特許第5956612号(P5956612)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ キヤノンアネルバ株式会社の特許一覧

特許5956612グリッドアセンブリおよびイオンビームエッチング装置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5956612
(24)【登録日】2016年6月24日
(45)【発行日】2016年7月27日
(54)【発明の名称】グリッドアセンブリおよびイオンビームエッチング装置
(51)【国際特許分類】
   H01J 37/305 20060101AFI20160714BHJP
【FI】
   H01J37/305 A
【請求項の数】10
【全頁数】18
(21)【出願番号】特願2014-552913(P2014-552913)
(86)(22)【出願日】2013年12月10日
(86)【国際出願番号】JP2013007267
(87)【国際公開番号】WO2014097576
(87)【国際公開日】20140626
【審査請求日】2015年6月11日
(31)【優先権主張番号】特願2012-277105(P2012-277105)
(32)【優先日】2012年12月19日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000227294
【氏名又は名称】キヤノンアネルバ株式会社
(74)【代理人】
【識別番号】100094112
【弁理士】
【氏名又は名称】岡部 讓
(74)【代理人】
【識別番号】100106183
【弁理士】
【氏名又は名称】吉澤 弘司
(74)【代理人】
【識別番号】100114915
【弁理士】
【氏名又は名称】三村 治彦
(74)【代理人】
【識別番号】100120363
【弁理士】
【氏名又は名称】久保田 智樹
(74)【代理人】
【識別番号】100125139
【弁理士】
【氏名又は名称】岡部 洋
(72)【発明者】
【氏名】辻山 公志
(72)【発明者】
【氏名】安松 保志
(72)【発明者】
【氏名】本地 香織
【審査官】 鳥居 祐樹
(56)【参考文献】
【文献】 特開平08−167397(JP,A)
【文献】 特開2004−207148(JP,A)
【文献】 特開2000−049144(JP,A)
【文献】 特開平04−329249(JP,A)
【文献】 特表2007−510263(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 27/02
H01J 37/08
H01J 37/305
H01L 21/3065
(57)【特許請求の範囲】
【請求項1】
グリッドアセンブリであって、
表面上の所定の仮想円の円周に沿って等間隔に設けられている3つの位置決め孔と、第1の固定孔とを有するグリッドと、
2つ以上重ねられた前記グリッドの前記位置決め孔を貫通するように構成された突起部と、第2の固定孔とを有する固定部材と、
前記2つ以上重ねられた前記グリッドと前記固定部材とを、前記第1の固定孔と前記第2の固定孔とを貫通して固定するように構成された貫通部材と、
を備え、
前記位置決め孔は、前記グリッドの表面上において第1の方向に沿って所定の幅を有し、前記グリッドの表面上において該第1の方向に直交する第2の方向に沿って該所定の幅より長い幅を有しており、
前記突起部が前記位置決め孔を貫通しており、
前記貫通部材が前記第1の固定孔と前記第2の固定孔とを貫通している
ことを特徴とするグリッドアセンブリ。
【請求項2】
前記突起部が、前記第1の方向に沿った対向する2つの領域において、前記位置決め孔の内壁に点接触または線接触するように構成されていることを特徴とする請求項1に記載のグリッドアセンブリ。
【請求項3】
前記突起部は3つ重ねられた前記グリッドを貫通することを特徴とする請求項1に記載のグリッドアセンブリ。
【請求項4】
前記第1の方向と、前記位置決め孔の中心と前記所定の仮想円の中心とを結ぶ方向とのなす角度が、0度より大きく90度以下の所定の角度であることを特徴とする請求項1に記載のグリッドアセンブリ。
【請求項5】
前記突起部が、前記位置決め孔に対して、前記グリッドの表面上において第1の方向には移動できず、前記グリッドの表面上において該第1の方向に直交する第2の方向に沿って摺動できるように構成されていることを特徴とする請求項1に記載のグリッドアセンブリ。
【請求項6】
前記グリッドは、多数のイオン通過孔をさらに備え、
前記2つ以上重ねられた前記グリッドと前記固定部材とが固定される状態において、前記2つ以上重ねられた前記グリッドのうち一のグリッドの前記多数のイオン通過孔のそれぞれが、別のグリッドの前記多数のイオン通過孔のそれぞれに重なるように構成されていることを特徴とする請求項1に記載のグリッドアセンブリ。
【請求項7】
前記固定部材は、リング状部材であり、
前記グリッドの前記多数のイオン通過孔の外周部において前記グリッドと重なるように構成されていることを特徴とする請求項6に記載のグリッドアセンブリ。
【請求項8】
前記固定部材は、多数のイオン通過孔をさらに備え、
前記2つ以上重ねられた前記グリッドと前記固定部材とが固定される状態において、前記固定部材の前記多数のイオン通過孔のそれぞれが、前記2つ以上重ねられた前記グリッドの前記多数のイオン通過孔のそれぞれに重なるように構成されていることを特徴とする請求項6に記載のグリッドアセンブリ。
【請求項9】
第2の固定孔を有する第2の固定部材をさらに備え、
前記貫通部材は、前記固定部材および前記第2の固定部材に挟まれた前記2つ以上重ねられた前記グリッドを、前記第1の固定孔、前記固定部材の前記第2の固定孔および前記第2の固定部材の前記第2の固定孔を貫通して固定し、
記2つ以上重ねられた前記グリッドに対して厚さ方向に力を加えるように、前記貫通部材と前記第2の固定部材との間にばねが設けられていることを特徴とする請求項1に記載のグリッドアセンブリ。
【請求項10】
プラズマ発生室と、
前記プラズマ発生室内にプラズマを発生させるためのプラズマ発生手段と、
前記プラズマ発生室に連結した処理室と、
前記プラズマ発生室から前記処理室へ、前記プラズマからイオンを引き出すための請求項1に記載のグリッドアセンブリと、
前記処理室の中に設けられ、基板を保持可能な基板ホルダーであって、前記グリッドアセンブリから引き出されたイオンが入射するように設けられた基板ホルダーと、
を備えることを特徴とするイオンビームエッチング装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、グリッドアセンブリ、および該グリッドアセンブリを含むイオンビームエッチング装置に関する。
【背景技術】
【0002】
半導体装置の製造技術において、基板等の被処理物に各種のパターンを形成するために、イオンビームエッチング(以下、IBEともいう)処理が用いられている。このIBE処理を実行するIBE装置では、ガスをイオン源に導入して適当な手段によりプラズマを発生させ、プラズマ中からイオンを引き出す。この引き出したイオンビームを被処理物に照射することでIBE処理を行う。
【0003】
従来、IBE装置では、複数枚のグリッドを用いてプラズマ中からイオンを引き出す構成が用いられている。IBE装置の一形態として、この複数枚のグリッドは端部において固定され、グリッドアセンブリが形成される。図13Aは、特許文献1に記載されている従来のIBE装置におけるグリッドアセンブリの平面図である。図13Bは、図13AのA−A’線から見たグリッドアセンブリの断面図である。図13Aにおいてはグリッドアセンブリのみを示し、図13BにおいてはIBE装置に固定されている状態のグリッドアセンブリを示している。
【0004】
グリッドアセンブリ20は、3つの円板状グリッド21、22および23からなっており、これらのグリッドが有する複数の開口部(不図示)は整列している。また、グリッド21、22および23は、それぞれ所定の円周上に配置された8個の固定用の貫通孔10を有する。グリッドアセンブリ20は、取付けプラットホーム40を介してチャンバ1に取り付けられている。取付けプラットホーム40は、キャップ・リング41ならびに第1および第2のリング42および43を備えている。キャップ・リング41は、チャンバ1に取り付けられている。グリッド21、22および23は、第1のリング42と第2のリング43の間に配置されており、貫通孔10を通る固定ボルト28により一体にボルト締めされている。スペーサ絶縁体29はグリッド同士を電気的に分離するように設けられており、スペーサ絶縁体30はグリッド21、22および23と固定ボルト28とを電気的に分離するよう設けられている。
【0005】
グリッドアセンブリ20は、3枚のグリッドが有する複数の開口部の位置が互いに一致するように構成されており、グリッド間の電位差によって加速したイオンがそれらの一致した開口部を通過することで、空間的な分布が均一なイオンビームを形成することができる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2011−129270号公報
【発明の概要】
【0007】
図13A、Bに示すグリッドアセンブリを組み立てる際には、各部品を重ねた状態で、8個の貫通孔10を用いてグリッド21、22、23の位置決めを行いながら、該貫通孔10を介してボルト28により固定を行う。そのため、組み立てが難しく、また各部品の寸法の製造誤差の影響を受けやすかった(例えば、最後に固定する貫通孔に8つの貫通孔の製造誤差が集約されるため)。しかしながら、単純に貫通孔の数を減らしては、位置決めの再現性および固定の強度が低下してしまう。組み立てを容易にするために緩いはめあい公差でグリッドアセンブリを設計すると、組み立ての再現性が低下し、グリッド間のずれが生じやすい。一方、グリッド間のずれを抑えるために、厳しいはめあい公差でグリッドアセンブリを設計すると、組み立てが困難になる。さらに、無理に固定しようとするとグリッドに歪みが生じる場合がある。
【0008】
開口部の位置がグリッド間で一致していないと、イオンビームの軌道が所望の軌道からずれてしまう。図14Aは、グリッド同士が違いに平行にずれた場合のイオンビームの軌道を示す図である。この場合には、イオンビームの軌道がグリッド面に対して傾斜してしまう。図14Bは、グリッドが歪んだ場合のイオンビームの軌道を示す図である。この場合には、イオンビームの軌道が場所によって異なっている。このように、グリッドのずれや歪みによってイオンビームの軌道が変化すると、被処理基板に対するイオンビームの照射量の面内分布が悪化し、基板面内の各点においてエッチング速度のばらつきが増加する場合がある。あるいは、イオンビームの軌道が変化する結果、所望の形状や寸法のパターンを獲ることができなくなる場合がある。
このような問題は処理基板の大口径化に伴い、より一層顕著になることが考えられる。基板の大口径化に伴い、グリッドアセンブリも大型化する必要があり、その結果、各グリッド間の位置ずれも大きくなるためである。
【0009】
本発明は、上述の問題点を解決するためになされたものであって、組み立てが容易であり、かつ組み立ての再現性の高いグリッドアセンブリ、および該グリッドアセンブリを備えるイオンビームエッチング装置を提供することを目的とする。
【0010】
本発明の第1の態様は、グリッドアセンブリであって、位置決め孔と第1の固定孔とを有するグリッドと、2つ以上重ねられた前記グリッドの前記位置決め孔を貫通するように構成された突起部と、第2の固定孔とが設けられている固定部材と、前記2つ以上重ねられた前記グリッドと前記固定部材とを、前記第1の固定孔と前記第2の固定孔とを貫通して固定するように構成された貫通部材と、を備え、前記突起部が前記位置決め孔と前記突起部とを貫通しており、前記貫通部材が前記第1の固定孔と前記第2の固定孔とを貫通していることを特徴とする。
【0011】
本発明に係るグリッドアセンブリは、組み立てが容易であり、かつ組み立ての再現性が高い。そのため、グリッド間で開口部の位置を正確に一致させ、イオンビームの空間的な分布を均一にすることができる。また、複数の装置に同じ構成のグリッドアセンブリを備える場合や、メンテナンスによりグリッドアセンブリを一旦取り外して再度取り付けた場合等にも、均質なイオンビームエッチング処理を行うことができる。
【図面の簡単な説明】
【0012】
図1】本発明の一実施形態に係るイオンビームエッチング装置の概略構成図である。
図2A】本発明の一実施形態に係るグリッドアセンブリの平面図である。
図2B】本発明の一実施形態に係るグリッドアセンブリの平面図である。
図3A】本発明の一実施形態に係るグリッドアセンブリの断面図である。
図3B】本発明の一実施形態に係るグリッドアセンブリの断面図である。
図4A】本発明の一実施形態に係るグリッドアセンブリにおける位置決め孔の平面図である。
図4B】本発明の一実施形態に係るグリッドアセンブリにおける位置決め孔の平面図である。
図4C】本発明の一実施形態に係るグリッドアセンブリにおける位置決め孔の平面図である。
図5A】本発明の一実施形態に係るグリッドアセンブリにおける位置決めピンの斜視図である。
図5B】本発明の一実施形態に係るグリッドアセンブリにおける位置決めピンの斜視図である。
図5C】本発明の一実施形態に係るグリッドアセンブリにおける位置決めピンの斜視図である。
図5D】本発明の一実施形態に係るグリッドアセンブリにおける位置決めピンの斜視図である。
図6A】本発明の一実施形態に係るグリッドアセンブリにおける位置決め孔に位置決めピンが挿入されている状態の平面図である。
図6B】本発明の一実施形態に係るグリッドアセンブリにおける位置決め孔に位置決めピンが挿入されている状態の平面図である。
図6C】本発明の一実施形態に係るグリッドアセンブリにおける位置決め孔に位置決めピンが挿入されている状態の平面図である。
図7A】本発明の一実施形態に係るグリッドアセンブリにおける位置決め孔の配置を示す図である。
図7B】本発明の一実施形態に係るグリッドアセンブリにおける位置決め孔の配置を示す図である。
図8】本発明の一実施形態に係るグリッドアセンブリにおける位置決め方法を説明するための図である。
図9A】グリッドの反り量の経時的な変化を表すグラフを示す図である。
図9B】グリッドの反り量の経時的な変化を表すグラフを示す図である。
図9C】グリッドの反り量の経時的な変化を表すグラフを示す図である。
図10A】本発明の一実施形態に係るグリッドアセンブリの断面図である。
図10B】本発明の一実施形態に係るグリッドアセンブリの断面図である。
図11】本発明の一実施形態に係るグリッドアセンブリにおける位置決め孔の配置を示す図である。
図12】本発明の一実施形態に係るグリッドアセンブリの断面図である。
図13A】従来のグリッドアセンブリの平面図である。
図13B】従来のグリッドアセンブリの断面図である。
図14A】グリッドを通過するイオンビームの軌道を説明するための図である。
図14B】グリッドを通過するイオンビームの軌道を説明するための図である。
【発明を実施するための形態】
【0013】
以下、図面を参照して、本発明の実施の形態を説明するが、本発明はこれらの実施形態に限定されるものではない。なお、以下で説明する図面で、同機能を有するものは同一符号を付け、その繰り返しの説明は省略することもある。
【0014】
(第1の実施形態)
図1は、本実施形態に係るイオンビームエッチング装置1の概略構成図である。イオンビームエッチング装置1は、処理室101と、該処理室101内にイオンビームを照射するように設けられたイオンビーム発生装置100とを備える。すなわち、イオンビーム発生装置100と処理室101とは連結されており、イオンビーム発生装置100から発生されたイオンビームは処理室101内に導入される。
【0015】
処理室101内には、基板111を保持可能な基板ホルダー110が、イオンビーム発生装置100から照射されたイオンビームが入射されるように設けられている。また、処理室101には排気ポンプ103が設置されている。処理室101内にはニュートラライザー113が設けられており、ニュートラライザー113によりイオンビーム発生装置100から導入されたイオンビームを電気的に中和することができる。よって、電気的に中和されたイオンビームを基板111に照射することができ、該基板111のチャージアップが抑制される。また処理室101にはガス導入部114が設けられており、処理室101内にプロセスガスを導入することができる。基板ホルダー110は、イオンビームに対して任意に傾斜することができる。また、基板ホルダー110は、基板111をその面内方向に回転(自転)できる構造となっている。
【0016】
イオンビーム発生装置100は、放電空間を内部に有するプラズマ発生室102を備えている。プラズマ発生室102の一部は放電容器としてのベルジャ104によって画設されている。ベルジャ104はイオンビーム発生装置100から取り外し可能に構成されている。
【0017】
プラズマ発生室102には、ガス導入部105が設けられており、該ガス導入部105によりプラズマ発生室102にエッチングガスが導入される。また、高周波(RF)場を生成するためのRFアンテナ106が、プラズマ発生室102内にプラズマ放電を行えるようにプラズマ発生室102(ベルジャ104)の周囲に配置されている。RFアンテナ106は、整合器107を介して高周波電源112に接続されている。さらに、プラズマ発生室102の周囲にはプラズマ発生室102内に所定の磁界を生じさせる電磁コイル108が設けられている。このような構成において、ガス導入部105からエッチングガスを導入し、RFアンテナ106に高周波電力を印加することでプラズマ発生室102内にエッチングガスのプラズマを発生させることができる。
【0018】
イオンビーム発生装置100は、処理室101とプラズマ発生室102との境界に設けられた、プラズマ発生室102にて発生したプラズマからイオンを引き出すための引き出し手段としてのグリッドアセンブリ109をさらに備えている。本実施形態では、該グリッドアセンブリ109に直流電圧を印加し、プラズマ発生室102内のイオンをビームとして引き出し、該引き出されたイオンビームを基板111に照射することで基板111の処理が行われる。
【0019】
図2Aは、プラズマ発生室102側から見た、本実施形態に係るグリッドアセンブリ109の平面図である。図2Aにおいてはグリッドのみを示しており、固定用のボルト等は省略している。グリッドアセンブリ109は、3枚の円板状のグリッドが重なって構成されており、プラズマ発生室102にて発生したイオンを通過させるためのイオン通過孔115を中心付近に多数有する。また、グリッドアセンブリ109は、グリッドアセンブリ109の表面上に仮想的に設定される所定の仮想円である円Rの円周上に、3枚のグリッドを固定するための3つの固定孔116と、3枚のグリッドの位置決めを行うための3つの位置決め孔117とを有する。イオン通過孔115、固定孔116および位置決め孔117は、3枚のグリッドにそれぞれ設けられており、3枚のグリッド間で位置が一致するように配置されている。
【0020】
図3Aは、図2AのB−B’線から見た、本実施形態に係るグリッドアセンブリ109の断面図である。グリッドアセンブリ109は、プラズマ発生室102の側から順に、引き出し電極である第1のグリッド118(プラズマ側グリッド)と、加速電極である第2のグリッド119と、第3のグリッド120(基板側グリッド)とを備えている。グリッド118、119、120は、それぞれ導電性の材料(例えば、モリブデン、カーボン等)で形成されている円板状の電極である。第1のグリッド118に形成されたイオン通過孔115の各々、第2のグリッド119に形成されたイオン通過孔115の各々、および第3のグリッド120に形成されたイオン通過孔115の各々が重なるように、第1のグリッド118、第2のグリッド119、および第3のグリッド120が配列されている。
【0021】
第1のグリッド118は、不図示の電源に接続されて正の電圧が印加される。第2のグリッド119は、不図示の電源に接続されて負の電圧が印加される。したがって、プラズマ発生室102内にプラズマを発生させ、第1のグリッド118に正の電圧を印加し、第2のグリッド119に負の電圧を印加すると、第1のグリッド118と第2のグリッド119との電位差によりイオンが加速される。また、第3のグリッド120はアース電極とも呼ばれ接地されている。第2のグリッド119と第3のグリッド120との電位差を制御することにより、静電レンズ効果を用いてイオンビームの径を所定の数値範囲内に制御することができる。
【0022】
第1のグリッド118、第2のグリッド119、および第3のグリッド120が重ねられた状態において、さらに処理室101側に第1の固定部材としての第1のリング121が重ねられ、プラズマ発生室102側に第2の固定部材としての第2のリング122が重ねられる。リング121、122は、グリッド118、119、120の外周部に沿って延在するリング状部材であり、グリッド118、119、120の固定孔116(第1の固定孔ともいう)に対応する位置に固定孔116(第2の固定孔ともいう)が設けられている。グリッド118、119、120およびリング121、122は、それぞれが有する固定孔116が互いに重なるように配置された状態で、貫通部材としてのボルト123により固定孔116を介して固定されている。さらにボルト123の一方端は、第1のリング121の固定孔116に固定されており、他方端は第2のリング122の固定孔116に固定されている。さらに、第1のグリッド118と第2のグリッド119との間、第2のグリッド119と第3のグリッド120との間、および各グリッドとボルト123との間には不図示のスペーサ絶縁体が設けられており、グリッド同士が電気的に分離されている。
【0023】
このような構成により、グリッド118、119、120、およびリング121、122は、ボルト123により一体に固定される。さらに、第1のリング121を壁面125にネジ124を用いて固定することによって、グリッドアセンブリ109を壁面125に取り付けられている。
【0024】
グリッド118、119、120にそれぞれ設けられている固定孔116は、ボルト123の寸法より、グリッド118、119、120のそれぞれの面内の全方向に余裕があるように構成する。すなわち、ボルト123が固定孔116に挿入されている状態であって、ボルト123が固定孔116の中心に位置している状態においては、ボルト123が固定孔116の内壁のいずれの方向にも接触せず、離間しているように構成する。このような構成により、熱膨張等でグリッド118、119、120の大きさが変動した場合に、ボルト123が固定孔116の内壁を押してグリッド118、119、120を変形させることを抑制することができる。また、グリッドアセンブリ109を組み立てる際に、グリッド118、119、120の固定孔116の位置が合わず、ボルト123が通らないということが起こりづらい。
【0025】
図3Bは、図2AのC−C’線から見た、本実施形態に係るグリッドアセンブリ109の断面図である。第1のリング121は、グリッド118、119、120の位置決め孔117に対応する位置に、位置決めを行うために用いられる突起部としての位置決めピン126を有する。グリッド118、119、120のそれぞれが有する位置決め孔117と、第1のリング121が有する位置決めピン126とが互いに重なるように配置された状態で、位置決めピン126が位置決め孔117を貫通している。
【0026】
本実施形態に係るグリッドアセンブリ109を組み立てる際には、まず、第1のリング121上の3つの位置決めピン126が、グリッド118、119、120のそれぞれに設けられた3つの位置決め孔117に挿入されるように、第1のリング121上のグリッド118、119、120を重ねる。このとき、後で詳細に説明するように、3点で位置決めを行っているため、特に位置決めが容易であり、かつ位置決めの再現性が高くなっている。このように位置決めを行った後に、グリッド118、119、120の上に第2のリング122を重ね、グリッド118、119、120およびリング121、122のそれぞれに設けられた3つの固定孔116にボルトを挿入し、グリッドアセンブリ109全体の固定を行う。このとき、先に位置決めを行っているため、固定の際に固定孔116の穴が合わないような状態になることを抑制することができる。
【0027】
本実施形態では、位置決めピン126を第1のリング121上に設けているが、第2のリング122上に設けてもよい。その場合には、第1のリング121上に設ける場合と逆の順序でグリッドアセンブリ109の組み立てを行えばよい。
【0028】
図13A、Bに示す従来のグリッドアセンブリを組み立てる際には、8つの貫通孔とボルトを用いて、位置合わせと固定とを同時に行う必要があったため、組み立てが難しかった。それに対して、本実施形態に係るグリッドアセンブリを組み立てる際には、まず位置決め孔と固定された位置決めピン(突起部)とを用いて位置決めを行い、位置決めがなされた状態で固定孔とボルトとにより固定を行うことができるため、組み立てが容易である。
【0029】
本実施形態に係る位置決め孔117および位置決めピン126の形状および配置は、特に容易にかつ再現性を高くグリッドアセンブリ109の位置決めを行えるように構成されている。
図4A〜Cは、グリッド118、119、120の法線方向から見た位置決め孔117の例示的な形状を示す平面図である。図4A〜Cに示す位置決め孔117は、それぞれX軸方向(短手方向ともいう)に沿った幅より、X軸に直交するY軸方向(長手方向ともいう)に沿った幅の方が大きい形状を有する。具体的には、図4Aに示す位置決め孔117の平面形状は、短手方向に対向する2辺は互いに平行な直線状であり、該2辺を曲線で結んだ形状である。また、図4Bに示す位置決め孔117の平面形状は、短手方向に対向する2辺は互いに平行な直線状であり、該2辺を直線で結んだ形状である。また、図4Cに示す位置決め孔117の平面形状は、短手方向に対向する2辺は互いに平行な弧状であり、該2辺を曲線で結んだ形状である。図4Cに示す位置決め孔117では、短手方向である第1の方向および第1の方向に直交する第2の方向が、位置決め孔117の各点において連続的に変化している。位置決め孔117は、図4A〜Cに示す平面形状によってグリッド118、119、120を厚さ方向にくり抜いたものである。
【0030】
位置決め孔117の形状は図4A〜Cに示すものに限られず、グリッドの表面上において第1の方向に沿って所定の幅を有し、該グリッドの表面上において該第1の方向に直交する第2の方向に沿って該所定の幅より長い幅を有する形状であれば、任意の形状を用いてよい。なお、該第1の方向および該第2の方向は、各位置決め孔117において任意に定めてよい。この点について、図2Bを用いて、説明する。図2Bは、図2Aと同様に、プラズマ発生室102側から見たグリッドアセンブリ109の平面図である。図2Bにおいて、位置決め孔117aは、方向aの幅が方向bの幅よりも大きくなっている。即ち、方向bが第1の方向であり、方向aが第2の方向である。位置決め孔117bについては、方向cの幅が方向dの幅よりも大きくなっている。即ち、方向dが第1の方向であり、方向cが第2の方向である。位置決め孔117cについては、方向eの幅が方向fの幅よりも大きくなっている。即ち、方向fが第1の方向であり、方向eが第2の方向である。このように、各位置決め孔117の第1の方向および第2の方向は各々の位置決め孔117において設定されるものである。位置決め孔117bにおける第1の方向および第2の方向は、位置決め孔117aに対して相対的に、方向dを第3の方向、方向cを第4の方向と呼ぶこともできる。また、同様に、位置決め孔117cにおける第1の方向および第2の方向は、位置決め孔117aに対して相対的に、方向fを第5の方向、方向eを第6の方向と呼ぶこともできる。
【0031】
図5A〜Dは、それぞれ位置決めピン126の例示的な形状を示す斜視図である。図中のZ軸は、位置決めピン126が位置決め孔117に挿入された際の深さ方向(グリッドの厚さ方向)を表す。図5Aに示す位置決めピン126は、円柱状の形状を有する。図5Bに示す位置決めピン126は、四角柱状の形状を有する。図5Cに示す位置決めピン126は、四角柱の対向する2面にそれぞれ半円柱状の曲面が形成された形状を有する。図5Dに示す位置決めピン126は、球状の形状を有する。
なお、図5B図5Cに示す位置決めピン126を位置決め孔117に貫通させた場合、位置決め孔117の長手方向に対する位置決めピン126の相対的な傾きにより位置決めピン126の位置決め孔117の内壁に対する接触状態が変化する。しかし、実際のグリッドアセンブリ109の製造において、位置決め孔117の位置ズレおよび位置決めピン126に対する角度のズレは微小である。従って、位置決め孔117の長手方向に対する位置決めピン126との相対的な傾きはグリッドアセンブリ109の組立てにおいてほとんど変化しないので、図5B図5Cに示す位置決めピン126を用いた場合にも、本発明における効果を得ることができる。
【0032】
位置決めピン126は、任意の方法で第1のリング121に固定される。例えば位置決めピン126にネジを設け、第1のリング121にネジ穴を設けることによりそれらを嵌合させて固定してもよく、また接着剤やかしめ、溶接、ロウ付けなどにより固定してもよい。
【0033】
位置決めピン126の形状は図5A〜Dに示すものに限られず、位置決めピン126の対向する2つの領域が位置決め孔117の内壁に点接触または線接触が可能な任意の形状を用いてよい。ここで、点接触とは、位置決めピン126が位置決め孔117に挿入された状態において、位置決めピン126と位置決め孔117の内壁とが点で接触することをいう。線接触とは、位置決めピン126が位置決め孔117に挿入された状態において、位置決めピン126と位置決め孔117の内壁とが線で接触し、該線の方向が位置決め孔117の深さ方向と平行になっていることをいう。また、厳密な点接触または線接触でなくともよく、位置決めピン126の位置決め孔117の内壁に接触する領域に対して面取り等を行い、位置決め孔117の内壁に小さい面積を持って接触するように構成されてもよい。
【0034】
図6A〜Cは、それぞれ位置決めピン126が位置決め孔117に挿入された例示的な状態を示す平面図である。図6Aは、図4Aに示す形状を有する位置決め孔117に、図5Aまたは図5Dに示す形状を有する位置決めピン126が挿入された状態を表す。図6Bは、図4Bに示す形状を有する位置決め孔117に、図5Bに示す形状を有する位置決めピン126が挿入された状態を表す。図6Cは、図4Cに示す形状を有する位置決め孔117に、図5Aまたは図5Dに示す形状を有する位置決めピン126が挿入された状態を表す。
【0035】
位置決めピン126は、X軸に沿った対向する2つの領域が位置決め孔117の内壁に同時に点接触または線接触し、かつY軸方向に沿った対向する2つの領域が位置決め孔117の内壁に同時に接触しないように構成されている。ここで、「接触」には、位置決めピン126は位置決め孔117に厳密に接触すること以外にも、位置決めピン126と位置決め孔117との間に摺動可能な程度の隙間が設けられている状態も含む。
【0036】
言い換えると、位置決めピン126が位置決め孔117に挿入された状態において、位置決めピン126は、位置決め孔117に対して、第1の方向には移動ができないように構成され、かつ該第1の方向に直交する第2の方向に摺動できるように構成されている。
なお、実際の位置決めピン126と位置決め孔117とを、位置決めピン126が位置決め117に対して第1の方向に全く移動できないように製造すると、各部材の公差によりグリッドアセンブリ109の組立てが困難となってしまう。従って、グリッドアセンブリ109を組み立てるために、位置決めピン126と位置決め孔117との間には、少なくとも位置決めピン126と位置決め孔117とのはめあい公差に相当する間隙が設けられることが望ましい。本発明において、位置決めピン126が位置決め孔117に対して第1の方向に移動できない、とはグリッドアセンブリ109の組立てのための位置決めピン126と位置決め孔117とのはめあい公差の影響を除いた場合に、実質的に位置決めピン126が位置決め孔117に対して移動できない状態を指すものである。
【0037】
上述の条件を満たすものであれば、位置決め孔117および位置決めピン126の形状の組み合わせは、任意に定めることができる。
【0038】
図7A、Bは、本実施形態に係る位置決め孔117の配置を示す図である。図7A、Bに示すように、グリッド118、119、120のそれぞれにおいて、3つの位置決め孔117が、点Oを中心とした円Rの円周上に設けられている。本実施形態においては、3つの位置決め孔117は点Oに関して120度ごとに配置されているが、3つの位置決め孔117の間の角度は任意に設定してよい。また、本実施形態においては、3つの位置決め孔117は全て点Oを中心とした円Rの円周上に配置されているが、それぞれが円Rの円周に沿って(すなわち、点Oを中心とした半径の異なる円の円周上に)配置されていてもよい。
【0039】
図7A、Bに示すように、位置決め孔117の短手方向(図4A〜CにおけるX軸方向)と、位置決め孔117の中心と円Rの中心点Oとを結ぶ方向とのなす角度(小さい方の角度)は、0度より大きく90度以下の所定の角度に設定される。図7Aに示す配置では、該角度は90度である。図7Bに示す配置では、該角度は45度である。なお、該角度は、3つの位置決め孔117のそれぞれにおいて等しい(すなわち、3つの位置決め孔117は円Rの中心点Oに関して点対称である)ように構成される。
【0040】
言い換えると、位置決めピン126が位置決め孔117内で摺動可能な方向が、位置決め孔117の中心と円Rの中心点Oとを結ぶ方向に対して垂直でないように構成されている。
【0041】
図8は、3つの位置決め孔117を用いた位置決め方法を説明するための図である。図8においては、グリッド118、119、120上の点Oを中心とした円R上に、位置決め孔117d、117e、117fが設けられており、各位置決め孔の中心点をそれぞれD、E、Fとする。また、第1のリング121上における位置決め孔117d、117e、117fに対応する位置に、位置決めピン126d、126e、126fが設けられている。
【0042】
上述したように、位置決めピンが位置決め孔に挿入されている状態において、位置決めピンは位置決め孔の長手方向(図4A、BにおけるY軸方向)に摺動可能に構成されている。そのため、位置決めピン126dは位置決め孔117d内で直線ODに沿って、位置決めピン126eは位置決め孔117e内で直線OEに沿って、位置決めピン126fは位置決め孔117f内で直線OFに沿って、それぞれ摺動可能である。
【0043】
まず、位置決めピン126dが位置決め孔117dに、位置決めピン126eが位置決め孔117eにそれぞれ挿入されている状態を考えると、位置決めピン126dは直線ODに沿って摺動し、位置決めピン126eは直線OEに沿って摺動する。このような位置決めピン126d、126eの摺動に伴う、位置決めピン126fの軌跡は、線Zにより表される。したがって、線Zと位置決めピン126fが摺動可能な方向である直線OFとの交点が、位置決めピン126fの位置となる。このように、位置決めピン126d、126e、126fの位置が自然と一意に決定されるため、グリッドアセンブリ109の組み立てを容易に行うことができる。
【0044】
このような構成により、はめあい公差を厳しく設計することができる。具体的には、JIS規格およびISO規格で定められるはめあい公差の定義によれば、図13A、Bに示す従来のグリッドアセンブリにおいては、8点の固定を可能にするために貫通孔およびボルトのはめあい公差をHd相当の緩い隙間ばめに設計する必要があった。それに対して、本実施形態に係るグリッドアセンブリ109においては、位置決め孔117および位置決めピン126のはめあい公差をHg相当の厳しい隙間ばめに設計することができる。これにより、グリッドアセンブリ109の組み立ての再現性を向上させることができる。
【0045】
さらに、本実施形態に係る位置決め孔117および位置決めピン126の形状および配置によれば、イオンビーム処理時の熱膨張による悪影響を抑えることができる。
本実施形態に係るグリッドアセンブリ109においては、図7A、Bに示すように、位置決め孔117は円Rの中心点Oに対して点対称に配置されている。IBE処理を行う際には、RF放電によってプラズマ発生室内の温度が上昇し、グリッドアセンブリ109に熱膨張が発生する。熱膨張(および温度が低下した際の収縮)は、中心点Oに関して等方的に発生するため、各位置決め孔117の中心と円Rの中心点Oとを結ぶ方向に沿ってグリッドアセンブリ109の変位が発生する。このとき、図7A、Bに示すように、位置決めピン126が位置決め孔117の一方向に摺動可能であり、かつ該方向が位置決め孔117の中心と円Rの中心点Oとを結ぶ方向に対して垂直でないように構成しているため、位置決めピン126は中心点Oに関して円Rの径方向に変位することができる。位置決めピン126の移動方向が一方向に限定されているため、熱膨張および収縮を繰り返しても各グリッドは元の位置に再現性よく戻ることができる。また、固定孔116は、ボルト123の寸法に対してグリッドの面内の全方向に余裕があるように構成されているため、ボルト123は固定孔116内で自由に変位することができる。したがって、熱膨張によるグリッドの変位が多少発生した場合にも、位置決めピン126およびボルト123がグリッドに応力を与えない、または与える応力を低減することができるため、熱膨張による歪みや反りを低減させることができる。
【0046】
一方、図13A、Bに示すような従来のグリッドアセンブリは、8点で固定されており、各貫通孔内でボルトが自由な方向に変位可能であるため、熱膨張およびその後の収縮の方向が不規則になる。熱膨張および収縮の結果、ボルトとグリッドとが貫通孔内でそれ以上変位不可能な位置になってしまうと、熱膨張および収縮時にボルトがグリッドに大きな応力を与え、グリッドの反りや歪みの増大をもたらす場合がある。
【0047】
本実施形態と従来技術との間で熱膨張時の反り量を比較するための実験を行った。図9A、Bは、実施例として本実施形態に係るグリッドアセンブリを用いた場合の反り量のグラフである。図9Cは、比較例として図13A、Bに示した従来のグリッドアセンブリを用いた場合の反り量のグラフである。図9A〜Cの各実験においては、同一のグリッドアセンブリを保持したまま、4枚の処理基板に対して順にIBE処理を行った。図9A〜Cにおいて、実線はプラズマ発生室側のグリッドの経時的な反り量(グリッドの法線方向の変位の最大値)を示しており、破線はRFアンテナに印加されたRF電力を示している。RF電力が印加されている期間が、プラズマ発生室内にプラズマが形成される期間である。
【0048】
図9A、Bのグラフでは、複数の基板の処理後にもほぼ一定の反り量となっている。一方、図9Cのグラフでは、図9A、Bのグラフよりも大きい反り量になっており、また反り量が基板ごとに大きく変化していることがわかる。
図9Cに係る実験で用いたグリッドアセンブリは8点で固定されており、各貫通孔内でボルトが自由な方向に変位可能であるため、熱膨張およびその後の収縮の方向が一定でない。その結果、毎回異なる方向に熱膨張および収縮を繰り返すため、処理ごとに異なる反り量になっていると考えられる。このように反り量が処理ごとに異なってしまうと、基板処理の再現性が低下し、処理品質の悪化につながる。
それに対して、図9A、Bに係る実験で用いた本実施形態に係るグリッドアセンブリでは、各位置決めピンが各位置決め孔内で一方向に摺動可能に構成されているため、熱膨張およびその後の収縮により発生する変位が一定の方向に限定される。その結果、処理ごとに安定した反り量となり、処理の再現性が向上しているものと考えられる。
【0049】
本実施形態に係るグリッドアセンブリによれば、リング上に固定された位置決めピンを用いて位置決めを行い、その後にボルトによる固定を行うため、グリッドアセンブリの組み立てが容易になる。また、位置決めピンが3つ設けられ、かつそれぞれの位置決めピンが特定の方向に摺動可能に構成されているため、各位置決めピンの位置が一意に決定され、その結果位置決めの再現性が向上する。さらに、位置決めピンが特定の方向に摺動可能であり、かつ熱膨張の方向に位置決めピンが変位可能なように位置決め孔が配置されているため、熱膨張時の歪みや反りが低減され、また処理の再現性が向上する。
【0050】
(第2の実施形態)
第1の実施形態では、2つのリング121、122でグリッド118、119、120を挟持するように構成しているため、該グリッドにカーボン等の割れやすい素材を用いる場合であっても破損するおそれを低減することができる。位置決めを行うための位置決めピン126は、第1のリング121上に固定されている。しかしながら、該グリッドにモリブデン等の硬い素材を用いる場合には、リングは必ずしも必要でなく、省略されても構わない。本実施形態は、第1の実施形態においてリングが省略された場合のグリッドアセンブリ109であり、それ以外については第1の実施形態と同様である。
【0051】
図10Aは、図2AのB−B’線から見た、本実施形態に係るグリッドアセンブリ109の断面図である。本実施形態に係るグリッドアセンブリ109は、第1の実施形態と異なり、貫通部材としてのボルト123はグリッド118、119、120を直接固定している。また、ネジ124は第1のグリッド118を壁面125に固定している。
【0052】
図10Bは、図2AのC−C’線から見た、本実施形態に係るグリッドアセンブリ109の断面図である。本実施形態に係る第3のグリッド120は、第1の実施形態と異なり、位置決め孔117の代わりに、位置決め孔117に対応する位置に突起部としての位置決めピン126を有する。
【0053】
本実施形態に係るグリッドアセンブリ109を組み立てる際には、まず、第3のグリッド120上の3つの位置決めピン126が、グリッド118、119のそれぞれに設けられた3つの位置決め孔117に挿入されるように、第3のグリッド120上にグリッド118、119を重ねる。このように位置決めを行った後に、グリッド118、119、120のそれぞれに設けられた3つの固定孔116にボルトを挿入し、グリッドアセンブリ109全体の固定を行う。このとき、先に位置決めを行っているため、固定の際に固定孔116の穴が合わないような状態になることを抑制することができる。
【0054】
位置決めピン126は、任意の方法で第3のグリッド120に固定される。例えば位置決めピン126にネジを設け、第3のグリッド120にネジ穴を設けることによりそれらを嵌合させて固定してもよく、また接着剤を用いて固定してもよい。
【0055】
本実施形態では、位置決めピン126を第3のグリッド120上に設けているが、第1のグリッド118上に設けてもよい。その場合には、第3のグリッド120上に設ける場合と逆の順序でグリッドアセンブリ109の組み立てを行えばよい。
【0056】
位置決め孔117および位置決めピン126の形状および配置としては、第1の実施形態について図4図7を用いて説明したいずれを用いることもでき、第1の実施形態と同様の効果をもたらすことができる。
【0057】
(第3の実施形態)
第1の実施形態では、図7A、Bに示すように、位置決めピン126が位置決め孔117の一方向に摺動可能であり、かつ該方向が位置決め孔117の中心と円Rの中心点Oとを結ぶ方向に対して垂直でないように構成している。そのため、位置決めピン126は中心点Oに関して円Rの径方向に変位することができ、熱膨張時の変位により位置決めピン126が位置決め孔117の内壁を押してグリッドを歪ませることを抑制することができる。しかしながら、熱膨張を考慮しないでよい場合には、摺動方向が位置決め孔117の中心と円Rの中心点Oとを結ぶ方向に対して垂直であってもよい。本実施形態は、第1の実施形態とは位置決め孔117の配置が異なるグリッドアセンブリ109であり、それ以外については第1の実施形態と同様である。
【0058】
図11は、本実施形態に係る位置決め孔117の配置を示す図である。図11に示すように、グリッド118、119、120のそれぞれにおいて、3つの位置決め孔117が、点Oを中心とした円Rの円周上に設けられている。本実施形態においては、3つの位置決め孔117は点Oに関して120度ごとに配置されているが、3つの位置決め孔117の間の角度は任意に設定してよい。また、本実施形態においては、3つの位置決め孔117は全て点Oを中心とした円Rの円周上に配置されているが、それぞれが円Rの円周に沿って(すなわち、点Oを中心とした半径の異なる円の円周上に)配置されていてもよい。
【0059】
図11に示すように、位置決め孔117の短手方向(図4A〜CにおけるX軸方向)と、位置決め孔117の中心と円Rの中心点Oとを結ぶ方向とのなす角度(小さい方の角度)は、0度に設定されている。すなわち、位置決めピン126が位置決め孔117内で摺動可能な方向が、位置決め孔117の中心と円Rの中心点Oとを結ぶ方向に対して垂直となっている。なお、該角度は、3つの位置決め孔117のそれぞれにおいて等しい(すなわち、3つの位置決め孔117は円Rの中心点Oに関して点対称である)ように構成される。
【0060】
本実施形態に係るグリッドアセンブリ109は、熱膨張に対する効果を除いては、第1の実施形態と同様の効果をもたらすことができる。すなわち、本実施形態に係るグリッドアセンブリによれば、リング上に固定された位置決めピンを用いて位置決めを行い、その後にボルトによる固定を行うため、グリッドアセンブリの組み立てが容易になる。また、位置決めピンが3つ設けられ、かつそれぞれの位置決めピンが特定の方向に摺動可能に構成されているため、各位置決めピンの位置が一意に決定され、その結果位置決めの再現性が向上する。
【0061】
(第4の実施形態)
第1の実施形態では、ボルト123がグリッド118、119、120およびリング121、122を一体に固定している。そのような構成において、熱膨張によるグリッドの変位が発生した場合に、各グリッドではそれぞれ変位の量が異なるため、グリッド間にはたらく摩擦力によって各グリッドに歪みや反りが起こる場合がある。本実施形態では、貫通部材としてのボルト123に追加のばねを設けることによって、熱膨張時の歪みや反りをさらに低減する。本実施形態は、第1の実施形態とはボルト123の締結構造が異なるグリッドアセンブリ109であり、それ以外については第1の実施形態と同様である。
【0062】
図12は、本実施形態に係るグリッドアセンブリ109の断面図である。本実施形態では、グリッドアセンブリ109は、ボルト123と第2のリング122との間にばね127をさらに備えている。ばね127はボルト123の軸を包囲するように設けられたコイル状のばねであり、ボルト123と第2のリング122との間に圧縮された状態で設けられている。そのため、ばね127は、それ自身が伸張する方向、すなわちグリッド118、119、120の厚さ方向に力を発生させる。このとき、ばね127がグリッド118、119、120に対して厚さ方向に加える力を0.5N〜500Nの間の適切な値に設定することによって、グリッド間にはたらく摩擦力を低減することができ、熱膨張時の歪みや反りの発生を抑制することができる。ばね127がグリッド118、119、120に対して厚さ方向に与える力は、ボルト123を締める量を変化させることにより調整することができる。
【0063】
ばね127としては、コイル状のばねに限らず、グリッド118、119、120に対して厚さ方向に可変の力を与えることが可能な任意の構造を用いることができる。
【0064】
本実施形態に係るグリッドアセンブリ109によれば、組み立ての容易性および再現性を高めると同時に、熱膨張時にグリッド間にはたらく摩擦力を低減して歪みや反りの発生を抑えることができる。
【0065】
本発明は、上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。


図1
図2A
図2B
図3A
図3B
図4A
図4B
図4C
図5A
図5B
図5C
図5D
図6A
図6B
図6C
図7A
図7B
図8
図9A
図9B
図9C
図10A
図10B
図11
図12
図13A
図13B
図14A
図14B