【文献】
Matthias Kirschner,Automatic Prostate Segmetation in MR Images with a Probabilistic Active Shape Model,MICCAI,2012年,平成28年5月19日検索,URL,http://promise12.grand-challenge.org/Results/displayFile?resultId=20120629151056_312_grislies_Results&type=Public&file=grislies.pdf
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
[0024]
ここでは、機械学習アルゴリズムを用いて自動化されたランドマーク検出器を訓練することと、訓練されたランドマーク検出器及び形状改善ツールを用いて画像データ内の注目構造の自動的な輪郭矯正を行うことの両者に関する種々の実施形態について述べる。
【0012】
[0025]
ここに記述される技術を用いて処理される画像は、当然のことながらいくつかの形態をとることができる。種々の典型的な実施形態において、画像はCT画像などの医用画像であり得る。しかし、当然のことながら異なるタイプの画像を採用することができる。例えば、磁気共鳴(MR)画像や超音波画像などの画像タイプも、ここに記述される技術を用いて処理することができる。画像は、複数の画像データポイントを有し、その位置は座標系を通して表すことができる。
【0013】
[0026]
図1は、画像データ内の構造形状を自動的に詳細に表示する典型的な実施形態を示す。
図1に示すように、プロセッサー100は処理論理回路104を実装するように構成されており、それにより、1又はそれ以上の訓練されたランドマーク検出器108及び形状改善ツール110の助けを借りて新しい被写体画像106を処理し、注目構造についての1又はそれ以上の改善された輪郭112を生成することができる。改善された輪郭データ112は、いくつかの形状をとることができる。例えば、輪郭データは、注目構造の境界線上におかれる複数の画像データポイントを有し(例えば60データポイントが輪郭上に均一に分布し)、各々のポイントが画像内の座標によって表示される。また、被写体画像106は、当然のことながら2次元(2D)画像か3次元(3D)画像のいずれでもよい。
【0014】
[0027]
プロセッサー100は、当然のことながらここに記述される自動表示機能を実行する十分な計算能力をもつプロセッサーであればよい。プロセッサー100は、ネットワークを介して任意に配信される複数のプロセッサーを有するものでもよい。処理論理回路104に実行させるプログラミング命令は、プロセッサー100によりアクセスされ実行される非一時的なコンピュータ読取可能な記憶媒体(例えば、メモリ102)に格納することができる。メモリ102は、当然のことながら複数のメモリ装置を有するものでもよく、任意に複数に配信されるメモリ装置及び/又は異なるタイプのメモリ装置であってもよい。
【0015】
[0028]
訓練されたランドマーク検出器108は、画像106のデータポイントを処理し画像106内の特定のランドマークの存在と位置を自動的に検出するように構成されている。典型的な実施形態において、各々の訓練されたランドマーク検出器108は異なるランドマークを検出するように構成されているが、しかしそのような場合に限定する必要はない。ランドマーク検出器108は、いくつかの形態、例えば一組のマシン実行可能な規則をとることができる。更にまた、実施者の必要に応じて、訓練されたランドマーク検出器108を、画像の複数のポイントを並行して処理するように構成することができるが、しかしそのような場合に限定する必要はない。以下に記述するように、ランドマークは、画像データポイントの種々の特徴の分析を通して検出することができる。異なるランドマークは、異なる構造及び他の要因のために用いられることが期待される。検出されたランドマークは、以下に記述するように、構造についての初期形状評価を行うために用いることができる。
【0016】
[0029]
プロセッサー100は、形状改善ツール110及び訓練されたランドマーク検出器108の出力を活用して、画像106内の注目構造の境界を自動的に評価する。採用できる形状改善ツール110の例として、いくつかの形態をとることができる境界検出器があり、一組のマシン実行可能な規則を有する訓練された境界検出器が含まれる。採用できる形状改善ツールのもう一つの例として、形状変形アルゴリズムがある。更にまた、実施者の必要に応じて、形状改善ツール110を、画像の複数のポイントを並行して処理するように構成することができるが、しかしそのような場合に限定する必要はない。形状改善ツール110は、注目構造の境界を評価しその評価された境界を調節する操作を繰り返し行い、改善された輪郭データ112を生成することができる。
【0017】
[0030]
図2は、被写体画像106が改善された輪郭112を生成するためにどのように処理されるかについて詳述する典型的な処理フローを示す。
図2の(垂直破線に対する)左半分は、一般に処理論理回路104によって実行される操作に対応する処理フローを示す。
図2の(垂直破線に対する)右半分は、機械学習アルゴリズムを用いるランドマーク検出器108及び境界検出器110を訓練するために実行される処理フローを示す。典型的な実施形態において、
図2の左半分がオンラインで実行される一方、
図2の右半分はオフラインで実行される。即ち、種々の検出器を訓練する仕事は、新しい被写体画像106が生成されたり処理されたりするより前に実行される。このように、訓練されたランドマーク検出器108及び訓練された境界検出器は、新しい被写体画像106を処理する必要がある時までに既に画像データを処理する準備がされている。その結果、処理論理回路104は、改善された輪郭評価を効率的な方法で生成することができ、新しい被写体画像を撮影した後直ちに改善された輪郭データを用いたい場合に特に有益である。しかし、当然のことながら、必要であれば、実施者は新しい被写体画像の処理と合致させて検出器を訓練する仕事を実行することもあり得る。
【0018】
[0031]
オフライン操作において、例えばアトラス画像200のような訓練データは、機械学習アルゴリズムを用いて処理され、訓練されたランドマーク検出器及び境界検出器を生み出すことができる。アトラス画像200は、訓練処理に対する注目情報について参考データとなる注釈を含むことが望ましい。例えば、ランドマーク検出器を訓練するために用いられるアトラス画像200は、ランドマークがそれらのアトラス画像の何処に位置しているかの識別を含むことができる。同様に、境界検出器を訓練するために用いられるアトラス画像200は、注目構造の境界が何処に位置しているかの識別を含むことができる。場合によっては、アトラス画像は、ランドマーク情報及び境界情報の両方を含み、そのようなアトラス画像がランドマーク検出器及び境界検出器の両方を訓練するのに用いられることもあり得るが、しかしそのような場合に限定する必要はない。アトラス画像に含まれる注釈は、訓練された専門職員の手動技術によって或いは自動化した技術によって提供されることができるが、自動化した結果の正確さの確認の後に提供されることが望ましい。そのようなものとして、典型的な実施形態において、訓練データのコーパスは、ランドマーク及び境界が従前の画像に存在することの信頼できる識別として役に立つことができる。典型的な実施形態において、アトラス画像200は、新しい画像106の被写体である人物以外の人々の画像であり得るが、しかしそのような場合に限定する必要はない。場合によっては、アトラス画像200は、被写体である彼自身/彼女自身の従前の画像であってもよい。
【0019】
[0032]
ステップ202において、アトラス画像は、ランドマーク及び境界を評価する際の参考となる共通フレームを生み出すように整列する。この画像の整列/登録の操作のために、いくつかの技術が用いられる。例えば、厳正な変換技術が、ステップ202において用いられる。そのような厳正な変換は、アトラス画像のボリューム・データのスライス上でペアで実行される。適切で厳正な変換技術の一例として類似変換があるが、例えば相互情報に基づく登録やアフィン変換などの他の技術を採用することもできる。このことについては、論文「Zitova et al., ”Image registration methods: a survey”, Image and Vision Computing, 21, p. 977-1000 (2003)」に記載されている。なお、この論文の全ての開示内容はこの引用により本明細書に含まれる。スケール、回転、x方向移動、及びy方向移動の4つの自由度がある。
【0020】
[0033]
ステップ204において、整列したアトラス画像は、機械学習アルゴリズムを用いてランドマーク検出器108を訓練する処理がなされる。
図2の実施例に示すように、注目ランドマークの各々について異なる訓練操作を実行することができる。この訓練がどのように実行されるかについては、
図3及び
図4に詳細に述べる。
図5は、異なる注目ランドマーク502の位置を表示する前立腺の領域の典型的な画像500を示す。異なる検出器108は、各々のランドマーク502を探し出すように訓練することができる。
【0021】
[0034]
この実施例において、異なるランドマーク502は、前立腺の領域の5つの解剖学的なポイントである。これらのランドマーク・ポイントは、隣接する非前立腺の領域と比較して良好なコントラストをもつ予期された前立腺の解剖学的な構造に十分に近接するように選択される。典型的な実施形態において、各アトラス画像スライスに、前立腺の注釈付きのグラウンドトルース(ground-truth)輪郭がある。そのようなグラウンドトルース輪郭は、(輪郭上に)60の均一に分散されたポイントによって表示され、各々のポイントはアトラス画像スライス内のx−y座標によって表示される。
【0022】
[0035]
最上部中央のランドマーク502
1は、専門職員又は他の適切な熟練者によって輪郭ポイントの1つから手動で選択することができる。典型的な実施形態において、最上部中央のランドマーク502
1は、グラウンドトルース輪郭上であって、左右の恥骨に対して略等距離となる画像の中央部に位置する。即ち、訓練された人は、(
図5に示す透視画像を基準にして)右側の恥骨の最左翼部と左側の恥骨の最右翼部とから略等距離にあるグラウンドトルース輪郭に沿った位置を選択し、最上部中央のランドマーク502
1としての機能を果たさせることができる。残りの4つのランドマーク・ポイントは、大まかに距離に対応する選択基準に従って自動的に選択することができる。
例えば、残りの4つのランドマーク・ポイントは、ランドマーク・ポイントの間にギャップが形成されるように輪郭ポイントから選択してもよい。中央のランドマーク・ポイント502
1から時計回りに10輪郭ポイントだけ移動し(そこをランドマーク・ポイント502
2とし)、更に時計回りに10輪郭ポイントだけ移動し(そこをランドマーク・ポイント502
3とし)、更に時計回りに20輪郭ポイントだけ移動し(そこをランドマーク・ポイント502
4とし)、更に時計回りに10輪郭ポイントだけ移動する(そこをランドマーク・ポイント502
5とする)と、ランドマーク・ポイント502
5とランドマーク・ポイント502
1との間に10輪郭ポイントのギャップが残るようにすることができる。当然のことながら、実施者の要求に応じて、ランドマーク・ポイント間には異なる間隔基準が採用され得る。
【0023】
[0036]
図3は、処理論理回路304を実行するために互いに協働するように構成されるプロセッサー300及びメモリ302を示す。ここでの論理処理は、
図2のステップ202、204において実行される。プロセッサー300及びメモリ302は、プロセッサー100及びメモリ102と任意に同じであり得るが、しかしそのような場合に限定する必要はない。処理論理回路304は、プロセッサー300によるアクセス及び実行のために非一時的なコンピュータ読取り可能な記憶媒体(例えば、記憶302)内に常駐する。
図4Aは、処理論理回路304がステップ202、204を実行する典型的な処理フローを示す。
【0024】
[0037]
図4Aに示す実施例において、異なるアトラス200(例えば200
1、200
2・・・)は、3D画像ボリュームを有している。ステップ400において、プロセッサーは、3Dボリューム・データから2Dスライスを抽出する。ステップ402において、共通のアトラスから抜き出された2Dスライスは、望ましくはペアワイズ法によって整列する。前述のように、この整列処理は、厳正な変換技術又は他の適切な画像登録技術を用いることができる。整列したスライスは、注目構造を含む注目領域を示す。例えば、注目構造が前立腺である実施形態において、画像スライスが、前立腺の全領域、恥骨結合の全部又は一部、及び直腸の全部又は一部を覆うことが期待される。
【0025】
[0038]
ステップ404において、プロセッサーは、整列した2Dスライスから複数の訓練サンプルを収集する。陽性の訓練サンプル及び陰性の訓練サンプルの両方を収集することができる。例えば、あるランドマーク・ポイントそれ自体及びそのランドマーク・ポイントに空間的に近いとみなされる複数のランドマーク・ポイントを2Dスライスから収集し、その2Dスライスの陽性サンプルのセットと定義することができる。一例として、あるランドマーク・ポイントから1mmの距離にある領域は、陽性サンプルが選択される領域であるとされる。陽性サンプルは、この領域内でランダムに選択される。陰性サンプルに関しては、プロセッサーが、注目ランドマークに近くないとみなされる2Dスライスから複数のポイントを選択する。ランドマーク・ポイントに対する大きな距離しきい値は、陰性領域を定義するのに用いることができる。プロセッサーは、この陰性領域から陰性サンプルをランダムに選択するように構成されてもよい。更にプロセッサーは、このような選択を行うことにより、陽性サンプルと陰性サンプルとの比率が約1対1.5となるようにしてもよい。
【0026】
[0039]
ステップ406において、プロセッサーは、画像データポイントのウインドウ上に強度変化を表示する収集された訓練サンプルについての特徴を算出する。例えば、その特徴はHaar-like特徴であってもよい。Haar-like特徴は、各々のサンプル位置に矩形領域を表示するのに用いることができる。
図4Bに、画像450の矩形領域452(又はウインドウ)が選択される実施例を示す。Haar-like特徴は、暗い「+」領域454内の画素強度の総和と白い「−」領域456内の画素強度の総和との差として算出される。
図4Cに示すように、「+」領域及び「−」領域に対応してウインドウ上に生じるいくつかのパターンを採用することができる。典型的な実施形態において、
図4Cの左下に示されるウインドウ上のパターンを採用することができる。そのような実施形態では特に、ステップ406において、検出ウインドウ内の被写体サンプル・ポイントを中心とする4つの隣接した矩形領域を考慮することができる。各々の矩形領域内の画素強度はそれぞれ合算され、これら合算された総計の差が計算される。各々の総計の差は、そのサンプルの特徴ベクトルの値として記録される。抽出された特徴ベクトルのサイズは、検出ウインドウのサイズによって変化する。典型的な実施形態においては、ウィンドウのサイズは24mm×24mmであるが、当然のことながら異なるウィンドウのサイズが採用されることもあり得る。Haar-like特徴を算出する方法については、論文「Viola, et al., “Rapid object detecting using a boosted cascade of simple f features” Proc. of IEEE Conf. on Computer Vision and Pattern Recognition p. 511- 518(2001)」に記載されいる。なお、この論文の全ての開示内容はこの引用により本明細書に含まれる。
【0027】
[0040]
ステップ408において、プロセッサーは、収集されたサンプル及びそれらの算出された特徴を機械学習アルゴリズムに適用してランドマーク検出器を訓練し、注目ランドマークとして適正なポイントと適正でないポイントとを識別する。Haar-like特徴は弱い学習者又は分類器であるため、比較的多数のHaar-like特徴が、対象を正確に記述するために好んで用いられる。このため、Haar-like特徴は、一連の単純な分類器によって組織され学習されて、強い学習者となっていく。典型的な実施形態において、この目的のために用いられる機械学習アルゴリズムは、LogitBoost機械学習アルゴリズムである。
【0028】
[0041]
LogitBoostアルゴリズムは、弱い分類器から学習するのに用いることがでる。特に、弱い分類器は、連続して訓練される。訓練の重み分布は、前の分類器の正確な分類に従って繰り返される中で更新される。誤分類されたサンプルの重みは、次の繰り返しにより増大するが、正しく分類されたサンプルの重みは、減少する。次の分類器は、そのように再加重された分布で訓練される。各々の分類器の重みの変化量は、分類器の分類エラーに比例する。LogitBoostアルゴリズムを用いることにより、適応可能なニュートン・ステップ(Newton steps)は、適応可能なシンメトリック・ロジスティック・モデル(symmetric logistic model)に適合することができる。このアプローチは、不完全に分類されたサンプルに余り重点を置かないという点で有益であり、その後、これらのサンプルは、計算から除外されることになる。ステップ408は、このようにして訓練されたランドマーク検出器108を生み出す操作を行い、注目ランドマークiを適応性があり安定性があるものにする。訓練されたランドマーク検出器108は、注目ランドマークiに対して一群の訓練された単純な分類器となることができ、各々の分類器は、その重要性を定義する訓練されたしきい値及び訓練された重み値を有している。以下に記述するように、これらのパラメータは、検出段階において活用することができる。
【0029】
[0042]
LogitBoost機械学習アルゴリズムは、論文「Friedman et al., “Additive logistic regression: a statistical view of boosting” Annals of Statistics, 28(2), p. 337-407 (2000)」に記載されている。なお、この論文の全ての開示内容はこの引用により本明細書に含まれる。しかし、当然のことながら、ランドマーク検出器108を訓練するために他の機械学習アルゴリズムを採用することも可能であり、例えばAda Boost、Float Boost、Any Boostの機械学習アルゴリズムが採用可能である。
【0030】
[0043]
図4Aの処理フローは、当然のことながら各々の注目ランドマークに対して別々に実行することができる。異なるプロセッサー及びメモリは、任意に異なるランドマーク検出器108を訓練するように構成することができる。
【0031】
[0044]
図2に戻ると、ステップ206において、整列したアトラス画像が、機械学習アルゴリズムを用いて境界検出器を訓練するように処理される。この操作は、プロセッサー及びメモリにより、
図3に記述したものと同様の方法によって実行することができる。典型的な実施形態において、ステップ206における機械学習アルゴリズムは、ランダムフォレスト(RF)機械学習アルゴリズムであってもよい(論文「Breiman, Leo, “Random Forests” Machine Learning, 45 (1): 5-32, 2001」を参照のこと。なお、この論文の全ての開示内容はこの引用により本明細書に含まれる)。
図8は、注目構造の境界情報を表示するアトラス画像800の実施例を示す(なお、この境界は、各画像800内の白い領域と黒い領域との間の移行によって定義される)。
【0032】
[0045]
この例におけるRFアルゴリズムは、決定木(decision tree)の集合である訓練された境界検出器を生み出すために操作される。各々の決定木は、木のような構造に構成される一組の決定ルールである。決定木の各ノードは決定ルールを適用するが、それはしばしばテスト機能又は分割機能と呼ばれている。各テスト機能は、特徴又は特徴値を入力し、(イエス/ノー)のバイナリ出力を生じる。イエス/ノーの応答に基づいて、入力データは、カレント・ノード(current node)の左側か右側のいずれかのチャイルド・ノード(child-node)に送られる。チャイルド・ノードは、新たな特徴値に基づくもう一つのテストを行う。これは、いわゆる「リーフ・ノード(leaf-node」」に達するまで繰り返される。「リーフ・ノード」は、「チルドレン(children)」ノードのない木ノード(tree node)である。各々のリーフ・ノードにはそれと関連した分類ラベルがあるが、しかし、時々、特定の分類(例えば、境界ステータス)に属している可能性を示す確率値でもあり得る。ルールは、例えば次のようなバイナリ出力を伴うテスト機能として表される。
【0034】
この式において、v
iは、i番目の特徴値を意味し、a
i及びb
iは、2つのしきい値である。このように、境界検出器は、RFアルゴリズムを用いて訓練され、決定木のアンサンブルという形態をとることができ、各々の木は、木又はフローチャートのような構造に組織された一組の決定ルールであり、各々の内部(ノン・リーフ)ノードは、特徴についてのテスト(即ち、決定ルール)を意味し、各々のブランチ(branch)は、テストの結果を表し、各々のリーフ(又は端末)ノードは、分類ラベル(例えば、境界ステータス)を保持する。
【0035】
[0046]
ステップ206において、複数の木は、必要に応じ並行して形作られることができ、その後、各々の木は、他と独立して訓練される。訓練サンプルは、RFアルゴリズムを用いて木を「傾斜させる」、即ち各々の内部の木ノードにどの決定ルールを用いるかを決定する。RFアルゴリズムにとって、各々の木は、訓練データのランダムなサブセットを用いて形作られ、異なる木が高度に無相関になるようにする。訓練サンプルが収集され、それらの特徴が木のために算出されると、その木は、一度に1つのノードを加えることによって再帰的に形作られる。各々のノードにおいて、RFアルゴリズムは、カレント・ノードに到達する訓練データを最も効率的に分割する最良の決定ルールを見出すことを目標とする。バイナリ分類の場合、「最良の分割」とは、ノードの各々のブランチが同じクラスからできるだけ多くのサンプルを含むことを意味する。このように、RFアルゴリズムによる訓練又は学習の過程は、カレント・ノードにおいてどの特徴を用いるか、また、訓練データを最も良好に分割するのに如何なるしきい値を適用するかを決定することを目標とする。RFアルゴリズムにより、全ての特徴のごく僅かのランダムなサブセットが、各々のノードで考慮され、その「最良の」特徴が、全ての特徴を用いる代わりにこのランダムなサブセットの中から選択される。このランダム化は、複数の木をできるだけ独立したものすることを再び目標とする。新たに追加された各々のノードは、入力される(訓練)データを2つのブランチ(2つのサブセット)に分割し、各々のサブセットは、後続のチャイルド・ノードで再びテストされる。このようにして、各々の(非リーフ)ノードは、2つのチャイルド・ノードを有することができる。木は、全てが同じクラスに属する各々のチャイルド・ノードに訓練データが到着するまで成長を継続する。チャイルド・ノードは、その木のリーフ・ノードになり、そのチャイルド・ノードに到達した訓練データのクラスのラベルは、そのリーフ・ノードのラベルになる。
【0036】
[0047]
一般公開されているいくつかのRFアルゴリズム実装があり、例えばWeka機械学習ソフトウェア・パッケージはオンラインで利用でき、そこにはRFアルゴリズムのソフトウェア・パッケージが含まれる。これらのソフトウェア・パッケージも、訓練サンプルを機械学習アルゴリズムに適用することができる既知のインターフェースを含んでいる。更に、そのようなソフトウェア・パッケージによって生み出される訓練された境界検出器は、例えばマシン実行ルールのような決定木を表すテキスト・ファイルのような形をとることができる。
【0037】
[0048]
RFアルゴリズムは、このように必要に応じて複数のクラスを必然的に取り扱い、即ち1台の検出器にいくつかの構造(及び背景)を分類させることができる。
RFベースの検出器の出力は、入力データがどのクラスに属するかという確率評価であってもよく、そのことは、他の学習アルゴリズムが生じるかという困難な決定よりも好ましい。このことに加えて、RFアルゴリズムは、検出器の訓練と検出器アプリケーションの両方において速く、入力データの非常に大きな容量に対処することができる。
【0038】
[0049]
しかし、当然のことながら、他の機械学習アルゴリズムも、実施者の必要に応じて、ステップ206において採用することがあり得る。ステップ206において採用できる他の学習アルゴリズムの例として、LogitBoostアルゴリズムだけでなく論文「Witten, I.H., Frank, E., Hall, M. A.: Data Mining: Practical machine learning tools and techniques」に記載されているアルゴリズムがある。論文「Third Edition, Morgan Kaufmann Publishers (2011)」の全ての開示内容は、この引用により本明細書に含まれ、例えば、Support Vector Machine (SVM)やAdaBoost機械学習アルゴリズム等も含まれる。
【0039】
[0050]
一旦ランドマーク検出器108及び境界検出器が訓練されると、システムは、新しい被写体画像106を処理する準備が整う。
図2のオンライン部分に戻ると、ステップ208において、新しい被写体画像が生成される。ステップ208においては、適切な画像生成技術及び装置を用いることができる。更にまた、生成された画像106は、当然のことながら2D画像又は3D画像であり得る。3D画像ボリュームが生成されるならば、ステップ208は、3D画像ボリュームの2Dスライスを生成するだけでなく、(前に述べたように、画像登録技術を用いる) 2Dスライスの整列処理を含むことができる。
【0040】
[0051]
ステップ210において、プロセッサーは、訓練されたランドマーク検出器108を用いて新しい被写体画像106を処理し、画像データ内の注目ランドマークの位置を検出する。その際に、ステップ210は、被写体画像データポイントのウインドウ上の強度変化を示す特徴を算出し、これら算出した特徴を訓練されたランドマーク検出器に適用することができる。
図6A、
図6Cは、ステップ210における典型的な処理フローを示す。
図6Aの処理フローは、当然のことながらシステムに採用された各々のランドマーク検出器108において繰り返されることができる。このように、5台のランドマーク検出器が5つの異なるランドマークを検出するのに用いられるならば、
図6A(又は、少なくとも
図6Aのステップ602−608)の処理フローは、各々の注目ランドマークごとに繰り返すことができる。同様に、
図6Cの処理フローも各々の注目ランドマークごとに繰り返すことができる。
【0041】
[0052]
ステップ600において、プロセッサーは、新しい被写体画像106の2Dスライスを選択して処理する。ステップ602において、プロセッサーは、選択された画像スライスのポイントを注目ランドマークについての訓練されたランドマーク検出器108に適用する。このステップは、選択された画像スライスの全てのポイントについて、又は、目標とされた画像ポイントのサブセットについて、操作することができる。例えば、注目ランドマークが画像スライスの限定可能な部分(例えば、画像の左半分)に存在することが知られているならば、ステップ602は、処理のために望ましい画像部分内のポイントだけを選択するように設定することができる。ステップ602において、処理された画像ポイントは、注目ランドマークの候補としての適合性に関してスコアが記録される。ポイントのスコアを記録するために、ランドマーク検出器108の訓練について上述した特徴は、画像スライス・ポイントについて算出される(例えば、Haar-like特徴)。画像スライス・ポイント及び算出された特徴は、注目ランドマークについてのランドマーク検出器108に適用され、注目ランドマークの候補としての適合性を示す各ポイントのスコアを算出する。
【0042】
[0053]
ステップ604において、算出されたポイントのスコアは、定義済みのしきい値と比較される。このしきい値は、実施者の必要に基づいて設定変更が可能である。しきい値を超えるスコアを有するこれらのポイントは、ランドマーク・ポイントとして分類することができる(ステップ606)。
【0043】
[0054]
更に詳しく言えば、ステップ602-604において、定義済みの目標サイズのウインドウが画像スライスの上を移動し、画像のサブセクションごとに、Haar-like特徴が算出される。
図6Bは、このスライドするウインドウの概念を示す。Haar-like特徴のウインドウのサイズに対応してスライドするウインドウは、画像650の全ての望ましい位置の上をスライドしていく。
図6Bは、652、654,656に対応して3つの異なる位置のスライドするウインドウの例を示す。Haar-like特徴は、訓練段階における場合と同様の方法で算出することができる。画像スライスからそれぞれ算出されたHaar-like特徴について、(被写体ランドマークiについての)訓練されたランドマーク検出器108iの各々の分類器は、その訓練されたしきい値に従って二者択一の決定を行う。このようにして、訓練されたランドマーク検出器108が10個一組の分類器を含んでいるならば、各々の分類器はその関連するしきい値に基づく二者択一の決定に達する。特定のスライドするウインドウの位置についてのHaar-like特徴に関するランドマーク検出器の最終決定は、(各々の分類器の関連した重みを用いた)個々の分類器からの決定の加重和である。この加重和が定義済みの設定変更可能なしきい値をパスするならば、そのスライドするウインドウの位置の中心は、検出されたランドマーク・ポイントとしてマークされる。
【0044】
[0055]
ある場合には、スライドするウインドウの複数の位置について算出されたHaar-like特徴が、複数のポイントを所定のランドマークについてのランドマーク・ポイントとして検出されることもある。また、他の場合には、検出されたランドマーク・ポイントが正常な/期待された範囲から逸脱することもある(異常ポイント)。そのようなシナリオにおけるランドマーク位置の解消を助けるために、被写体ランドマークについて各々検出されたランドマーク・ポイントは、ランドマークの分布モデルに基づいて全ての他のランドマークの候補位置を投票により決定する。
【0045】
[0056]
一例として、この分散モデルは、ランドマーク・ポイントが訓練データのスライス間における相互の相対的な距離に従ってどのように分散されるかというガウス分布モデルであってもよい。そのようなモデルを用いると、1つのランドマーク・ポイントが唯一の候補位置を投票により決定する代わりに、他の複数のランドマーク・ポイントの各々が、構築されたガウス分布に従う確率分布図を投票により決定する。その場合、確率分布図における投票された値の合計は1になるようにする。
【0046】
[0057]
その結果、その投票ステージの後(そして、
図6Aの処理フローが繰り返され、画像スライスに関する全ての被写体ランドマークについてのランドマーク・ポイントを検出した後)、プロセッサーは、
図6Cの処理フローに従ってランドマーク位置を最終的に決定することができる。ステップ610において、プロセッサーは、新しい被写体画像スライスを選択する。前述のように、このステージにおいて、
図6Aの処理フローが繰り返され、ランドマーク・ポイントを検出し、選択されたスライスにおける全てのランドマークに関する候補ランドマーク位置に対する票を集める。ステップ612において、プロセッサーは、選択されたスライスに関する被写体ランドマークについての検出されたランドマーク・ポイントを選択する(ステップ606を参照)。ステップ614において、プロセッサーは、他のランドマークの検出されたランドマーク・ポイントによって投じられた被写体ランドマークの候補位置についての投票を再調査する(ステップ608を参照)。この一環として、スライスに関する被写体ランドマークについての自動化された投票処理による確率分布図は、統合された確率分布図の合計が1になるように統合することができる。プロセッサーは、定義済みで設定変更可能なしきい値を越える統合された確率分布図から候補位置を選択する。次に、ステップ616において、プロセッサーは、ステップ612から検出されたランドマーク・ポイントの位置及びステップ614によってセットされたしきい値をパスした候補位置を平均化することにより、被写体ランドマークの位置を決定することができる(もしあれば)。このアプローチは、複数のランドマーク検出器を効果的にグループ化し、同時に異常検出の影響を大幅に低減することができる。検出されたランドマーク・ポイントを投票されたランドマーク・ポイントと結合するもう一つの例として、統合された確率分布図は、ステップ612から検出されたランドマーク・ポイントを含むこともできる。検出されたランドマーク・ポイントと投票されたランドマーク位置との間の相対的な重み付けは、指定することができ、個々の投票されたランドマーク位置に対してよりも検出されたランドマーク位置に対してより強い重みを置くことが望ましい(例えば、検出されたランドマーク・ポイントが「1」の重みであるのに対し、投票されたランドマーク位置は集計された重みの合計が「1」になるように重み付けをする)。更にまた、最も高いスコアの付いた位置を、ランドマーク位置として選択することができる。即ち、特定のしきい値を超えるスコアの付いた全ての位置の平均の位置を、ランドマーク位置として選択することができる。
【0047】
[0058]
図6A、
図6Cの処理フローは、必要に応じて次の画像スライスを処理するためにステップ600に戻ることができる。新しい被写体画像106についての全ての画像スライスを処理する際に、各々のスライスは、注目ランドマークの位置を決定することができる。
図7は、一例として5台の訓練されたランドマーク検出器108を異なる画像スライス700に適用した結果を示しており、各々の画像スライス700は、注目ランドマークの検出された位置702を表示する。
【0048】
[0059]
ステップ210から検出されたランドマークの位置は、形状モデル・アルゴリズムに入力される形状の初期設定として用いることができる。次にステップ212では、検出されたランドマーク・ポイントから形状評価の初期設定をする操作を行い、更に繰り返しその形状評価を改善する。
図9は、ステップ212の典型的な処理フローを示す。
【0049】
[0060]
形状の初期設定及び改善には、例えば形状モデル・アルゴリズムを採用することができるが、これについては例えば論文「S. Zhang et al., “Shape Prior Modeling Using Spare Representation and Online Dictionary Learning”, Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2012, 15 (Pt 3): 435-42」に記載されている。なお、この論文の全ての開示内容はこの引用により本明細書に含まれる。ステップ900において、形状評価の初期設定は、検出されたランドマーク・ポイント及び形状辞書904を用いて行われる。初期形状は、下記の式(2)におけるSから推測することができる。
【0050】
[0061]
このように、まばらな形状モデルは、この形状を推測する形状優先方法として採用することができる。それは、形状辞書904内のまばらな形状のセットを選択し、それらを一体に構成して入力形状を推測し/改善する。このモデルは、入力形状例の2つのまばら観察を利用する:(1)入力形状は、形状辞書内の形状のまばらな一次結合によってほぼ表すことができる;(2)入力形状の各部は、大きな誤差であってもまばらな誤差であれば含んでもよい。複雑な形状変化のモデル化、非ガウス分布の誤差の取り扱い、及び入力形状の局所的な詳細情報の保存という形状優先モデルの3つの問題を軽減することができる。
【0051】
[0062]
次に、ステップ902において、改善を繰り返すごとに、アルゴリズムは、以下の最適化機能を最小化する。
【0053】
この式において、v
Sは、入力形状のポイントのサブセットであり、Dは、全ての訓練形状を表す形状辞書904であり、T(v
S,β)は、パラメータβのグローバルな変換演算子であって、一次結合の重み係数を表示するDxと同じスペースに入力形状を整列させるものであり、eは、大きな残余誤差をモードするベクトルである。Sは、あるポイントがサブセットv
Sにあるかどうかを表示するバイナリ対角行列である。Sが非常にまばらで僅かのポイントを含むだけである場合、上記の式は、ランドマークに基づく形状の初期設定の公式となり、改善プロセスの最初のステップ900となる。その後、エッジ・ポイントが訓練された境界線検出器906によって改善されると、より多くのポイントが上記の式に入力されるようになる。その場合、Sは更に高密度となるが、最適化プロセスは本質的に同一である。次に、解決された形状は、別のラウンドのエッジ改善のために境界検出器906に送り返される。繰り返しのたびに、訓練された境界検出器906は、形状ポイントの近くの複数のポイント(例えば、形状ポイントのノーマル方向に沿った6ポイント)を処理することができるようになる。各々のポイントについて、訓練された境界検出器906は、そのポイントが構造と非構造の間の「境界上」にあるかどうかに関する確率を生成することができる。次に、プロセッサーは、最も高い確率でポイントを選択し、更新されたエッジ・ポイントとすることができる。
図10は、1つのスライスのグラウンド・トルースな形状1002と比較して改善された形状1000の例を表している。繰り返しのプロセスは、(1)繰り返しが一定の回数(例えば10回)に達した場合、又は(2)最小の残余誤差が一定の値に達した場合に、一旦停止する。
【0054】
[0063]
繰り返し改善を行った結果、ステップ212は改善された輪郭評価112を生み出す。ステップ212では、スライス単位で作動して、新しい被写体画像106のスライスごとに改善された輪郭112を生成することもできる。注目構造の3Dボリュームは、改善された2D輪郭112から生成され、治療計画ソフトウェアに配信され、治療計画を計算し/更新することができる。
図11は、注目構造が前立腺である実施形態の場合の3Dボリュームの例を示す。しかし、改善された輪郭データは、当然のことながら、治療計画に用途を限定する必要はなく、介入ガイド治療の用途にも同様に用いてもよい。
【0055】
[0064]
実施者にとって必要であれば、辞書学習技術は、全ての訓練形状を用いる代わりに簡潔な形状辞書904を訓練することを採用し、算出効率を改善することができる。まばらな一次結合戦略の1つの前提は、入力形状が訓練形状によって定義される凸包内にあること、即ち、訓練形状が十分に表現されていなければならないということである。
しかし、この前提は、この全てのセグメンテーション問題、例えば前立腺のセグメンテーション問題にあてはまるものではないかもしれない。まばらな形状モデルの表現容量を適応的に増加させることが望ましく、そうすれば新しいタイプの形状を取り扱うことができる。一つの解決策は、新しくセグメント化された形状を形状辞書904に含むこと、即ち全ての利用可能な形状で辞書904を再訓練することである。しかし、このアプローチは、データが増大すると算出効率を著しく減少させることになるであろう。もう一つの解決は、
図12に示すように、オンライン学習方法を適用して、適応的かつ効率的に新しい形状を形状辞書904に組み込むことである。スクラッチから辞書を再構築する代わりに、新しい訓練形状が組み込まれると、既存の辞書904は、ブロック座標降下アプローチを用いて更新される。ダイナミックに更新される辞書を用いると、まばらな形状モデルは、多数の訓練形状から実行時効率を犠牲にすることのなくモデル形状に優雅にスケールアップすることができる。論文「Mairal, et al., “Online dictionary learning for sparse coding” ,Proc. of the 26
th Annual International Conference on Machine Learning, p. 689-696 (2009)」を参照のこと。なお、この論文の全ての開示内容はこの引用により本明細書に含まれる。この方法は、K-SVDアルゴリズムを用いて初期形状辞書を構築することから出発する。新しい形状が組み込まれると、それは収束するまで繰り返し2つのステージを使用する。2つのステージとは、まばらなコーディング1200と辞書更新1202である。まばらなコーディング1200は、信号ごとにまばらな係数を発見することを目的とし、辞書更新1202は、全ての発見された係数に基づいて辞書を更新することを目的とする。
【0056】
[0065]
確率近似に基づき、辞書904は、ブロック座標降下を用いて効率的に更新される。それは、パラメータ・フリーの方法であり、いかなる学習率チューニングも必要としない。辞書更新ステップ1202において、訓練形状を必要とする代わりに、僅かの新しく組み込まれたデータを活用することに注意することが重要である。辞書更新は、それによって非常により速くなる。このようにして、形状辞書は、選択された新しいデータを用いて効率的に更新されたオンラインとなることができる。このオンラインで更新された辞書を用いると、形状構成の実行時効率がより多くの訓練形状で犠牲にされることはない。これに加えて、それは優雅にスケールアップされて、理論的には無限の数の訓練形状を含むことができる。
【0057】
[0066]
更にまた、上述したように、境界検出器及び形状辞書以外の形状改善ツール110は、異なる実施形態において採用されることもあり得る。例えば、
図13に示すように、形状変形にも用いることができる。
図13に示す実施形態において、形状改善の繰り返し1300は、変形し易い形状モデル1302を採用する。前に述べたように、ステップ900からの形状データは、大雑把に構造形状(例えば、前立腺の形状)の位置を決定し、初期設定として用いられる。それから、形状改善1300は、強力な変形し易いモデル1302を用いて前立腺の正確なセグメント化を行う。このモデルは、画像から派生した勾配と領域の両方のタームによって推進される。勾配データのタームは、勾配マップ、エッジ距離マップ、又はその両方の組合せを含むことができる。勾配情報に依存するだけのモデルは、局所的な最小値にはまり込んで抜け出せなくなることもあり得る。領域情報は、不明瞭な境界又は複雑な構造に起因するこれらの問題を軽減することができる。領域タームは、モデル内部の出現統計についての制約をコード化する。強度統計を用いたモジュールを考慮すると、対象領域は、最新のモデル内部の強度分布に従って予測される。前景の対象と背景の確率の両方を有すると、バイナリの地図が得られ、Bayesian Decisionルールを適用することにより予測された対象領域を表示することができる。次に、関連構成要素の分析がバイナリの地図に適用され、最新のモデルに重なる関連構成要素が検索される。この関連領域が、最新の注目領域(ROI)と見なされる。勾配データのタームと領域データのタームは、予測されたROI境界の方へモデルを変形させる双方向のバルーン力を提供する。これは、柔軟なモデルの初期設定が対象に重なって行われるか或いは対象の内部で行われるかを許容する。これらの外部エネルギーのタームを画像力として用いると、この強力な変形し易いモデルは、対象の境界を正確に発見するように機能する。
【0058】
[0067]
本発明は好ましい実施形態に関連して上述されたが、本発明の範囲内でこれら実施形態に様々な改良を行ってもよい。本発明へのそのよう改良は、ここに記載した技術を参照することにより認識されるであろう。したがって、本発明の全範囲は、ここに記載するクレームとその法律的に等価な内容によってのみ画定される。
訓練されたランドマーク検出器と形状改善ツールを用いて画像データ上に構造の自動表示を実行する技術が開示されている。ランドマーク検出器を訓練し、画像データポイントの複数のウインドウ上に強度変化を表示する画像特徴に基づき画像データ内のランドマークを検出することができる。ランドマーク検出器を訓練するために、機械学習アルゴリズムを用いることができる。訓練されたランドマーク検出器により検出された画像データ内のランドマークを用いて、形状改善を繰り返して初期設定を行い、それにより、例えば前立腺の注目構造についての改善された形状評価を算出することができる。