【実施例】
【0106】
(実施例1)
選択されたヒト軽鎖可変領域と会合するヒト重鎖可変領域の同定
単一の再構成されたヒト生殖系列軽鎖を抗原特異的ヒト抗体からのヒト重鎖と共発現させることができるか否かを判定するために、in vitro発現系を構築した。
【0107】
遺伝子改変マウスでヒト抗体を生成する方法は、公知である(例えば、US6,596,541を参照、Regeneron Pharmaceuticals、VELOCIMMUNE(登録商標))。VELOCIMMUNE(登録商標)技術は、マウスが抗原刺激に応じてヒト可変領域およびマウス定常領域を含む抗体を生成するように、内因性マウス定常領域遺伝子座に作動可能に連結されたヒト重鎖および軽鎖可変領域を含むゲノムを有する遺伝子改変マウスの生成を含む。VELOCIMMUNE(登録商標)マウスから生成される抗体の重鎖および軽鎖の可変領域をコードするDNAは、完全にヒトである。最初に、ヒト可変領域およびマウス定常領域を有する高親和性キメラ抗体が単離される。下記のように、抗体は、親和性、選択性、エピトープなどを含む望ましい特徴について特徴付けされ、選択される。マウス定常領域は所望のヒト定常領域で置換され、非IgMアイソタイプ、例えば野生型または改変されたIgG1、IgG2、IgG3またはIgG4を含む完全にヒトの抗体が生成される。選択される定常領域は具体的な用途によって異なることができるが、高親和性抗原結合および標的特異性特性は可変領域に存在する。
【0108】
VELOCIMMUNE(登録商標)マウスを血管形成を促進する増殖因子(抗原C)で免疫化し、当技術分野で認められる標準技術を用いて抗原特異的ヒト抗体を単離し、V遺伝子の使用について配列決定をした。選択された抗体をヒト重鎖および軽鎖定常領域にクローニングし、69個の重鎖を以下の3つのヒト軽鎖の1つとの対合のために選択した:(1)ヒトκ定常領域に連結された関連κ軽鎖、(2)ヒトκ定常領域に連結された再構成されたヒト生殖系列Vκ1−39Jκ5、または(3)ヒトκ定常領域に連結された再構成されたヒト生殖系列Vκ3−20Jκ1。重鎖および軽鎖の各対を、標準技術を用いてCHO−K1細胞に共トランスフェクトした。上清中の抗体の存在は、ELISAアッセイで抗ヒトIgGによって検出された。各重鎖/軽鎖対について抗体力価(ng/ml)を決定し、様々な再構成された生殖系列軽鎖による力価を、親の抗体分子(すなわち、関連軽鎖と対になった重鎖)で得られた力価と比較し、天然の力価の百分率を計算した(表1)。V
H:重鎖可変遺伝子。ND:現在の実験条件下で発現は検出されない。
【0109】
【表1-1】
【0110】
【表1-2】
類似した実験では、VELOCIMMUNE(登録商標)マウスをいくつかの異なる抗原で免疫化し、抗原特異的ヒト抗体の選択された重鎖を、様々な再構成されたヒト生殖系列軽鎖と対合するそれらの能力について試験した(前記の通り)。この実験で用いた抗原には、コレステロールホメオスタシスに関与する酵素(抗原A)、グルコースホメオスタシスの調節に関与する血清ホルモン(抗原B)、血管形成を促進する増殖因子(抗原C)および細胞表面レセプター(抗原D)が含まれた。抗原特異的抗体は各免疫化群のマウスから単離され、重鎖および軽鎖可変領域がクローニングされ、配列決定された。重鎖および軽鎖の配列から、V遺伝子の使用が決定され、選択された重鎖はそれらの関連軽鎖または再構成されたヒト生殖系列Vκ1−39Jκ5領域と対にさせられた。各重鎖/軽鎖対を、CHO−K1細胞に共トランスフェクトし、上清中の抗体の存在はELISAアッセイで抗ヒトIgGによって検出した。各重鎖/軽鎖対について抗体力価(μg/ml)を決定し、様々な再構成されたヒト生殖系列軽鎖による力価を、親の抗体分子(すなわち、関連軽鎖と対になった重鎖)で得られた力価と比較し、天然の力価の百分率を計算した(表2)。V
H:重鎖可変遺伝子。Vκ:κ軽鎖可変遺伝子。ND:現在の実験条件下で発現は検出されない。
【0111】
【表2-1】
【0112】
【表2-2】
これらの実験から得られた結果は、様々な遺伝子ファミリーからの体細胞変異高親和性重鎖は、再構成されたヒト生殖系列Vκ1−39Jκ5およびVκ3−20Jκ1領域と対合することができ、細胞から正常な抗体分子として分泌させることができることを示す。表1に示すように、親の抗体の関連軽鎖と比較して、抗体力価は、再構成されたヒトVκ1−39Jκ5軽鎖と対にした場合、約61%(69中42個)の重鎖で増加し、再構成されたヒトVκ3−20Jκ1軽鎖と対にした場合、約29%(69中20個)の重鎖で増加した。重鎖の約20%(69中14個)について、親の抗体の関連軽鎖と比較して、再構成されたヒト生殖系列軽鎖の両方が発現の増加を付与した。表2に示すように、再構成されたヒト生殖系列Vκ1−39Jκ5領域は、親の抗体の関連軽鎖と比較して、様々な異なるクラスの抗原に特異的ないくつかの重鎖の発現の増加を付与した。親の抗体の関連軽鎖と比較して、重鎖の約35%(15/43)で抗体力価は2倍を超えて増加した。2つの重鎖(315および316)では、増加は親の抗体と比較して10倍を超えていた。親の抗体の関連軽鎖と比較して発現の増加を示した全ての重鎖の中で、ファミリー3(V
H3)の重鎖は、他の重鎖可変領域遺伝子ファミリーと比較してより多く提示されている。これは、再構成されたヒト生殖系列Vκ1−39Jκ5およびVκ3−20Jκ1軽鎖と対合するヒトV
H3重鎖の好ましい関係を示す。
【0113】
(実施例2)
再構成されたヒト生殖系列軽鎖遺伝子座の生成
マウスゲノム細菌人工染色体(BAC)クローン302g12および254m04(Invitrogen)を改変するために、VELOCIGENE(登録商標)技術(例えば、米国特許第6,586,251号およびValenzuelaら(2003年)High−throughput engineering of the mouse genome coupled with high−resolution expression analysis、Nature Biotech.21巻(6号):652〜659頁を参照)を用いて、様々な再構成されたヒト生殖系列軽鎖ターゲッティングベクターが作製された。これらの2つのBACクローンを用いて、ゲノム構築物を単一の再構成されたヒト生殖系列軽鎖領域を含むように操作し、内因性κ可変および連結遺伝子セグメントを欠失させるために事前に改変しておいた内因性κ軽鎖遺伝子座に挿入した。
【0114】
A.再構成されたヒト生殖系列軽鎖ターゲッティングベクターの構築
当技術分野で認められる標準の分子生物学技術を用いて、3つの異なる再構成されたヒト生殖系列軽鎖領域を作製した。これらの3つの領域を構築するために用いたヒト可変遺伝子セグメントには、再構成されたヒトVκ1−39Jκ5配列、再構成されたヒトVκ3−20Jκ1配列および再構成されたヒトVpreBJλ5配列が含まれた。
【0115】
マウスVκ3−7遺伝子のエクソン1(リーダーペプチドをコードする)およびイントロン1を含むDNAセグメントを、新規DNA合成(Integrated DNA Technologies)によって作製した。天然に存在するBlpI制限酵素部位までの5’非翻訳領域の一部が含まれた。ヒトVκ1−39およびVκ3−20遺伝子のエクソンを、ヒトゲノムBACライブラリーからPCR増幅した。フォワードプライマーは、マウスVκ3−7遺伝子のイントロン1のスプライス受容部位を含む5’伸長部を有した。ヒトVκ1−39配列のPCRのために用いられたリバースプライマーは、ヒトJκ5をコードする伸長部を含んでいたが、ヒトVκ3−20配列のPCRのために用いられたリバースプライマーはヒトJκ1をコードする伸長部を含んでいた。ヒトVpreBJλ5配列は、新規DNA合成(Integrated DNA Technologies)によって作製した。スプライスドナー部位を含むヒトJκ−Cκイントロンの一部を、プラスミドpBS−296−HA18−PISceIからPCR増幅した。フォワードPCRプライマーは、ヒトJκ5、Jκ1またはJλ5配列のいずれかの一部をコードする伸長部を含んでいた。リバースプライマーは、イントロンにおいて事前に操作されたPI−SceI部位を含んでいた。
【0116】
マウスVκ3−7エクソン1/イントロン1、ヒト可変軽鎖エクソンおよびヒトJκ−Cκイントロン断片を重複伸長PCRによって一つにまとめ(sew)、BlpIおよびPI−SceIで消化し、ヒトVκ3−15可変遺伝子セグメントからのプロモーターを含むプラスミドpBS−296−HA18−PISceIにライゲーションした。プラスミドpBS−296−HA18−PISceI内のloxedハイグロマイシンカセットを、NotIおよびAscI部位が隣接するFRTedハイグロマイシンカセットで置換した。このプラスミドのNotI/PI−SceI断片を、マウスJκ−Cκイントロンの一部、マウスCκエクソン、およびマウスES細胞での相同組み換えのために3’相同性アームを提供したマウスκ遺伝子座の下流のゲノム配列の約75kbを含んでいた改変マウスBAC 254m04にライゲーションした。次にこのBACのNotI/AscI断片を、FRTedネオマイシンカセットおよびマウスES細胞での相同組み換えのための内因性κ遺伝子座の上流のゲノム配列の約23kbを含んでいた改変マウスBAC 302g12にライゲーションした。
【0117】
B.再構成されたヒト生殖系列Vκ1ー39Jκ5ターゲッティングベクター(
図1)
ターゲッティングベクターへのクローニングのために、操作軽鎖挿入物の5’末端および3’末端に制限酵素部位を導入した:5’末端にAscI部位、3’末端にPI−SceI部位。5’AscI部位および3’PI−SceI部位の中で、5’から3’までのターゲッティング構築物は、マウスBACクローン302g12から得られた内因性マウスκ軽鎖遺伝子座の5’側配列を含む5’相同性アーム、FRTedネオマイシン耐性遺伝子、ヒトVκ3−15プロモーターを含むゲノム配列、マウスVκ3−7可変遺伝子セグメントのリーダー配列、マウスVκ3−7可変遺伝子セグメントのイントロン配列、再構成されたヒト生殖系列Vκ1−39Jκ5領域のオープンリーディングフレーム、ヒトJκ−Cκイントロンの一部を含むゲノム配列、ならびにマウスBACクローン254m04から得られた内因性マウスJκ5遺伝子セグメントの3’側配列を含む3’相同性アームを含んでいた(
図1、中央)。内因性マウスκ軽鎖遺伝子座の上流および最も3’側のJκ遺伝子セグメントの下流(例えば、内因性3’エンハンサー)の遺伝子および/または配列は、ターゲッティング構築物によって改変されていなかった(
図1を参照)。操作されたヒトVκ1−39Jκ5遺伝子座の配列を、配列番号1に示す。
【0118】
再構成されたヒト生殖系列軽鎖領域中の配列に位置するプライマーを用いるポリメラーゼ連鎖反応(PCR)によって、BAC DNAへの再構成されたヒト生殖系列Vκ1−39Jκ5領域のターゲッティング挿入を確認した。簡潔には、マウスVκ3−7リーダー配列の3’側イントロン配列は、プライマーULC−m1F(AGGTGAGGGT ACAGATAAGT GTTATGAG;配列番号2)およびULC−m1R(TGACAAATGC CCTAATTATA GTGATCA;配列番号3)で確認した。再構成されたヒト生殖系列Vκ1−39Jκ5領域のオープンリーディングフレームは、プライマー1633−h2F(GGGCAAGTCA GAGCATTAGC A;配列番号4)および1633−h2R(TGCAAACTGG ATGCAGCATA G;配列番号5)で確認した。ネオマイシンカセットは、プライマーneoF(GGTGGAGAGG CTATTCGGC;配列番号6)およびneoR(GAACACGGCG GCATCAG;配列番号7)で確認した。再構成されたヒト生殖系列Vκ1−39Jκ5領域を発現するキメラマウスを生成するための改変ES細胞を形成するために、マウスES細胞をエレクトロポレーションするために、次にターゲッティングBAC DNAを用いた。
【0119】
内因性遺伝子座に挿入された操作されたVκ1−39Jκ5軽鎖領域に特異的なプローブを用いるTAQMAN
TMスクリーニングおよび核型分析によって、陽性のES細胞クローンを確認した。簡潔には、ネオマイシンマーカー遺伝子の中で結合するプローブneoP(TGGGCACAAC AGACAATCGG CTG;配列番号8)、マウスVκ3−7リーダー配列の3’側のイントロン配列中で結合するプローブULC−m1P(CCATTATGAT GCTCCATGCC TCTCTGTTC;配列番号9)、および再構成されたヒト生殖系列Vκ1−39Jκ5オープンリーディングフレーム中で結合するプローブ1633h2P(ATCAGCAGAA ACCAGGGAAA GCCCCT;配列番号10)。生殖系列Vκ1−39Jκ5軽鎖領域を発現する同腹仔を生ませるために、雌性マウスに移植するために、次に陽性のES細胞クローンを用いた。
【0120】
あるいは、再構成されたヒト生殖系列Vκ1−39Jκ5軽鎖領域を有するES細胞は、ターゲッティング構築物によって導入されたFRTedネオマイシンカセットを除去するために、FLPを発現する構築物でトランスフェクトされる。任意選択で、ネオマイシンカセットは、FLPリコンビナーゼを発現するマウスを繁殖させることによって除去される(例えば、US6,774,279)。任意選択で、ネオマイシンカセットは、マウスで保持される。
【0121】
C.再構成されたヒト生殖系列Vκ3−20Jκ1ターゲッティングベクター(
図2)
同じように、再構成されたヒト生殖系列Vκ3−20Jκ1領域を発現する操作軽鎖遺伝子座を、5’から3’にかけて、マウスBACクローン302g12から得られた内因性マウスκ軽鎖遺伝子座の5’側配列を含む5’相同性アーム、FRTedネオマイシン耐性遺伝子、ヒトVκ3−15プロモーターを含むゲノム配列、マウスVκ3−7可変遺伝子セグメントのリーダー配列、マウスVκ3−7可変遺伝子セグメントのイントロン配列、再構成されたヒト生殖系列Vκ3−20Jκ1領域のオープンリーディングフレーム、ヒトJκ−Cκイントロンの一部を含むゲノム配列、ならびにマウスBACクローン254m04から得られた内因性マウスJκ5遺伝子セグメントの3’側配列を含む3’相同性アームを含むターゲッティング構築物を用いて作製した(
図2、中央)。操作されたヒトVκ3−20Jκ1遺伝子座の配列を、配列番号11に示す。
【0122】
再構成されたヒト生殖系列Vκ3−20Jκ1軽鎖領域中の配列に位置するプライマーを用いるポリメラーゼ連鎖反応(PCR)によって、BAC DNAへの再構成されたヒト生殖系列Vκ3−20Jκ1領域のターゲッティング挿入を確認した。簡潔には、マウスVκ3−7リーダー配列の3’側イントロン配列は、プライマーULC−m1F(配列番号2)およびULC−m1R(配列番号3)で確認した。再構成されたヒト生殖系列Vκ3−20Jκ1領域のオープンリーディングフレームは、プライマー1635−h2F(TCCAGGCACC CTGTCTTTG;配列番号12)および1635−h2R(AAGTAGCTGC TGCTAACACT CTGACT;配列番号13)で確認した。ネオマイシンカセットは、プライマーneoF(配列番号6)およびneoR(配列番号7)で確認した。再構成されたヒト生殖系列Vκ3−20Jκ1軽鎖を発現するキメラマウスを生成するための改変ES細胞を形成するために、マウスES細胞をエレクトロポレーションするために、次にターゲッティングBAC DNAを用いた。
【0123】
内因性κ軽鎖遺伝子座に挿入された操作されたVκ3−20Jκ1軽鎖領域に特異的なプローブを用いるTaqman
TMスクリーニングおよび核型分析によって、陽性のES細胞クローンを確認した。簡潔には、ネオマイシンマーカー遺伝子の中で結合するプローブneoP(配列番号8)、マウスVκ3−7リーダー配列の中で結合するプローブULC−m1P(配列番号9)、およびヒトVκ3−20Jκ1オープンリーディングフレーム中で結合するプローブ1635h2P(AAAGAGCCAC CCTCTCCTGC AGGG;配列番号14)。雌性マウスに移植するために、陽性のES細胞クローンを次に用いた。ヒト生殖系列Vκ3−20Jκ1軽鎖領域を発現する同腹仔。
【0124】
あるいは、ヒト生殖系列Vκ3−20Jκ1軽鎖領域を有するES細胞は、ターゲッティング構築物によって導入されたFRTedネオマイシンカセットを除去するために、FLPを発現する構築物でトランスフェクトされてもよい。任意選択で、ネオマイシンカセットは、FLPリコンビナーゼを発現するマウスを繁殖させることによって除去されてもよい(例えば、US6,774,279)。任意選択で、ネオマイシンカセットは、マウスで保持される。
【0125】
D.再構成されたヒト生殖系列VpreBJλ5ターゲッティングベクター(
図3)
同じように、再構成されたヒト生殖系列VpreBJλ5領域を発現する操作軽鎖遺伝子座を、5’から3’にかけて、マウスBACクローン302g12から得られた内因性マウスκ軽鎖遺伝子座の5’側配列を含む5’相同性アーム、FRTedネオマイシン耐性遺伝子、ヒトVκ3−15プロモーターを含むゲノム配列、マウスVκ3−7可変遺伝子セグメントのリーダー配列、マウスVκ3−7可変遺伝子セグメントのイントロン配列、再構成されたヒト生殖系列VpreBJλ5領域のオープンリーディングフレーム、ヒトJκ−Cκイントロンの一部を含むゲノム配列、ならびにマウスBACクローン254m04から得られた内因性マウスJκ5遺伝子セグメントの3’側配列を含む3’相同性アームを含むターゲッティング構築物を用いて作製した(
図3、中央)。操作されたヒトVpreBJλ5遺伝子座の配列を、配列番号15に示す。
【0126】
再構成されたヒト生殖系列VpreBJλ5領域軽鎖領域中の配列に位置するプライマーを用いるポリメラーゼ連鎖反応(PCR)によって、BAC DNAへの再構成されたヒト生殖系列VpreBJλ5領域のターゲッティング挿入を確認した。簡潔には、マウスVκ3−7リーダー配列の3’側イントロン配列は、プライマーULC−m1F(配列番号2)およびULC−m1R(配列番号3)で確認した。再構成されたヒト生殖系列VpreBJλ5領域のオープンリーディングフレームは、プライマー1616−h1F(TGTCCTCGGC CCTTGGA;配列番号16)および1616−h1R(CCGATGTCAT GGTCGTTCCT;配列番号17)で確認した。ネオマイシンカセットは、プライマーneoF(配列番号6)およびneoR(配列番号7)で確認した。再構成されたヒト生殖系列VpreBJλ5軽鎖を発現するキメラマウスを生成するための改変ES細胞を形成するために、マウスES細胞をエレクトロポレーションするために、次にターゲッティングBAC DNAを用いた。
【0127】
内因性κ軽鎖遺伝子座に挿入された操作されたVpreBJλ5軽鎖領域に特異的なプローブを用いるTAQMAN
TMスクリーニングおよび核型分析によって、陽性のES細胞クローンを確認する。簡潔には、ネオマイシンマーカー遺伝子の中で結合するプローブneoP(配列番号8)、マウスIgVκ3−7リーダー配列の中で結合するプローブULC−m1P(配列番号9)、およびヒトVpreBJλ5オープンリーディングフレーム中で結合するプローブ1616h1P(ACAATCCGCC TCACCTGCAC CCT;配列番号18)。生殖系列軽鎖領域を発現する同腹仔を生ませるために、雌性マウスに移植するために、次に陽性のES細胞クローンを用いる。
【0128】
あるいは、再構成されたヒト生殖系列VpreBJλ5軽鎖領域を有するES細胞は、ターゲッティング構築物によって導入されたFRTedネオマイシンカセットを除去するために、FLPを発現する構築物でトランスフェクトされる。任意選択で、ネオマイシンカセットは、FLPリコンビナーゼを発現するマウスを繁殖させることによって除去される(例えば、US6,774,279)。任意選択で、ネオマイシンカセットは、マウスで保持される。
【0129】
(実施例3)
単一の再構成されたヒト生殖系列軽鎖を発現するマウスの生成
上記のターゲッティングES細胞をドナーES細胞として用い、VELOCIMOUSE(登録商標)法によって8細胞期マウス胚に導入した(例えば、米国特許第7,294,754号およびPoueymirouら(2007年)F0 generation mice that are essentially fully derived from the donor gene−targeted ES cells allowing immediate phenotypic analyses Nature Biotech.25巻(1号):91〜99頁を参照)。特有な再構成されたヒト生殖系列軽鎖領域の存在を検出する対立遺伝子アッセイ(Valenzuelaら、上記)の改変型を用いる遺伝子タイピングによって、操作されたヒト生殖系列Vκ1−39Jκ5軽鎖領域、Vκ3−20Jκ1軽鎖領域またはVpreBJλ5軽鎖領域を独立して有するVELOCIMICE(登録商標)を同定する。
【0130】
再構成されたヒト生殖系列軽鎖領域の発現を特徴付けするために、仔を遺伝子タイピングし、特有な再構成されたヒト生殖系列軽鎖領域についてヘテロ接合である仔を選択する。
【0131】
(実施例4)
単一の再構成されたヒト生殖系列軽鎖を発現するマウスの繁殖
A.内因性Igλノックアウト(KO)
操作された軽鎖遺伝子座の使用を最適化するために、再構成されたヒト生殖系列軽鎖領域の1つを有するマウスを、内因性λ軽鎖遺伝子座に欠失を含む別のマウスと繁殖させる。この様式において、得られる子孫は、それらの唯一の軽鎖として、実施例2に記載される再構成されたヒト生殖系列軽鎖領域を発現する。繁殖は、当技術分野で認められる標準技術によって、あるいは商業的な繁殖家(例えば、Jackson Laboratory)によって実施される。操作された軽鎖遺伝子座、および内因性λ軽鎖遺伝子座の欠失を有するマウス系統は、特有な軽鎖領域の存在および内因性マウスλ軽鎖の非存在についてスクリーニングされる。
【0132】
B.ヒト化内因性重鎖遺伝子座
操作されたヒト生殖系列軽鎖遺伝子座を有するマウスは、ヒト重鎖可変遺伝子の遺伝子座による内因性マウス重鎖可変遺伝子の遺伝子座の置換を含むマウスと繁殖させられる(US6,596,541を参照;VELOCIMMUNE(登録商標)マウス、Regeneron Pharmaceuticals,Inc.)。VELOCIMMUNE(登録商標)マウスは、マウスが抗原刺激に応じてヒト重鎖可変領域およびマウス重鎖定常領域を含む抗体を生成するように、内因性マウス定常領域遺伝子座に作動可能に連結されたヒト重鎖可変領域を含むゲノムを含む。抗体の重鎖の可変領域をコードするDNAを単離し、ヒト重鎖定常領域をコードするDNAに作動可能に連結させる。DNAは次に、抗体の完全なヒトの重鎖を発現することが可能な細胞で発現される。
【0133】
ヒトVH遺伝子座による内因性マウスVH遺伝子座の置換、および内因性κ軽鎖遺伝子座に単一の再構成されたヒト生殖系列VL領域を有するマウスが得られる。目的の抗原による免疫化に際して、単一のヒト軽鎖(ヒトVLおよびマウスCL)と体細胞変異重鎖(ヒトVHおよびマウスCH)を含むリバースキメラ抗体が得られる。抗体を発現するB細胞のVHおよびVLヌクレオチド配列を同定し、完全にヒトの抗体を、適する発現系でVHおよびVLヌクレオチド配列をヒトCHおよびCLヌクレオチド配列と融合させることによって作製する。
【0134】
(実施例5)
ヒト重鎖および再構成されたヒト生殖系列軽鎖領域を発現するマウスからの抗体の生成
操作されたヒト軽鎖領域を含むマウスを、他の内因性Ig遺伝子座(実施例4に記載の)の改変および欠失を含む様々な所望の系統へ繁殖させた後、選択されたマウスを目的の抗原で免疫化することができる。
【0135】
一般に、単一の再構成されたヒト生殖系列軽鎖領域の1つを含むVELOCIMMUNE(登録商標)マウスは抗原でチャレンジされ、リンパ細胞(B細胞など)が動物の血清から収集される。不死のハイブリドーマ細胞系を調製するためにリンパ細胞を骨髄腫細胞系と融合させ、そのようなハイブリドーマ細胞系は、ヒト可変重鎖および再構成されたヒト生殖系列軽鎖を含む抗体(これは、免疫化のために用いる抗原に特異的である)を生成するハイブリドーマ細胞系を同定するためにスクリーニングおよび選択される。重鎖および軽鎖の可変領域をコードするDNAを単離し、重鎖および軽鎖の望ましいアイソタイプ定常領域に連結させる。内因性マウス配列の存在および内因性遺伝子座に存在するあらゆるさらなるシス活性エレメントのために、各抗体の単一の軽鎖は体細胞変異することがある。これは、単一の軽鎖および多様な重鎖配列を含む抗原特異的レパートリーにさらなる多様性を加える。生じるクローニングされた抗体配列は、CHO細胞などの細胞でその後発現される。あるいは、抗原特異的キメラ抗体または軽鎖および重鎖の可変ドメインをコードするDNAは、抗原特異的リンパ球から直接的に同定される。
【0136】
最初に、ヒト可変領域およびマウス定常領域を有する高親和性キメラ抗体が単離される。上記のように、抗体は、親和性、選択性、エピトープなどを含む望ましい特徴について特徴付けされ、選択される。体細胞変異したヒト重鎖および本発明の再構成されたヒト生殖系列軽鎖領域に由来する単一の軽鎖を含む完全なヒトの抗体を生成するために、マウス定常領域は所望のヒト定常領域で置換される。適するヒト定常領域には、例えば野生型または改変型のIgG1またはIgG4が含まれる。
【0137】
ヒトV、DおよびJ遺伝子セグメントによる内因性マウス重鎖遺伝子座の置換、ならびに操作された生殖系列Vκ1−39Jκ5ヒト軽鎖領域または操作された生殖系列Vκ3−20Jκ1ヒト軽鎖領域(上記)による内因性マウスκ軽鎖遺伝子座の置換を含むVELOCIMMUNE(登録商標)マウスの別々のコホートを、ヒト細胞表面レセプタータンパク質(抗原E)で免疫化した。抗原Eは、3〜4日おきの6回の連続的な注射でマウスの後ろの足蹠に直接投与する。注射の前に、2から3マイクログラムの抗原Eを10μgのCpGオリゴヌクレオチド(カタログ♯tlrl−modn−ODN1826オリゴヌクレオチド;InVivogen、SanDiego、CA)および25μgのAdju−Phos(リン酸アルミニウムゲルアジュバント、カタログ♯H−71639−250;Brenntag Biosector、Frederikssund、Denmark)と混合する。屠殺の3〜5日前に与えられる最終抗原リコールの前に、合計6回の注射を与える。4回目および6回目の注射の後に血液を収集し、抗体免疫応答を標準の抗原特異的イムノアッセイによってモニタリングする。
【0138】
所望の免疫応答が達成されるとき、脾細胞を収集し、それらの生存能力を保存し、ハイブリドーマ細胞系を形成するためにマウス骨髄腫細胞と融合させる。抗原E特異的な共通軽鎖抗体を生成する細胞系を同定するために、ハイブリドーマ細胞系をスクリーニングし、選択する。この技術を用いて、いくつかの抗抗原E特異的な共通軽鎖抗体(すなわち、ヒト重鎖可変ドメイン、同じヒト軽鎖可変ドメインおよびマウス定常ドメインを有する抗体)が得られる。
【0139】
あるいは、参照によりその全体が本明細書に具体的に組み込まれるU.S.2007/0280945A1に記載されるように、抗抗原E共通軽鎖抗体は、骨髄腫細胞との融合なしに抗原陽性B細胞から直接的に単離される。この方法を用いて、いくつかの完全なヒトの抗抗原E共通軽鎖抗体(すなわち、ヒト重鎖可変ドメイン、操作されたヒトVκ1−39Jκ5軽鎖か操作されたヒトVκ3−20Jκ1軽鎖領域のいずれか、およびヒト定常ドメインを有する抗体)が得られた。
【0140】
この実施例の方法に従って生成された例示的な抗抗原E共通軽鎖抗体の生物学的特性は、下に示すセクションで詳細に記載される。
【0141】
(実施例6)
抗原特異的共通軽鎖抗体での重鎖遺伝子セグメントの使用
生成されたヒト抗抗原E共通軽鎖抗体の構造を分析するために、重鎖抗体可変領域をコードする核酸をクローニングし、配列決定をした。抗体の核酸配列および予測されたアミノ酸配列から、操作されたヒトVκ1−39Jκ5軽鎖か操作されたヒトVκ3−20Jκ1軽鎖領域のいずれかを含む免疫化VELOCIMMUNE(登録商標)マウスから得られた、選択された共通軽鎖抗体の重鎖可変領域(HCVR)について、遺伝子使用を特定した。結果を表3および4に示す。それらは、ヒトVκ1−39またはヒトVκ3−20に由来する軽鎖だけから軽鎖を発現するマウスを使用するとき、様々な再構成のために、本発明によるマウスが様々なヒト重鎖遺伝子セグメントから抗原特異的共通軽鎖抗体を生成することを示す。2、3、4および5ファミリーのヒトV
H遺伝子セグメントは、様々なヒトD
HセグメントおよびヒトJ
Hセグメントと再構成されて、抗原特異的抗体を与えた。
【0142】
【表3-1】
【0143】
【表3-2】
【0144】
【表4】
(実施例7)
Luminex
TMアッセイによる抗原特異的共通軽鎖抗体のブロック能力の判定
ビーズベースのアッセイで、抗原Eに対する98個のヒト共通軽鎖抗体を、抗原Eへの抗原Eの天然のリガンド(リガンドY)の結合をブロックするそれらの能力について試験した。
【0145】
抗原Eの細胞外ドメイン(ECD)を2つのmycエピトープタグおよび6×ヒスチジンタグとコンジュゲートさせ(抗原E−mmH)、MES緩衝液中の20μg/mLの濃度でカルボキシル化マイクロスフェアにアミンカップリングさせた。混合液を室温で2時間インキュベートし、続いて1MトリスpH8.0でビーズ非活性化を行い、続いて0.05%(v/v)のTween−20を含むPBSで洗浄した。次にビーズを2%(w/v)BSA(Sigma−Aldrich Corp.、St.Louis、MO)を含むPBS(Irvine Scientific、Santa Ana、CA)でブロックした。96穴フィルタープレート中で、抗原E特異的共通軽鎖抗体を含む上清を緩衝液で1:15に希釈した。抗体上清と同じ媒質成分による模擬上清を含む陰性対照を調製した。抗原E標識ビーズを上清に加え、4℃で一晩インキュベートした。ビオチン化リガンドYタンパク質を0.06nMの最終濃度まで加え、室温で2時間インキュベートした。抗原E−myc−myc−6His標識ビーズに結合したビオチン化リガンドYの検出を、ストレプトアビジンとコンジュゲートされたR−フィコエリトリン(Moss Inc、Pasadena、MD)で判定し、続いてLuminex
TMフローサイトメトリーベースのアナライザーで測定した。リガンドYのない試料のバックグラウンド平均蛍光強度(MFI)を、全ての試料から引いた。ブロック百分率は、各試料のバックグラウンドを引いたMFIを調整された陰性対照値で割り、100を掛け、生じた値を100から引くことによって計算された。
【0146】
同様の実験において、抗原Eに対する同じ98個のヒト共通軽鎖抗体を、リガンドY標識ビーズへの抗原Eの結合をブロックするそれらの能力について試験した。
【0147】
簡潔には、MES緩衝液に希釈した20μg/mLの濃度で、リガンドYをカルボキシル化マイクロスフェアにアミンカップリングさせた。混合液を室温で2時間インキュベートし、続いて1MトリスpH8でビーズの非活性化を行い、続いて0.05%(v/v)のTween−20を含むPBSで洗浄した。次にビーズを2%(w/v)BSA(Sigma−Aldrich Corp.、St.Louis、MO)を含むPBS(Irvine Scientific、Santa Ana、CA)でブロックした。96穴フィルタープレート中で、抗原E特異的共通軽鎖抗体を含む上清を緩衝液で1:15に希釈した。抗体上清と同じ媒質成分による模擬上清を含む陰性対照を調製した。ビオチン化抗原E−mmHを0.42nMの最終濃度まで加え、4℃で一晩インキュベートした。リガンドY標識ビーズを次に抗体/抗原E混合物に加え、室温で2時間インキュベートした。リガンドYビーズに結合したビオチン化抗原E−mmHの検出は、ストレプトアビジンとコンジュゲートされたR−フィコエリトリン(Moss Inc、Pasadena、MD)で判定し、続いてLuminex
TMフローサイトメトリーベースのアナライザーで測定した。抗原Eのない試料のバックグラウンド平均蛍光強度(MFI)を、全ての試料から引いた。ブロック百分率は、各試料のバックグラウンドを引いたMFIを調整された陰性対照値で割り、100を掛け、生じた値を100から引くことによって計算された。
【0148】
表5および6は、両方のLuminex
TMアッセイで試験された全98個の抗抗原E共通軽鎖抗体のブロック百分率を示す。ND:現在の実験条件下で判定されない。
【0149】
上記の第一のLuminex
TM実験では、Vκ1−39Jκ5操作軽鎖を含む80個の共通軽鎖抗体を、抗原E標識ビーズへのリガンドY結合をブロックするそれらの能力について試験した。これらの80個の共通軽鎖抗体のうち、68個は>50%のブロックを示し、12個は<50%のブロック(6個は25〜50%のブロック、6個は<25%のブロック)を示した。Vκ3−20Jκ1操作軽鎖を含む18個の共通軽鎖抗体については、12個は抗原E標識ビーズへのリガンドY結合の>50%のブロックを示し、6個は<50%のブロック(3個は25〜50%のブロック、3個は<25%のブロック)を示した。
【0150】
上記の第二のLuminex
TM実験では、Vκ1−39Jκ5操作軽鎖を含む同じ80個の共通軽鎖抗体を、リガンドY標識ビーズへの抗原Eの結合をブロックするそれらの能力について試験した。これらの80個の共通軽鎖抗体のうち、36個は>50%のブロックを示し、44個は<50%のブロック(27個は25〜50%のブロック、17個は<25%のブロック)を示した。Vκ3−20Jκ1操作軽鎖を含む18個の共通軽鎖抗体については、1個はリガンドY標識ビーズへの抗原Eの結合の>50%のブロックを示し、17個は<50%のブロック(5個は25〜50%のブロック、12個は<25%のブロック)を示した。
【0151】
表5および6のデータは、表3および4に記載される再構成が、その関連受容体抗原EへのリガンドYの結合を様々な程度の効力でブロックした抗抗原E特異的共通軽鎖抗体を生成したことを証明し、このことは、抗原Eに関して重複するおよび重複しないエピトープ特異性を有する抗体を含む表3および4の抗抗原E共通軽鎖抗体と矛盾しない。
【0152】
【表5-1】
【0153】
【表5-2】
【0154】
【表5-3】
【0155】
【表6】
(実施例8)
ELISAによる抗原特異的共通軽鎖抗体のブロック能力の判定
ELISAアッセイにおいて、抗原Eに対するヒト共通軽鎖抗体を、リガンドYコーティング表面への抗原Eの結合をブロックするそれらの能力について試験した。
【0156】
リガンドYをPBSに希釈した2μg/mLの濃度で96穴プレートにコーティングし、一晩インキュベートし、続いて0.05%Tween−20を含むPBSで4回洗浄した。次にプレートを0.5%(w/v)BSA(Sigma−Aldrich Corp.、St.Louis、MO)を含むPBS(Irvine Scientific、Santa Ana、CA)によって室温で1時間ブロックした。別々のプレート中で、抗抗原E共通軽鎖抗体を含む上清を緩衝液で1:10に希釈した。抗体の同じ成分を有する模擬上清を、陰性対照として用いた。抗原E−mmH(上記)を0.150nMの最終濃度まで加え、室温で1時間インキュベートした。次に、リガンドYを含むプレートに抗体/抗原E−mmH混合物を加え、室温で1時間インキュベートした。リガンドYに結合した抗原E−mmHの検出は、抗ペンタ−His抗体とコンジュゲートさせた西洋ワサビペルオキシダーゼ(HRP)(Qiagen、Valencia、CA)で判定し、硫酸によって中和されるテトラメチルベンジジン(TMB)基質(BD Biosciences、San Jose、CA)を用いる標準の比色応答によって発色させた(develop)。吸光度をOD450で0.1秒間読み取った。抗原Eのない試料のバックグラウンド吸光度を、全ての試料から引いた。ブロック百分率は、各試料のバックグラウンドを引いたMFIを調整された陰性対照値で割り、100を掛け、生じた値を100から引くことによって計算された。
【0157】
表7および8は、ELISAアッセイで試験された全98個の抗抗原E共通軽鎖抗体のブロック百分率を示す。ND:現在の実験条件下で判定されない。
【0158】
この実施例に記載されているように、リガンドYコーティング表面への抗原Eの結合をブロックするそれらの能力を試験された、Vκ1−39Jκ5操作軽鎖を含む80個の共通軽鎖抗体のうち、22個は>50%のブロックを示し、58個は<50%のブロック(20個は25〜50%のブロック、38個は<25%のブロック)を示した。Vκ3−20Jκ1操作軽鎖を含む18個の共通軽鎖抗体については、1個はリガンドYコーティング表面への抗原Eの結合の>50%のブロックを示し、17個は<50%のブロック(5個は25〜50%のブロック、12個は<25%のブロック)を示した。
【0159】
これらの結果はまた、抗原Eに関して重複するおよび重複しないエピトープ特異性を有する抗体を含む抗原E特異的共通軽鎖抗体プールと矛盾しない。
【0160】
【表7-1】
【0161】
【表7-2】
【0162】
【表7-3】
【0163】
【表8】
(実施例9)
抗原特異的共通軽鎖抗体についてのBIAcore
TM親和性判定
BIAcore
TMT100機器(GE Healthcare)を用いるSPR(表面プラズモン共鳴)によって、選択された抗体上清の平衡解離定数(K
D)を判定した。全てのデータは、ランニング緩衝液および試料緩衝液の両方としてHBS−EP(10mM Hepes、150mM NaCl、0.3mM EDTA、0.05%界面活性剤P20、pH7.4)を用いて25℃で得られた。標準のアミンカップリング化学を用いて高密度の抗ヒトFc抗体で事前に誘導体化させたCM5センサーチップ表面で、抗体を粗製上清試料から捕捉した。捕捉工程中、合計3分間、上清を3μL/分の流速で抗ヒトFc表面全域に注入した。捕捉工程の後に、35μL/分の流速で2分間の、ランニング緩衝液または100nMの濃度の分析物の注入が続いた。捕捉された抗体からの抗原の解離を、6分間モニタリングした。捕捉された抗体は、10mMグリシン、pH1.5の短時間注入によって除去した。緩衝液注入からのセンサーグラムを分析物センサーグラムから引き、それによって捕捉表面からの抗体の解離に起因するアーチファクトを除くことによって、全てのセンサーグラムをダブルリファレンス(double reference)とした。BIAcore T100評価ソフトウェアv2.1を用いて、各抗体の結合データを、マストランスポートを有する1:1結合モデルにあてはめた。結果を表9および10に示す。
【0164】
表3および4に示す再構成を含む共通軽鎖抗体の結合親和性は様々であり、ほとんど全てはナノモル範囲のK
Dを示す。親和性データは、高親和性で、クローン選択され、体細胞変異している表3および4に記載の再構成された可変ドメインの組合せ会合から生じる共通軽鎖抗体と矛盾しない。前に示すデータと合わせると、表3および4に記載される共通軽鎖抗体は、抗原Eの上の1つまたは複数のエピトープに特異性を示す、多様な高親和性抗体の集合を含む。
【0165】
【表9-1】
【0166】
【表9-2】
【0167】
【表9-3】
【0168】
【表10-1】
【0169】
【表10-2】
(実施例10)
Luminex
TMアッセイによる抗原特異的共通軽鎖抗体の結合特異性の判定
選択された抗抗原E共通軽鎖抗体を、抗原EのECDおよび抗原E ECDバリアントに結合するそれらの能力について試験した(例えば、そのアミノ酸残基の約10%がヒトタンパク質と異なる、カニクイザルオルソログ(Mf抗原E);ECDのC末端から最後の10アミノ酸を欠く抗原Eの欠失変異体(抗原E−ΔCT);ならびにリガンドYとの相互作用が疑われる位置にアラニン置換を含む2つの変異体(抗原E−Ala1および抗原E−Ala2))。抗原Eタンパク質はCHO細胞で生成され、各々はmyc−myc−His C末端タグを含んでいた。
【0170】
結合試験のために、抗mycモノクローナル抗体(MAb 9E10、ハイブリドーマ細胞系CRL−1729
TM;ATCC、Manassas、VA)で共有結合コーティングされた1×10
6個のマイクロスフェア(Luminex
TM)ビーズと一緒での室温で2時間のインキュベーションによって、1mLの培養培地からの抗原E ECDタンパク質またはバリアントタンパク質(上記)を捕捉した。次に、ビーズを使用前にPBSで洗浄した。抗抗原E共通軽鎖抗体を含む上清を緩衝液で1:4に希釈し、96穴フィルタープレートに加えた。抗体のない模擬上清を、陰性対照として用いた。捕捉された抗原Eタンパク質を含むビーズを次に抗体試料に加え(ウェルにつき3000個のビーズ)、4℃で一晩インキュベートした。次の日、試料ビーズを洗浄し、結合した共通軽鎖抗体をR−フィコエリトリンとコンジュゲートさせた抗ヒトIgG抗体で検出した。ビーズの蛍光強度(約100個のビーズを各抗原Eタンパク質への各抗体試料の結合について計数した)は、Luminex
TMフローサイトメトリーベースのアナライザーで測定し、ビーズ/抗体相互作用につき少なくとも100個の計数されたビーズの中央蛍光強度(MFI)を記録した。結果を表11および12に示す。
【0171】
【表11-1】
【0172】
【表11-2】
【0173】
【表11-3】
【0174】
【表12】
抗抗原E共通軽鎖抗体上清は、抗原E−ECDに連結されたビーズへの高特異的結合を示した。これらのビーズについては、陰性対照模擬上清は、抗原E−ECDビーズ試料と組み合わせたときは無視できるシグナル(<10MFI)をもたらしたが、抗抗原E共通軽鎖抗体を含む上清は、強い結合シグナルを示した(98個の抗体上清については2627の平均MFI;91/98の抗体試料についてはMFI>500)。
【0175】
抗原EのECDの上の異なるエピトープを同定する選択された抗抗原E共通軽鎖抗体の能力の測定手段として、バリアントに対する抗体の相対的結合を判定した。天然の抗原E−ECD結合試験について上で記載したように、全4つの抗原Eバリアントを抗myc Luminex
TMビーズに捕捉し、相対的な結合比(MFI
バリアント/MFI
抗原E−ECD)を判定した。表11および12に示す98個の試験された共通軽鎖抗体上清について、平均比(MFI
バリアント/MFI
抗原E−ECD)は各バリアントで異なり、ビーズ上でのタンパク質の様々な捕捉量を反映しているようである(抗原E−ΔCT、抗原E−Ala1、抗原E−Ala2およびMf抗原Eについてそれぞれ0.61、2.9、2.0および1.0の平均比)。各タンパク質バリアントについて、98個の試験された共通軽鎖抗体のサブセットの結合は、大きく低減された結合を示し、このことは、所与のバリアントを特徴付けた変異への感度を示した。例えば、共通軽鎖抗体試料の19個は、<8%のMFI
バリアント/MFI
抗原E−ECDでMf抗原Eに結合した。この群の多くは高いか適度に高い親和性の抗体(5個はK
D<5nM、15個はK
D<50nM)を含むので、この群の低いシグナルは、低い親和性からではなく、天然の抗原E−ECDと所与のバリアントとの間の配列(エピトープ)の差への感度から生じるようである。
【0176】
表3および4に記載される共通軽鎖抗体が、抗原Eの上の複数のエピトープを特異的に認識する抗原E特異的共通軽鎖抗体の多様な群を実際に表すことを、これらのデータは証明する。