミノ基またはイミノ基を有する長鎖型配位子の第一の形態は、ポリエチレンイミンあるいはポリアリルアミンである。これらのポリアミンは遷移金属元素に対する金属吸着性官能基として機能するほか、陰イオン交換基として機能してモリブデン酸やタングステン酸などの吸着力の増加に寄与するとともに、酸性条件下での金や白金の吸着にも有効である。これらのポリアミンは多数のアミノ基またはイミノ基をもっており、繊維表面の複数のグリシジル基と反応可能であるため、繊維母材表面を被覆するような形で導入される。これにより、繊維母材に基づく撥水性の問題は低減され、効率良く、水溶液中から金属を吸着・回収することが可能となる。
【0022】
グリシジル基を多数有するアクリル酸エステル系高分子混合繊維に金属吸着性官能基を導入するためのアミノ基またはイミノ基を有する長鎖型配位子の第二の形態は、アミノ基またはイミノ基が残存するように窒素原子を部分カルボキシメチル化したポリエチレンイミンあるいはポリアリルアミンである。これらは、イミノ二酢酸やエチレンジアミン四酢酸様の金属吸着特性を示す。アミノ基またはイミノ基を残存させる部分カルボキシメチル化は、事前に一部のアミノ基あるいはイミノ基に保護基を付けた後カルボキシメチル化してもよいし、ポリエチレンイミンあるいはポリアリルアミンのアミノ基あるいはイミノ基に対するカルボキシメチル化試薬(通常、ハロゲン化酢酸)の比率を低くして反応させてもよい。カルボキシメチル化の度合いを調節することで、モリブデン酸やタングステン酸などに対する選択性を向上させることが可能である。なお、部分カルボキシメチル化ポリアミンを反応させる場合にも、アミノ基またはイミノ基が複数存在しているため、繊維表面の複数のグリシジル基と反応して繊維母材表面を被覆するような形で導入される。
【0023】
グリシジル基を多数有するアクリル酸エステル系高分子混合繊維への金属吸着性官能基の導入は、アミノ基あるいはイミノ基を有する長鎖型配位子を含む溶液中にグリシジル基を多数有するアクリル酸エステル系高分子混合繊維を浸漬して反応させることにより行う。長鎖型配位子は、グリシジル基とアミノ基またはイミノ基との反応によってグリシジル基を多数有するアクリル酸エステル系高分子に結合される。この時、長鎖型配位子は繊維表面に出ているグリシジル基とのみ反応するため、繊維表面にのみ金属吸着性官能基が導入される。これにより、吸脱着速度の速い繊維状金属吸着材となる。長鎖型配位子との反応性を改善するために、事前にグリシジル基を多数有するアクリル酸エステル系高分子を含む繊維を塩酸で処理して、グリシジル基をクロロヒドリン型にしてもよい。長鎖型配位子を溶解する溶液は水溶液でもよいが、ポリオレフィン系高分子は撥水性が強いため長鎖型配位子の反応率が低くなる恐れがある。そのため、グリシジル基を多数有するアクリル酸エステル系高分子が溶解・溶出しないような、アルコール溶液またはアルコールを含む水溶液中で反応させることが好ましい。また、必要に応じて、加温してもよい。長鎖型配位子の導入反応は比較的迅速であるため、長鎖型配位子の溶液を満たしたディップ槽に、紡糸後の繊維を浸漬させることにより長鎖型配位子を導入することが可能である。また、不織布化後に、同様の浸漬法で長鎖型配位子を導入することも可能である。当然のことであるが、この長鎖型配位子の導入工程は、連続式、バッチ式のいずれであっても可能である。反応後の繊維中には未反応のグリシジル基が残存しているが、アルカリや酸で処理して水酸基を導入するほか、後処理によってアミノ基、カルボキシル基、スルホ基などのイオン性官能基、さらには低分子型配位子となる化合物を導入してもよい。このような後処理を行うことで、繊維母材高分子に基づく撥水性をさらに低減するとともに、二次的効果により金属吸着特性を改善させることも可能である。
【0024】
次に、実施例によって本発明を説明するが、この実施例によって本発明を何ら限定するものではない。
【実施例1】
【0025】
(1) グリシジル基を有する高分子とポリエチレンの混練
低密度ポリエチレン粉末(セイシン企業社製、SK−PE−20L、平均粒子径:約20μm)7.0kgとグリシジル基を多数有するアクリル酸エステル系高分子(日油社製、マープルーフ、分子量:約12000、エポキシ価:170g/当量)3.0kgを予備混合した。予備混合した樹脂粉末を、二軸混練機(セイシン企業社製、PMT32−30)に投入し、180℃で混練し、ペレタイザーでグリシジル基を多数有するアクリル酸エステル系高分子混錬ポリエチレンを得た。得られたグリシジル基を多数有するアクリル酸エステル系高分子混錬ポリエチレンの一部をとり、50℃で24時間乾燥した。
【0026】
(2) 溶融混合紡糸
(1)で得られたグリシジル基を多数有するアクリル酸エステル系高分子混錬ポリエチレンを原料として、溶融紡糸を行った。紡糸温度180℃、ノズル温度190℃、ノズル径0.8mm、吐出量0.5g/minで紡糸し、繊維径80μmの繊維を得た。得られたグリシジル基を多数有するアクリル酸エステル系高分子混合ポリエチレン繊維の電子顕微鏡写真を
図2に示す。
【0027】
(3) 金属吸着性官能基の導入
上記(2)で得られた繊維を裁断機で約50mmに裁断して短繊維とした。裁断後の短繊維を40℃に保温した20%のペンタエチレンヘキサミンを含むイソプロピルアルコール溶液に浸漬し、ペンタエチレンヘキサミンを導入した。反応後、純水で洗浄し、ペンタエチレンヘキサミン導入繊維状金属吸着材を得た。得られた繊維状金属吸着材を0.5Mの硫酸銅溶液(pH5.5に調整)に浸漬し、銅を吸着させた。銅吸着量は0.54mmol Cu/gであった。銅吸着させた繊維状金属吸着材のエネルギー分散型蛍光X線装置で測定したEDXパターンを
図3に示す。
図3で明白なように、銅は繊維状吸着材表面に均一に吸着していた。得られた繊維状金属吸着材を3Mの硝酸に50時間浸漬後、水洗して、再度銅吸着量を求めた。硝酸浸漬洗浄後も金属吸着量の低下はなく、酸性下での性能低下は確認されなかった。
【実施例2】
【0028】
実施例1と同様の方法でグリシジル基を多数有するアクリル酸エステル系高分子を10%混合したポリエチレン繊維を調製した。グリシジル基を多数有するアクリル酸エステル系高分子の混合比率以外の使用した原料および紡糸条件は実施例1と同じである。実施例1(3)と同じ方法でペンタエチレンヘキサミンを導入して繊維金属吸着材を調製した。銅吸着量は0.28mmol Cu/gであった。
【実施例3】
【0029】
実施例1で調製したグリシジル基を多数有するアクリル酸エステル系高分子を30%混合したポリエチレン繊維に、ポリエチレンイミン(和光純薬工業社製、分子量:10,000)を窒素量に対して0.8モル当量のクロロ酢酸でカルボキシメチル化した部分カルボキシメチル化ポリエチレンイミンを実施例1(3)と同様の方法で導入した。得られた部分カルボキシメチル化ポリエチレンイミン導入繊維状金属吸着材の銅吸着量は0.45mmol Cu/gであった。
【産業上の利用可能性】
【0030】
本発明によれば、a)分子内にグリシジル基を
有するアクリル酸エステル系高分子を用意する、b)低融点の繊維母材高分子と混練する、c)溶融混合紡糸法により繊維状にする、d)繊維表面のグリシジル基にアミノ基またはイミノ基をもつ長鎖型配位子を反応させて金属吸着性官能基を導入する、という簡便な方法により、耐久性が高く、多様化が容易で、多彩な形態に加工可能な繊維状金属吸着材を製造できる。また、繊維表面のグリシジル基にポリアミン系化合物を導入した繊維金属吸着材のアミノ基やイミノ基には多彩な化合物を導入することが可能であるため、形態の多様化だけでなく様々な吸着特性を有する繊維状金属吸着材を製造することが可能となる。さらには、金属吸着性官能基を導入後の残存グリシジル基に、後処理によって、親水基やイオン性基、あるいは低分子型配位性官能基を導入できるため、吸着・回収対象金属あるいは共存元素に合わせた特徴的な金属吸着特性を発現させることも可能である。本発明により得られた繊維状金属吸着材は柔軟性に富み、織布、編物、不織布などの布帛に容易に加工することが可能であり、これらの布帛を二次加工することで、有価金属回収や重金属除去に好適な様々な形態を有する金属吸着体を製造することができる。