(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5955026
(24)【登録日】2016年6月24日
(45)【発行日】2016年7月20日
(54)【発明の名称】硫化カルボニルおよびシアン化水素の加水分解用触媒ならびに酸化チタン系組成物の使用
(51)【国際特許分類】
B01J 23/02 20060101AFI20160707BHJP
B01J 27/232 20060101ALI20160707BHJP
B01J 27/24 20060101ALI20160707BHJP
B01J 23/755 20060101ALI20160707BHJP
B01J 23/88 20060101ALI20160707BHJP
B01J 23/46 20060101ALI20160707BHJP
B01J 27/25 20060101ALI20160707BHJP
C10K 1/20 20060101ALN20160707BHJP
【FI】
B01J23/02 A
B01J27/232 AZAB
B01J27/24 A
B01J23/755 A
B01J23/88 A
B01J23/46 301A
B01J27/25 A
!C10K1/20
【請求項の数】4
【全頁数】10
(21)【出願番号】特願2012-38796(P2012-38796)
(22)【出願日】2012年2月24日
(65)【公開番号】特開2013-173099(P2013-173099A)
(43)【公開日】2013年9月5日
【審査請求日】2014年9月12日
【前置審査】
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】100099623
【弁理士】
【氏名又は名称】奥山 尚一
(74)【代理人】
【識別番号】100096769
【弁理士】
【氏名又は名称】有原 幸一
(74)【代理人】
【識別番号】100107319
【弁理士】
【氏名又は名称】松島 鉄男
(74)【代理人】
【識別番号】100114591
【弁理士】
【氏名又は名称】河村 英文
(74)【代理人】
【識別番号】100125380
【弁理士】
【氏名又は名称】中村 綾子
(74)【代理人】
【識別番号】100142996
【弁理士】
【氏名又は名称】森本 聡二
(72)【発明者】
【氏名】米村 将直
(72)【発明者】
【氏名】安武 聡信
(72)【発明者】
【氏名】藤井 秀治
(72)【発明者】
【氏名】東野 耕次
(72)【発明者】
【氏名】洲崎 誠
(72)【発明者】
【氏名】吉田 香織
【審査官】
延平 修一
(56)【参考文献】
【文献】
特開平07−148430(JP,A)
【文献】
特表2005−504631(JP,A)
【文献】
特開平11−276897(JP,A)
【文献】
特開2010−209296(JP,A)
【文献】
特開平08−089807(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01J 21/00 − 38/74
C10K 1/20
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
硫化カルボニルおよびシアン化水素の加水分解用触媒であって、
バリウム、ニッケル、ルテニウム、コバルトからなる群から選択される金属の少なくとも1種を主成分とする活性成分と、
前記活性成分を担持する酸化チタン系担体と
を少なくとも含み、
前記担体が、酸化チタンと酸化ケイ素の複合酸化物、酸化チタンと酸化アルミニウムの複合酸化物、酸化チタンと酸化ジルコニウムの複合酸化物からなる群から選択される酸化チタン系複合酸化物の少なくとも1種であり、
前記担体に、炭酸バリウム、炭酸ニッケル、硝酸ルテニウム、炭酸コバルトからなる群から選択される金属塩の少なくとも1種を添加してなることを特徴とする加水分解用触媒。
【請求項2】
前記加水分解用触媒が、ハニカム形状である請求項1に記載の加水分解用触媒。
【請求項3】
硫化カルボニルおよびシアン化水素を加水分解するための触媒としての酸化チタン系組成物の使用であって、
前記組成物が、
バリウム、ニッケル、ルテニウム、コバルトからなる群から選択される金属の少なくとも1種を主成分とする活性成分と、
前記活性成分を担持する酸化チタン系担体と
を少なくとも含み、
前記担体が、酸化チタンと酸化ケイ素の複合酸化物、酸化チタンと酸化アルミニウムの複合酸化物、酸化チタンと酸化ジルコニウムの複合酸化物からなる群から選択される酸化チタン系複合酸化物の少なくとも1種であり、
前記組成物が、前記担体に炭酸バリウム、炭酸ニッケル、硝酸ルテニウム、炭酸コバルトからなる群から選択される金属塩の少なくとも1種を添加してなることを特徴とする酸化チタン系組成物の使用。
【請求項4】
前記組成物が、ハニカム形状である請求項3に記載の酸化チタン系組成物の使用。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、硫化カルボニルおよびシアン化水素の加水分解用触媒、ならびに酸化チタン系組成物の使用に関する。
【背景技術】
【0002】
近年のエネルギー問題の切り札の1つとして、石炭の有効利用が着目されている。石炭を付加価値の高いエネルギー媒体へと変換するためには、石炭をガス化する技術やガス化したものを精製する技術など、高度な技術が用いられる。
【0003】
石炭ガス化したガス中には、大気汚染の原因となる硫化カルボニル(COS)やシアン化水素(HCN)が含まれているため、ガスの精製工程において、これらの化合物を除去することが重要である。
石炭ガス化ガスの精製プロセスには、一例として
図1のように、ガス化炉4で石炭をガス化し、脱塵装置5で脱塵処理したガスをCOS変換装置6に導入することにより、ガス中のCOSを二酸化炭素(CO
2)と硫化水素(H
2S)に変換後、H
2S/CO
2回収装置7にてこれらを回収するプロセス構成が挙げられる。このように精製したガスは、その後化成品合成8や発電9等に使用される。
【0004】
また、石炭をガス化及び精製して得られた精製ガスは,メタノール,アンモニア等の化成品合成へ適用、あるいは直接発電に用いるシステムも提案されており、この発電システムとしては、石炭ガス化複合発電(Integrated coal. Gasification Combined Cycle:IGCC)システムが挙げられる(例えば、特許文献1)。具体的には、石炭を高温高圧のガス化炉で可燃性ガスに転換し、そのガス化ガスを燃料としてガスタービンと蒸気タービンとの複合により発電するシステムである。
【0005】
COSの変換は、下記式1に示す加水分解反応によるものであり、その加水分解用触媒としては、例えば酸化チタンに金属炭酸塩を担持した触媒が挙げられる(特許文献2)。
【0006】
【数1】
【0007】
また、HCNは、下記式2の加水分解反応や、式3の反応によりアンモニア(NH
3)に変換し、これを回収することができる。HCNの加水分解用触媒としては、例えば酸化チタンとアルカリ土類金属の硫酸塩、およびドーピング化合物の組み合わせを含む酸化チタン系組成物が挙げられる(特許文献3)。
【0008】
【数2】
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2004−331701号
【特許文献2】特許第3746609号
【特許文献2】特許第4556159号
【発明の概要】
【発明が解決しようとする課題】
【0010】
石炭をガス化し、精製するためにはいくつもの工程が必要であるところ(
図1)、各工程を迅速に行うことが、製造期間の短縮やコストダウンにつながることとなる。
そのため、例えばCOSやHCNの変換工程においても、これまで用いられてきた加水分解触媒よりも、さらに優れた分解性能を有する触媒を提供することは、新たな課題であるといえる。
【課題を解決するための手段】
【0011】
本発明者は、COSやHCNの変換工程に着目し、これらの加水分解反応の反応機構と反応用触媒について見直しを行った。
そうしたところ、所定の金属を主成分とする活性成分を、耐食性に優れている酸化チタン系の担体に高分散担持することにより、COSやHCNを同時に高分解率で除去できることを見出し、本発明を完成するに至った。
【0012】
すなわち、本発明に係る第一の形態は、硫化カルボニルおよびシアン化水素の加水分解用触媒であって、バリウム、ニッケル、ルテニウム、コバルト、モリブデンからなる群から選択される金属の少なくとも1種を主成分とする活性成分と、前記活性成分を担持する酸化チタン系担体とを少なくとも含むことを特徴とする加水分解用触媒である。
【0013】
本発明に係る第二の形態は、硫化カルボニルおよびシアン化水素を加水分解するための触媒としての酸化チタン系組成物の使用であって、前記組成物が、バリウム、ニッケル、ルテニウム、コバルト、モリブデンからなる群から選択される金属の少なくとも1種を主成分とする活性成分と、前記活性成分を担持する酸化チタン系担体とを少なくとも含むことを特徴とする酸化チタン系組成物の使用である。
【発明の効果】
【0014】
本発明の硫化カルボニルおよびシアン化水素の加水分解用触媒、ならびに酸化チタン系組成物の使用によれば、COSやHCNを同時に高分解率で除去することが可能となる。
【図面の簡単な説明】
【0015】
【
図1】石炭のガス化および精製プロセスの全体の概略図。
【発明を実施するための形態】
【0016】
以下、本発明の硫化カルボニルおよびシアン化水素の加水分解用触媒、ならびに酸化チタン系組成物の使用について、詳細に説明する。
まず、本発明の触媒は、硫化カルボニルおよびシアン化水素の加水分解用の触媒であり、バリウム、ニッケル、ルテニウム、コバルト、モリブデンからなる群から選択される金属の少なくとも1種を主成分とする活性成分を少なくとも含む。これらの金属を主成分とすれば、硫化カルボニルのみならずシアン化水素についても高い分解性能を満足することができる。主成分は上記金属を組み合わせたものでも良く、その担持量は、0.1〜25質量%、より好ましくは5〜22質量%とするのが良い。
また、本発明の触媒は、前記活性成分を担持する酸化チタン系担体を含む。酸化チタン系担体としては、酸化チタンや酸化チタンと他の酸化物との複合酸化物等が挙げられる。このような担体であれば、活性成分を確実に固定化することが可能であり、また、触媒使用条件下において化学的に安定しているため、触媒の働きを阻害することがない。
【0017】
次に、本発明の使用は、硫化カルボニルおよびシアン化水素を加水分解するための触媒としての酸化チタン系組成物の使用である。酸化チタン系組成物は、バリウム、ニッケル、ルテニウム、コバルト、モリブデンからなる群から選択される金属の少なくとも1種を主成分とする活性成分を少なくとも含む。また、前記活性成分を担持する酸化チタン系担体を含む。主成分の担持量は、0.1〜25質量%、より好ましくは5〜22質量%とするのが良く、また、酸化チタン系担体として、酸化チタンや酸化チタンと他の酸化物との複合酸化物等が挙げられるのは、上記と同様の理由である。
【0018】
本発明の触媒ならびに使用における酸化チタン系組成物が、酸化チタン系担体に、炭酸バリウム、炭酸ニッケル、硝酸ルテニウム、炭酸コバルト、モリブデン酸アンモニウムからなる群から選択される金属塩の少なくとも1種を添加してなることが好ましい。原料として安定しているからである。
【0019】
本発明の触媒ならびに使用における酸化チタン系組成物において、酸化チタン系担体として酸化チタンを用いることができる。酸化チタンとしては、比表面積の大きいアナターゼ型の結晶構造の酸化チタンを用いれば、活性成分の担持量も多くなり、触媒活性が向上するため、より好ましい。
【0020】
また、本発明の触媒ならびに使用における酸化チタン系組成物において、酸化チタン系担体として、上記酸化チタンの他にも、酸化チタン系複合酸化物を用いることができる。酸化チタンを複合金属酸化物化することにより、比表面積が増大し、耐熱性も向上することとなる。
酸化チタン系複合酸化物としては、酸化チタンと酸化ケイ素の複合酸化物、酸化チタンと酸化アルミニウムの複合酸化物、酸化チタンと酸化ジルコニウムの複合酸化物からなる群から選択される少なくとも1種が挙げられる。酸化チタンと複合する金属酸化物との複合割合は、1:99〜99:1であること好ましく,特に50:50〜95:5の範囲が好ましい。活性成分を担持する場である比表面積が大きく出来る範囲だからである。
【0021】
本発明の触媒ならびに使用における酸化チタン系組成物が、ハニカム形状であることが好ましい。ダスト等が共存する状況下においても、触媒や酸化チタン系組成物の目詰まりや圧力損失を防ぐことができ、触媒を高活性な状態に維持することができるからである。
【0022】
本発明の触媒ならびに使用における酸化チタン系組成物は、例えば酸化チタン系担体の粉末に前記金属塩のいずれかを添加し、さらにバインダや可塑剤を加えて混練し、適宜球状やペレット状、ハニカム状に成形化し、乾燥・焼成を行って製造することができる。
また、担体が酸化チタン系複合酸化物である場合には、当該複合酸化物を予め調製することが必要となる。複合酸化物の調製は、例えばチタンやケイ素、アルミニウム、ジルコニウムの金属硝酸塩、塩化物、硫酸塩等の金属塩水溶液にアンモニア等のアルカリ溶液を滴下して、共沈させて複合水酸化物を形成させたうえで、洗浄、乾燥、焼成すること等によって行うことができる。また、この方法以外によっても調製することは可能である。
【実施例】
【0023】
以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
【0024】
[加水分解用触媒の製造]
[実施例1]
アナターゼ型酸化チタン粉末(日揮触媒化成社製CSP−003)100質量部に対して炭酸バリウム(林純薬製試薬特級)を、酸化バリウムに換算して4質量部となるように添加し、10%アンモニア水5質量部を加えて60分ニーダー混練を行った。次に、この混練物にバインダとしてグラスファイバを3質量部、カオリンを5質量部、さらに有機可塑剤として酢酸セルロース5質量部と10%アンモニア水5質量部を添加して混練を行った。
この混練物を押出成形し、5.0mmピッチ、壁厚1.0mmの一体型ハニカム成形物を得た。この成形物を含水率10%となるまで室温乾燥させた後、500℃にて5時間焼成して有機可塑剤を除去することにより、ハニカム触媒を得た。
【0025】
[実施例2]
炭酸バリウムに代えて炭酸ニッケル(林純薬製試薬特級)を酸化ニッケルに換算して4質量部となるように添加する他は、実施例1と同様の方法により、ハニカム触媒を得た。
【0026】
[実施例3]
炭酸バリウムに代えて硝酸ルテニウム(田中貴金属工業株式会社製、Ru量50g/L)をルテニウム換算で0.1質量部を添加する他は、実施例1と同様の方法により、ハニカム触媒を得た。
【0027】
[実施例4]
炭酸バリウムに代えて炭酸ニッケルを酸化ニッケルに換算して4質量部とモリブデン酸アンモニウム(林純薬社製特級)を酸化モリブデンに換算して10質量部を添加する他は、実施例1と同様の方法により、ハニカム触媒を得た。
【0028】
[実施例5]
炭酸バリウムに代えて炭酸コバルト(林純薬社製特級)を酸化コバルトに換算して5質量部とモリブデン酸アンモニウムを酸化モリブデンに換算して10質量部を添加する他は、実施例1と同様の方法により、ハニカム触媒を得た。
【0029】
[実施例6]
1125.8gのTi源であるTi(Oi−C
3H
7)
4と57.6gのSi(OC
2H
5)
4を混合し、80℃の水15000gに添加して加水分解し、さらに2時間、同温度の水中で攪拌して熟成させた。熟成後に得られた生成物をろ過して十分洗浄した後、乾燥、焼成(500℃で5時間)を施して得られた酸化チタンと酸化ケイ素の複合酸化物を担体として用いた事以外は、実施例1と同様の方法により、ハニカム触媒を得た。
【0030】
[実施例7]
実施例6のSi(OC
2H
5)
4を、316.8gのAl(Oi−C
3H
7)
3に替えて得られた酸化チタンと酸化アルミニウムの複合酸化物を担体として用いた事以外は、実施例6と同様の方法により、ハニカム触媒を得た。
【0031】
[実施例8]
実施例6のSi(OC
2H
5)
4を、985.5gのZr(O−iC
4H
9)
4に替えて得られた酸化チタンと酸化ジルコニウムの複合酸化物を担体として用いた事以外は、実施例6と同様の方法により、ハニカム触媒を得た。
【0032】
[比較例1]
アナターゼ型酸化チタン粉末(日揮触媒化成社製CSP−003)100質量部に対して10%アンモニア水5質量部を加えて60分ニーダー混練を行った。次に、この混練物にバインダとしてグラスファイバを3質量部、カオリンを5質量部、さらに有機可塑剤として酢酸セルロース5質量部と10%アンモニア水5質量部を添加して混練を行った。
この混練物を押出成形し、5.0mmピッチ、壁厚1.0mmの一体型ハニカム成形物を得た。この成形物を含水率10%となるまで室温乾燥させた後、500℃にて5時間焼成して有機可塑剤を除去することにより、ハニカム触媒を得た。
【0033】
[COSの加水分解反応]
上記実施例および比較例の触媒を用いて、表1に示す試験条件により、COSの加水分解反応を行った。COS変換率は、下記式4により求めた。結果を表2に示す。
【0034】
【数3】
【0035】
【表1】
【0036】
【表2】
【0037】
表2から、比較例1の触媒と比較して、実施例各例の触媒は、COS転換性能に優れているという結果となった。
【0038】
[HCNの加水分解反応]
上記実施例および比較例の触媒を用いて、表3に示す実際の石炭ガス化ガスを使用し、HCNの加水分解反応を行った。HCN変換率は、下記式5により求めた。結果を表4に示す。
【0039】
【数4】
【0040】
【表3】
【0041】
【表4】
【0042】
表4から、比較例1の触媒と比較して、実施例各例の触媒は、HCN分解性能に優れているという結果となった。
以上の結果から、本発明の触媒がCOS転換性能及びHCN分解性能に優れていることは明らかである。
【産業上の利用可能性】
【0043】
本発明の硫化カルボニルおよびシアン化水素の加水分解用触媒、および酸化チタン系組成物の使用によれば、COSやHCNを同時に高分解率で除去することが可能となるため、産業上有用である。
【符号の説明】
【0044】
1 石炭のガス化および精製プロセス
2 石炭
3 酸素
4 ガス化炉
5 脱塵装置
6 COS変換装置
7 H
2S/CO
2回収装置
8 化成品合成
9 発電