(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5956053
(24)【登録日】2016年6月24日
(45)【発行日】2016年7月20日
(54)【発明の名称】微細パターニング用表面化学処理装置
(51)【国際特許分類】
B05C 5/02 20060101AFI20160707BHJP
B05B 15/04 20060101ALI20160707BHJP
B01J 19/00 20060101ALI20160707BHJP
【FI】
B05C5/02
B05B15/04
B01J19/00 D
B01J19/00 321
【請求項の数】3
【全頁数】9
(21)【出願番号】特願2015-500038(P2015-500038)
(86)(22)【出願日】2013年2月14日
(86)【国際出願番号】JP2013053492
(87)【国際公開番号】WO2014125591
(87)【国際公開日】20140821
【審査請求日】2015年8月25日
(73)【特許権者】
【識別番号】000001993
【氏名又は名称】株式会社島津製作所
(73)【特許権者】
【識別番号】305027401
【氏名又は名称】公立大学法人首都大学東京
(73)【特許権者】
【識別番号】899000068
【氏名又は名称】学校法人早稲田大学
(74)【代理人】
【識別番号】100114030
【弁理士】
【氏名又は名称】鹿島 義雄
(72)【発明者】
【氏名】内山 一美
(72)【発明者】
【氏名】中嶋 秀
(72)【発明者】
【氏名】楊 明
(72)【発明者】
【氏名】曽 湖烈
(72)【発明者】
【氏名】菅原 義之
(72)【発明者】
【氏名】西本 尚弘
【審査官】
増田 亮子
(56)【参考文献】
【文献】
特開2010−172817(JP,A)
【文献】
特開2003−033699(JP,A)
【文献】
特開平3−151070(JP,A)
【文献】
特開昭57−203789(JP,A)
【文献】
特開平9−1024(JP,A)
【文献】
特開昭56−73579(JP,A)
【文献】
特開平2−99166(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B05C5/02
B01J19/00
B05B15/04
B05D1/00−7/26
(57)【特許請求の範囲】
【請求項1】
気相もくしは液相中に置かれた固相の表面に、所要パターンの化学的処理を施すための装置であって、
一端が開口し、他端が上記固相表面と反応して当該表面を化学処理するためのパターニング溶液を供給する液供給手段に連通する第1の管路と、
上記第1の管路に向けてシース液を供給することにより、当該第1の管路中でシースフローを形成して上記パターニング溶液を中央に収束させるためのシース液供給用管路と、
上記第1の管路の開口の周りを囲むように一端が開口し、他端が液吸引手段に連通する第2の管路と、これらの第1と第2の管路の開口を上記気相もしくは液相中で上記固相の表面に対向させた状態で、当該各開口と固相とを相対的に移動させる移動機構を備え、
上記液供給手段から上記第1の管路内に上記パターニング溶液を供給するとともに、上記シース液供給用管路から上記シース液を供給することにより上記パターニング溶液を中央に収束させて当該第1の管路の開口から吐出させつつ、上記液吸引手段の駆動により上記第2の管路の開口を通じて上記第1の管路の開口から吐出したパターニング溶液を上記気相もしくは液相とともに吸引しながら、上記第1と第2の管路の開口と上記固相とを相対移動させて所要パターンの化学的処理領域を形成することを特徴とする微細パターニング用表面化学処理装置。
【請求項2】
上記移動機構は、上記各開口と固相とを3次元方向に相対移動させる機構であり、設定手段によりあらかじめ設定された順路で上記開口と固相とを相対移動させることを特徴とする請求項1に記載の微細パターニング用表面化学処理装置。
【請求項3】
上記第1と第2の管路、または、上記第1と第2の管路およびシース液供給用管路は、Siを用いて形成した構造体からなっていることを特徴とする請求項1または請求項2に記載の微細パターニング用表面化学処理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、気相もしくは液相中で、ガラス素材やシリコン基板などの固相表面に化学的パターニングを行い、特定の機能を有する分子を構築し、固相合成反応や分析などを行う技術に関する。
【背景技術】
【0002】
ガラス素材やシリコン基板などの固相表面に、ある分子による化学処理を施す場合、従来、その分子が溶質として溶媒に溶解している溶液を用いて、以下に例示するような手法が一般に用いられている。
【0003】
その一つは、化学処理を施したい固相を、上記の溶液に完全に浸漬させる方法であり、この場合、固相は溶液中の分子により位置に関する選択性を伴わずに化学処理される。
【0004】
他の一つは、ディスペンサ(液体定量吐出装置)を用いて上記した溶液を吐出しながら固相表面に所要のパターンで描画する方法であり、この場合には上記の溶質により固相表面は位置選択的に化学処理される。このディスペンサを用いる方法においては、ディスペンサの口径を縮小化していくことにより、ある程度までパターニングの微細化を実現することができる。
【0005】
また、マイクロフルイディクスの分野において、固相表面に微量の溶液等を吐出する技術として、マイクロフルイディクスプローブやマイクロピペットと称するツールを用いた技術が知られている。
【0006】
マイクロフルイディクスプローブと称するものは、Siなどで形成したプローブの先端にメサと称する平坦面を形成するとともに、そのメサには2つの開口を隣接して形成し、固相表面に対してメサを平行に対向させた状態で、一方の開口から溶液を吐出すると同時に、他方の開口から吸引することで、吐出した溶液が広がってしまうことを抑制し、狭小な領域に溶液が留まることを可能としている(例えば非特許文献1参照)。
【0007】
一方、マイクロピペットと称するものは、ポリジメチルシロキサン(PDMS)等で形成したピペットの先端部に3つの開口を一列状に形成し、その中央の開口から溶液等を吐出すると同時に、その両側の開口から吸引することで、上記と同様に溶液等の固相表面での広がりを抑制している(例えば非特許文献2参照)。
【先行技術文献】
【非特許文献】
【0008】
【非特許文献1】David Juncker et al.”Multipurpose microfluidic probe” nature materials ADVANCE ONLINE PUBRICATION(www.nature.com/naturematerials),24 July 2005
【非特許文献2】Alar Ainla et al.”A multifunctional pipette” lab chip,2012,12,p1255−1261,The Royal Society of Chemestry
【発明の概要】
【発明が解決しようとする課題】
【0009】
上記した従来の手法のうち、化学処理すべき固相を溶液中に浸漬する手法では、固相表面に位置選択的に処理を施したい場合には適用することができない。
【0010】
これに対し、ディスペンサを用いて固相表面に溶液を所要のパターンで描画する手法では、ディスペンサ口径の縮小化には、製造技術面やメンテナンス性の面において制約があるため、化学処理のための分子の固定化面積の微小化には限度がある。また通常吐出口の数は1個であり、反応に供する2種類以上の溶液を吐出することは困難である。
【0011】
一方、マイクロフルイディクス技術におけるマイクロフルイディクスプローブやマイクロピペットと称するツールを用いる場合には、溶液の吐出口の横もしくは両横に吸引口を設けて、固相表面での溶液の広がりを抑制するため、上記した手法に比してよりパターンの微細化が可能であると考えられるが、これらのツールによれば、吸引口が吐出口に対して1次元方向に存在しているため、それに直交する方向への溶液の広がりの抑制効果は限定的であり、いわゆる「滲み」を全方位にわたって防止することが容易ではないという問題がある。
【0012】
本発明はこのような実情に鑑みてなされたもので、溶液中の分子の固相表面への固定化の効率を向上させ、かつ、固相表面に吐出した溶液の広がりを確実に抑制して、固定化面積の微小化を可能とした、位置選択的な微細パターニング用表面化学処理装置の提供をその課題としている。
【課題を解決するための手段】
【0013】
上記の課題を解決するため、本発明の微細パターニング用表面化学処理装置は、気相もくしは液相中に置かれた固相の表面に、所要パターンの化学的処理を施すための装置であって、一端が開口し、他端が
上記固相表面と反応して当該表面を化学処理するためのパターニング溶液を供給する液供給手段に連通する第1の管路と、
上記第1の管路に向けてシース液を供給することにより、当該第1の管路中でシースフローを形成して上記パターニング溶液を中央に収束させるためのシース液供給用管路と、上記第1の管路の開口の周りを囲むように一端が開口し、他端が液吸引手段に連通する第2の管路と、これらの第1と第2の管路の開口を上記気相もしくは液相中で上記固相の表面に対向させた状態で、当該各開口と固相とを相対的に移動させる移動機構を備え、上記液供給手段から上記第1の管路内に上記
パターニング溶液を供給するとともに、上記シース液供給用管路から上記シース液を供給することにより上記パターニング溶液を中央に収束させて当該第1の管路の開口から吐出させつつ、上記液吸引手段の駆動により上記第2の管路の開口を通じて上記第1の管路の開口から吐出したパターニング溶液を上記気相もしくは液相とともに吸引しながら、上記第1と第2の管路の開口と上記固相とを相対移動させて所要パターンの化学的処理領域を形成することによって特徴づけられる(請求項1)。
【0014】
ここで、本発明において
、上記移動機構としては、上記各開口と固相とを3次元方向に相対移動させる機構であり、設定手段によりあらかじめ設定された順路で上記開口と固相とを相対移動させる構成(請求項2)
とすることができる。
【0015】
そして本発明においては、上記第1と第2の管路、または、上記第1と第2の管路およびシース液供給用管路は、Siを用いて形成した構造体からなる構成(請求項
3)を採用することができる。
【0016】
本発明は、溶液の吐出口近傍を二重管構造とし、その内管から溶液を吐出しながら、外管で吸引することで課題を解決しようとするものである。
【0017】
すなわち、一端が開口する第1の管路の他端に液供給手段を連通させ、この第1の管路の開口の周りを囲むように第2の管路の一端を開口させ、この第2の管路の他端は液吸引手段に連通させる。そして、第1および第2の管路の開口を、パターニングすべき固相表面を覆う気相もしくは液相中で当該固相表面に対向させた状態で、液供給手段と液吸引手段を同時に駆動することにより、第1の管路の開口からパターニング溶液を吐出すると同時にその周囲の第2の管路の開口からパターニング溶液と気相もしくは液相を吸引する。
【0018】
以上の動作によると、第1の管路の開口から固相表面に向けて吐出されたパターニング溶液は、その周囲の全方位から吸引される結果、固相表面上での「滲み」を全方位にわたって防止することが可能となる。これにより、固相表面の極微小面積の領域において、溶液中の溶質を濃縮して固定化することができ、従来装置や手法に比して固定化の効率が向上する。すなわち、本発明によれば、溶液中の溶質の固相表面への固定化の効率を向上させつつ、固定化の面積の微小化を可能とし、高効率で微細なパターンでの表面化学処理装置を実現することができる。
【0019】
本発明の装置を用いることにより、ガラス素材やシリコン基板上の任意の位置に、任意の微細パターンのもとに目的に応じた機能を有する分子を構築することができる。
【0020】
また、金属膜上にチオール基を有する分子のパターン形成が可能となり、その上の特定の位置に別の分子を形成することも可能となる。
【0021】
そして、請求項2に係る発明では、第1の管路に対してシース液を供給してシースフローを形成し、パターニング溶液を第1の管路中で中央に収束させる。したがってこの請求項2に係る発明では、第1の管路の開口から吐出されるパターニング溶液は、当該第1の管路の開口よりも細い流れとなって固相表面に到達し、より微細なパターニングが可能となる。このシースフローを利用した構成によれば、管路の製造技術面やメンテナンス性の面において、第1の管路の開口径の縮小化に制約があっても、分子の固定化面積をより一層微小化することができる。
【0022】
パターニングのために第1および第2の管路の各開口と固相とを相対的に移動させる移動機構は、請求項3に係る発明のように、設定手段で設定された順路のもとに移動させる機構を採用すると、同じ固相もしくは複数の固相表面に互いに同等のパターンを形成する上で有用であり、その際、その相対移動は固相表面に沿った2次元方向のほか、第1および第2の開口と固相表面との距離がパターニングの線幅に影響を及ぼすファクターとなるため、各開口と固相表面とが互いに接近/離隔する方向への相対移動も併せて設定通りに行うことが好ましい。このような設定通りに相対移動させる移動機構の採用により、一つの固相表面にある溶液を用いて分子を固定化した後、その固定化されたパターンに対して一定の位置関係もしくは重畳して、他の溶液を用いて他の分子を固定化するような用途に適用することも可能となる。
【0023】
そして、本発明においては、第1の管路と第2の管路、あるいはそれに加えてシース液供給用管路を、例えばガラス細工等により形成したり、あるいは各種の樹脂で形成してもよいが、請求項4に係る発明のようにSiを用いた構造体とすることにより、パターンの微細化がより容易となる。
【図面の簡単な説明】
【0024】
【
図2】本発明の他の実施形態の要部構成を示す模式図。
【発明を実施するための形態】
【0025】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の基本的な実施の形態の構成を示す模式図である。
【0026】
表面にパターニング処理を施すべきガラス素材やシリコン基板などの固相1は、気相もしくは液相、この例では液相2が収容された容器3内に保持部材(図示略)により保持されて配置され、液相2内に浸漬された状態で処理に供される。容器3はステージ4上に固定されている。ステージ4は移動機構21の駆動により固相1の表面に沿うx,y方向およびそれに直交するz方向に移動する。この移動機構21は、制御部22の制御下に置かれており、制御部22は、設定部23により設定され記憶部24に記憶されている移動経路通りにステージ4が移動するように移動機構21を制御する。なお、制御部22、設定部23および記憶部24は、コンピュータとその周辺機器によって構成することができる。
【0027】
ステージ4の上方には、第1の管路11と、その外側を囲むように配置された第2の管路12とからなる二重管が設けられている。これらの各管路11,12の一端(下端)はそれぞれ開口部11a,12aを形成しており、これらの各開口部11a,12aは、液相2内に浸漬された状態で固相1の表面に対向している。
【0028】
第1の管路11の他端(上端)部11bは配管13を介して注入用ポンプ14の吐出口14aに連通しており、この注入用ポンプ14の吸引口14bはパターニング溶液31を貯留するパターニング溶液槽(図示略)に接続されている。パターニング溶液31は、溶質32を溶媒33に溶解させたものであり、溶媒33は容器3中の液相2と同じ液であってもよい。
【0029】
第2の管路12の他端(上端)部12bは配管15を介して排出用ポンプ16の吸引口16aに連通しており、この排出用ポンプ16の吐出口16bは液排出口(図示略)に連通している。
【0030】
以上の実施の形態の作用を述べると、実際の装置の駆動に先立ち、設定部23の操作により、固相1の表面に描画すべきパターンに基いて、ステージ4の移動経路をあらかじめ設定する。その設定内容は記憶部24に記憶される。
【0031】
装置に駆動開始指令を与えると、注入用ポンプ14および排出用ポンプ16の双方を駆動しながら、記憶部24に記憶された移動経路のもとに移動機構21を駆動制御してステージ4を移動させる。注入用ポンプ14の駆動によりパターニング溶液31が第1の管路11内に流入し、その下端の開口部11aから固相1に向けて管外へと流出する。このパターニング溶液31の流出により、溶媒33に溶解している溶質32が固相1の表面に所要のパターンのもとに固定化され、溶質32によるパターニング領域34が形成される。このとき、排出用ポンプ16も駆動していることから、第1の管路11の開口部11aから流出したパターニング溶液31中の溶媒33と、溶質32の一部は、図中矢印Aで示すように、開口部11aの周りを囲むように位置する第2の管路12の開口部12aから吸引され、併せて周囲の液相2も、矢印Bで示すように管路12の開口部12aから吸引される。
【0032】
このような動作によれば、第1の管路11の開口部11aから吐出されたパターニング溶液31は、その周りを囲むように位置する第2の管路12の開口部12aから吸引されるため、溶質32が固相1の表面に接触して固定化されるパターニング領域34の広がりを固相1表面上の全方位にわたって抑制して「滲み」を防止することができる結果、極微小な領域において溶質32を濃縮して固定化することができ、固定化の効率が向上する。
【0033】
以上の実施の形態を用いて、マイクロリアクタを作成した例について述べる。この例では、ガラス製のキャピラリプレートの目的とする表面のみに、温度応答性高分子を描画した構造のもので、このキャピラリプレートのキャピラリ部分に物質Aを固定し、温度応答性高分子側から物質Bを反応させるマイクロリアクタであり、物質AとBの反応を温度応答性高分子による親水性制御(ラプラス圧制御)により任意の部分のみで行うことが可能なリアクタである。
【0034】
キャピラリプレートの目的とする表面に温度応答性高分子を描画した構造においては、温度による透過性制御を位置選択的に行える。すなわち、転位温度より高い温度では表面が疎水性となるので不透過となり、転位温度より低い温度では表面が親水性となるために透過する。要は、水を溶媒として用いた場合、ラプラス圧が制御可能となり、スイッチング機能が付与されたマイクロリアクタとして動作させることが可能である。
【0035】
さて、以上のようなマイクロリアクタの作成においては、まず、ブロモ基をキャピラリプレートの表面に(イソプロピルアミドなどにより)導入し、そのキャピラリプレートを、1〜5% N,N,N’,N”,N”−ペンタメチルジエチレントリアミン、および、0.1〜5%臭化銅(I)を含有する、メタノール:DMF(1:1)(以下、これを溶媒1と称する)に浸す。
次に、上記した本発明の実施の形態の第1の管路11に、0.1〜5% N−イソプロピルアクリルアミドを前記した溶媒1で希釈した溶液(以下、試薬1と称する)を供給するように設定し、この第1の管路11の開口11aをキャピラリプレートの表面の目的とする位置に近接させる。第1の管路11の開口11aから毎分1〜100μLの割合で試薬1を吐出し、第2の管路12の開口12aから毎分1〜500μLで溶媒1および試薬1を吸引し、目的位置付近を化学修飾する。ステージ4の駆動によりキャピラリプレートと第1、第2の管路11,12とをx,y方向に相対移動させることにより、任意領域のパターンを描画することもできる。上記は窒素雰囲気下で実施する。
これにより、キャピラリプレートの目的とする表面のみに温度応答性高分子を導入することができる。
【0036】
次に、本発明の他の実施の形態について述べる。
図2はその要部構成を示す模式図であり、
図1に示したものと同等の部材については同じ符号を付して説明を省略する。
【0037】
この
図2の実施の形態の特徴は、第1の管路11の上端部近傍にシース形成口51を設け、そのシース形成口51にシース液供給用管路52の一端を接続した点にある。シース液供給用管路52の他端はシース液供給用ポンプ53の吐出口53aに連通し、そのシース液供給用ポンプ53の吸入口53bは、シース液35を貯留するシース液槽(図示略)に連通している。このシース液供給用ポンプ53の駆動により、シース液35が第1の管路11内に流入し、パターニング溶液31とシース液35とからなるシースフローを形成して、パターニング溶液31の流れを第1の管路11の中心に収束させる。したがって、第1の管路11の下端の開口部11aから流出するパターニング溶液31は、当該開口部11aの口径よりも細い流れとなり、排出用ポンプ16の駆動による第2の管路12の開口部12aから、液相2が混在したシース液35および溶媒33と、溶質32の一部が吸引されて排出される。
【0038】
このシースフローを利用した構成によると、先の例に比してより一層パターニングの微細化が可能となり、特に、第1の管路11の開口部11aの口径に製造技術面やメンテナンス面での制約があっても、その口径よりも微細な線の描画が可能となる。
【0039】
ここで、以上の各実施形態においては、説明の便宜上、第1の管路11、第2の管路12、およびシース液供給用管路52等は、ガラス管や樹脂管などを用いた場合を図示したが、本発明はこれに限定されることなく、これらの材質の管体を用いるほか、MEMS技術を用いて、上記と等価の構造を有したSi製の構造体で構成してもよく、その場合には、パターニングの更なる微細化が期待される。
【0040】
また、前記した実施の形態では、表面にパターニングを施すべき固相を搭載したステージを移動させてパターニングを行う例を示したが、本発明は、固相側を固定し、第1,第2の管路側を移動させる機構を備えた構成を採用し得ることは勿論である。
【産業上の利用可能性】
【0041】
本発明は、例えばガラス素材やシリコン基板上の任意の位置に、任意のパターンのもとに目的とする分子を構築することができ、例えば微細な各種センサやセンサアレイの作成、あるいは金属膜上にチオール基を有する分子によるパターニング、またその上の特定部位への別の分子のパターニングなど、溶液を用いた固相表面への微細パターンの表面化学処理を行うための装置として有効に利用することができる。
【符号の説明】
【0042】
1 固相
2 液相(または気相)
3 容器
4 ステージ
11 第1の管路
12 第2の管路
13 配管
14 注入用ポンプ
15 配管
16 排出用ポンプ
21 移動機構
22 制御部
23 設定部
24 記憶部
31 パターニング溶液
32 溶質
33 溶媒
34 パターニング領域
35 シース液
51 シース形成口
52 シース液供給用管路
53 シース液供給用ポンプ