(58)【調査した分野】(Int.Cl.,DB名)
前記連続性判定手段は、前記非対象領域の周囲の領域における前記情報を近似する近似面を作成し、該近似面と前記画像とにおいて対応する量を比較することにより前記連続性を判定することを特徴とする請求項4に記載の画像処理装置。
前記連続性判定手段は、前記非対象領域及び該非対象領域の周囲の領域における前記情報を基に前記注目画素領域を平滑化した平滑化画像に基づいて前記連続性を判定することを特徴とする請求項4に記載の画像処理装置。
前記分類別周辺領域決定手段は、前記非対象領域のカテゴリに応じて前記周辺領域の決定方法を切り替える切替手段を含むことを特徴とする請求項3に記載の画像処理装置。
前記周辺領域決定手段は、前記非対象領域及び該非対象領域の周囲の領域における前記情報を補正する補正手段をさらに有することを特徴とする請求項3に記載の画像処理装置。
前記基準面作成手段は、前記周辺領域内の前記情報に対し、前記非対象領域からの距離に応じた重み付け係数を用いた重み付け平均を施すことにより前記基準面を作成することを特徴とする請求項1に記載の画像処理装置。
【発明を実施するための形態】
【0012】
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、これらの実施の形態によって本発明が限定されるものではない。また、各図面の記載において、同一部分には同一の符号を付して示している。
【0013】
以下においては、一例として、内視鏡等の医用観察装置によって被検体の管腔内を撮像した管腔内画像(以下、単に画像ともいう)に対する画像処理を説明する。このような管腔内画像は、例えば、各画素位置においてR(赤)、G(緑)、B(青)の各色成分に対する画素レベル(画素値)を持つカラー画像である。また、一般に、管腔内画像には消化管内壁の粘膜が映り、時として食物残渣(以下、単に残渣ともいう)や泡などが映る。管腔内画像における検査対象領域は基本的に粘膜領域であり、残渣及び泡の他、照明光が届かなかった暗部や構造物の境界線(溝)は検査対象領域にはならない。
なお、本発明は、管腔内画像に限定されることなく、他の一般的な画像内から特定の領域を検出する画像処理装置に広く適用することが可能である。
【0014】
(実施の形態1)
図1は、本発明の実施の形態1に係る画像処理装置の構成を示すブロック図である。
図1に示すように、画像処理装置1は、当該画像処理装置1全体の動作を制御する制御部10と、医用観察装置によって撮像された管腔内画像の画像データを取得する画像取得部11と、外部から入力された入力信号を受け付ける入力部12と、管腔内画像や各種情報を含む画面を表示する表示部13と、記録部14と、管腔内画像から異常部を検出する演算処理を行う演算部100とを備える。
【0015】
制御部10は、CPU等のハードウェアによって実現され、記録部14に格納された各種プログラムを読み込むことにより、画像取得部11から入力される画像データや入力部12から入力される操作信号等に従って、画像処理装置1を構成する各部への指示やデータの転送等を行い、画像処理装置1全体の動作を統括的に制御する。
【0016】
画像取得部11は、医用観察装置を含むシステムの態様に応じて適宜構成される。例えば、医用観察装置がカプセル型内視鏡であり、医用観察装置との間における管腔内画像の画像データの受け渡しに可搬型の記録媒体が使用される場合、画像取得部11は、この記録媒体を着脱自在に装着し、記録媒体に格納された画像データを読み出すリーダ装置で構成される。また、医用観察装置によって取得された管腔内画像の画像データを保存しておくサーバを設置する場合、画像取得部11は、サーバと接続される通信装置等で構成され、サーバとデータ通信を行って画像データを取得する。或いは、画像取得部11を、内視鏡等の医用観察装置から、ケーブルを介して画像信号を入力するインターフェース装置等で構成しても良い。
【0017】
入力部12は、例えばキーボードやマウス、タッチパネル、各種スイッチ等によって実現され、外部から受け付けた入力信号を制御部10に出力する。
表示部13は、LCDやELディスプレイ等の表示装置によって実現される。
【0018】
記録部14は、更新記録可能なフラッシュメモリ等のROMやRAMといった各種ICメモリ、内蔵若しくは外付けハードディスク、又は、CD−ROM等の情報記録媒体及びその読取装置等によって実現される。記録部14は、画像取得部11によって取得された管腔内画像の画像データの他、画像処理装置1を動作させると共に、種々の機能を画像処理装置1に実行させるためのプログラムや、このプログラムの実行中に使用されるデータ等を格納する。例えば、記録部14は、管腔内画像から画素値の外れ値を検出して異常部として出力する画像処理プログラム14aを格納する。
【0019】
演算部100は、CPU等のハードウェアによって実現され、画像処理プログラム14aを読み込むことにより、管腔内画像の画像データを処理し、管腔内画像から、画素値が周囲の画素から外れる外れ値を検出するための種々の演算処理を行う。演算部100は、画像内から非対象領域を検出する非対象領域検出部110と、画像内の注目画素位置を含む所定の範囲に注目画素領域を設定する注目画素領域設定部120と、注目画素位置に関する基準面の作成に用いる情報の取得範囲である周辺領域を非対象領域に基づいて決定する周辺領域決定部130と、周辺領域内の情報に基づいて基準面を作成する基準面作成部140と、各画素位置における基準面と元の画像との間で対応する量の差分に基づいて、周囲の値から外れる画素値を有する外れ画素を検出する外れ画素検出手段としての外れ値検出部150とを備える。
【0020】
次に、実施の形態1に係る画像処理装置1の動作について説明する。
図2は、
図1に示す演算部100の動作を示すフローチャートである。
まず、ステップS100において、演算部100は、記録部14から処理対象の画像を取得する。
【0021】
続くステップS101において、非対象領域検出部110は、暗部、ハレーション、溝、残渣、泡といった検査対象外の領域を非対象領域として検出する。以下、これらの領域の検出方法について、個別に説明する。
【0022】
(1)暗部及びハレーションの検出方法
暗部は、画像内の画素毎、又は画像を小領域に分割した領域毎に、特徴量として彩度及び輝度を算出し、これらの特徴量を彩度及び輝度の2軸からなる特徴空間に射影し、この特徴空間において、彩度及び輝度が共に所定の閾値よりも低い位置に分布する特徴量の点に対応する画素の領域を抽出することにより検出される。また、ハレーションは、同様の特徴空間において、彩度及び輝度が共に所定の閾値よりも高い位置に分布する特徴量の点に対応する画素の領域を抽出することにより検出される。なお、処理対象が管腔内画像である場合、特徴量として輝度の代わりに、画素値の内で最も分光反射率の高いR成分の値を用いても良い。また、彩度及び輝度の閾値は、予め学習用データとして取得されて記録部14に記録された管腔内画像群に対し、暗部領域及び暗部以外の領域の座標情報をラベル情報として与え、該ラベル情報を基に、彩度及び輝度からなる特徴空間上で暗部領域と暗部以外の領域との境界を設定することにより算出する。ハレーションの閾値についても同様である。
【0023】
(2)溝の検出方法
溝は、画像内の画素に対し、方向別二次微分の出力の最大値を閾値処理することによって得られる。具体的には、画像内に注目画素位置、及び該注目画素位置に対する所定サイズのフィルタを設定し、フィルタ内において、注目画素位置を通る縦、横、斜めの4方向における二次微分処理を実行し、これらの二次微分の出力値の内の最大値を算出する。このような処理を、注目画素位置をずらしながら、画像内の各画素に対して実行する。そして、各画素について算出された二次微分の最大値を閾値処理することにより、溝領域を検出する。
【0024】
(3)残渣の検出方法
残渣は、各画素の画素値から特徴量として色変化成分(色比)G/R及びB/Gを算出し、これらの特徴量をG/R及びB/Gの2軸からなる特徴空間に投影し、この特徴空間上において赤色に対して黄色側に分布する特徴量の点に対応する画素を抽出することにより検出される。この際に用いられる色比の閾値も、暗部の場合と同様に、学習用データとして取得された画像に対してラベル情報を与え、色比の特徴空間において残渣領域と残渣以外の領域との境界を設定することにより算出される。
【0025】
(4)泡の検出方法
泡は、画像内において輝度の高周波成分の特徴量を有する画素の領域を抽出することにより検出される。なお、この際に用いられる周波数の閾値も、暗部や残渣と同様に、学習用データとして取得された画像に対してラベル情報を与え、周波数成分の特徴空間において泡領域と泡以外の領域との周波数成分の分布の境界を抽出することにより設定される。
【0026】
以下、泡領域の検出方法の一例を説明する。泡領域は、高周波成分と色成分を基に検出することができる。具体的には、RGB成分で構成される画像の輝度成分(スペクトルの帯域の広いG成分、若しくは輝度値Y(例えば、Y=0.299×R+0.587×G+0.114×Bで算出される値))を基に、高周波成分の強度を示す高周波強度画像を作成する。なお、高周波成分の強度は、注目画素の画素値から、当該注目画素の周辺画素(例えば3×3)の平均値を差し引くことにより算出される。また、高周波強度画像の過検出を抑制するため、各画素の色情報を基に、例えば出血等を示す赤い領域(例えば、G/R値が所定の閾値以下の領域)を検出対象から除外するといった設定を行う。そして、泡候補領域内において、高周波成分の強度が事前に設定した閾値以上である領域を、泡領域として検出する。なお、泡の検出方法の詳細については、特開2010−115260号公報も参照されたい。
また、泡を検出する別の方法として泡モデルとのコンボリューションによる泡領域検出方法(特開2007−313119号公報参照)を用いても良い。
【0027】
非対象領域検出部110は、これらの(1)〜(4)の方法によって検出した領域内の各画素に対し、非対象領域であることを示すラベル(E(x
i,y
i)=1)を与え、それ以外の画素に非対象領域外(即ち、異常部の検出対象領域)であることを示すラベル(E(x
i,y
i)=0)を与える。ここで、(x
i,y
i)は、i番目の画素の座標を表す。
【0028】
ステップS102において、注目画素領域設定部120は、画像内に注目画素位置を設定すると共に、この注目画素位置に対して注目画素領域を設定する。注目画素領域としては、例えば、注目画素位置を中心とし、所定のサイズを有する矩形の領域が設定される。
図3は、画像M1に対して注目画素位置P1及び注目画素領域R1が設定された例を示している。なお、画像M1では非対象領域として溝A1が検出されている。
【0029】
ステップS103において、周辺領域決定部130は、注目画素位置及び非対象領域に基づいて、基準面の作成に用いられる周辺領域を決定する。この際、実施の形態1においては、注目画素位置を含む範囲であって、非対象領域を超えない注目画素領域内の範囲を周辺領域として決定する。例えば、画像M1の場合、注目画素位置P1から見て非対象領域A1を超えない領域S1(即ち、非対象領域A1、及び非対象領域A1と非対象領域A1を通る境界B1と注目画素領域R1とによって囲まれる領域S2を除く領域)が周辺領域として決定される。
【0030】
ステップS104において、基準面作成部140は、周辺領域内のプロファイル情報に基づいて基準面を作成する。
図4は、ステップS104における基準面作成部140の詳細な動作を示すフローチャートである。
【0031】
まず、ステップS111において、基準面作成部140は、周辺領域の内、注目画素位置を通る複数方向における画素値のプロファイル情報を取得する。実施の形態1においては、
図5に示すように、注目画素位置P1を通る横(r
1)、縦(r
2)、左右斜め(r
3、r
4)の4方向(r
1〜r
4)におけるプロファイル情報を取得するものとする。また、実施の形態1においては、プロファイル情報として、画像を構成するR、G、Bの各色成分の内、最も分光反射率の高いR成分の値を取得する。なお、プロファイル情報としては、R成分の値以外にも、波長の帯域幅の広いG成分の値や、各色成分を距離に関連する距離情報で割った色変化成分の値を用いることができる。色変化成分としては、例えば、分光反射率が高く、被検体との間の距離を最も良く反映するR成分を距離情報とし、G成分をR成分で除した値(G/R)を用いることができる。
【0032】
続くステップS112において、基準面作成部140は、各方向のプロファイル情報に基づいて、注目画素位置における基準面を作成する。具体的には、まず、基準面作成部140は、各方向(r
1〜r
4)について、注目画素位置P1と、周辺領域として決定した領域S1の両端との間の距離d
1、d
2を算出して閾値処理を施す。なお、
図5においては、r
1方向における距離d
1、d
2を示している。そして、距離d
1、d
2のいずれかが予め設定した閾値以下となる方向を、基準面作成の対象から外す。
【0033】
次いで、基準面作成部140は、取得したプロファイル情報を用いて、次式(1−1)〜(1−4)によって与えられる注目画素位置(座標(x
0,y
0))における基準面の値を算出する。ここで、式(1−1)は、r
1方向(X方向)のプロファイル情報に基づく基準面の値PH(x
0,y
0)の算出式である。式(1−2)は、r
2方向のプロファイル情報に基づく基準面の値PV(x
0,y
0)の算出式である。式(1−3)は、r
3方向のプロファイル情報に基づく基準面の値PD1(x
0,y
0)の算出式である。式(1−4)は、r
4方向のプロファイル情報に基づく基準面の値PD2(x
0,y
0)の算出式である。
【数1】
式(1−1)〜(1−4)において、P(x,y)は、座標(x,y)に位置する画素のプロファイル情報(R成分の値)を示す。また、d
1’、d
2’の値は次式(2−1)、(2−2)によって与えられる。
【数2】
【0034】
基準面作成部140は、このようにして算出された値PH(x
0,y
0)、PV(x
0,y
0)、PD1(x
0,y
0)、PD2(x
0,y
0)を、注目画素位置P1における基準面の値として記録部14に記録する。
その後、動作はメインルーチンに戻る。
【0035】
ステップS105において演算部100は、非対象領域以外の全ての領域について基準面が作成されたか否かを判定する。非対象領域以外の領域で未だ基準面が作成されていない領域がある場合(ステップS105:No)、演算部100は、注目画素位置を移動させる(ステップS106)。ここでの移動は、例えばラスタスキャンにより行う。その後、動作はステップS102に移行する。
【0036】
一方、非対象領域以外の全ての画素について基準面が作成された場合(ステップS105:Yes)、外れ値検出部150は、各画素位置における基準面と元の画像との間で対応する量の差分から、周囲から画素値が外れる外れ値を有する外れ画素を検出する(ステップS107)。
【0037】
具体的には、外れ値検出部150は、各方向r
1〜r
4のプロファイル情報に基づいて算出された画素位置(x,y)における基準面の値PH、PV、PD1、PD2と、注目画素位置(x,y)におけるプロファイル情報の値P(x,y)との差分値dPH、dPV、dPD1)、dPD2を、次式(3−1)〜(3−4)により算出する。
dPH(x,y)=P(x,y)−PH(x,y) …(3−1)
dPV(x,y)=P(x,y)−PV(x,y) …(3−2)
dPD1(x,y)=P(x,y)−PD1(x,y) …(3−3)
dPD2(x,y)=P(x,y)−PD2(x,y) …(3−4)
【0038】
続いて、外れ値検出部150は、各差分値dPH、dPV、dPD1、dPD2の内の最小値d(x,y)=min(dPH(x,y),dPV(x,y),dPD1(x,y),dPD2(x,y))を算出する。
外れ値検出部150は、このようにして算出された差分値の最小値が予め設定された閾値よりも大きい画素を、外れ画素として検出する。
【0039】
ステップS108において、演算部100は、外れ画素の検出結果を異常部として表示部13に出力する。具体的には、外れ画素の位置を画像上でマークするなどして表示部13に表示させる。併せて、演算部100は、外れ画素の検出結果を記録部14に記録する。これにより、画像処理装置1の動作は終了する。
【0040】
以上説明したように、実施の形態1によれば、注目画素の周辺の画素を参照することにより外れ値の画素を検出する際に、本来参照すべき周辺領域の情報のみを利用することができるので、異常部を精度良く検出することが可能となる。
【0041】
(変形例1−1)
次に、実施の形態1の変形例1−1について説明する。
ステップS104において、基準面作成部140は、関数近似により基準面を作成しても良い。以下、具体的な基準面の作成方法について説明する。
【0042】
まず、基準面作成部140は、周辺領域(
図3においては領域S1)内の画素のプロファイル情報(例えば、R成分の値)を近似する近似曲線を各方向r
1〜r
4について求める。例えば、方向r
1については、次式(4)に示す二次関数に対して係数a、b、cを算出する処理を行う。
z(x)=ax
2+bx+c …(4)
式(4)において、xは周辺領域内の画素のX軸における座標値、z(x)は当該画素のプロファイル情報の値である。
【0043】
係数a、b、cは、最小二乗法により次式(5)を用いて算出される。
【数3】
式(5)において、x
i(i=1、2、…n)は周辺領域内の画素の座標値を示し、z
iは座標x
iにおけるプロファイル情報の値を示す。
【0044】
方向r
2〜r
4についても、上式(4)における変数xの代わりに、各画素の座標と注目画素位置P1との距離を用い、同様にして近似曲線を求める。
【0045】
基準面作成部140は、このようにして算出した近似曲線の式に対し、ステップS102において設定された注目画素位置の座標値を代入して算出された値を、基準面の値とする。
【0046】
この場合、外れ値検出部150は、各方向r
1〜r
4について算出された注目画素位置P1における基準面の値と、注目画素位置P1におけるプロファイル情報との差分値を算出し、これらの差分値の最小値を閾値と比較することにより外れ画素を検出する。
【0047】
(変形例1−2)
上記変形例1−1においては、2次関数による近似曲線を作成したが、非対象領域の周囲における連続性をより正確に判定して、近似曲線の精度を向上させるために、ロバスト推定を用いて近似曲線を作成しても良い。
図6は、基準面の作成(ステップS104)を、ロバスト推定を用いて行う場合の基準面作成部140の動作を示すフローチャートである。
【0048】
まず、ステップS121において、基準面作成部140は、ステップS103において決定された周辺領域から2次関数の係数の数以上の座標を抽出すると共に、該座標におけるプロファイル情報(画素値)を取得する。
【0049】
続くステップS122において、基準面作成部140は、これらのプロファイル情報を用いて最小二乗法により近似曲線を算出する。
基準面作成部140は、これらの処理を、プロファイル情報を取得する座標を変えながら所定数(N回)繰り返すことにより(ステップS123:No)、N個の近似曲線を作成する。
【0050】
近似曲線の算出をN回実行した場合(ステップS123:Yes)、基準面作成部140は、各近似曲線上の値と、これに対応するプロファイル情報との差分を算出する(ステップS124)。
【0051】
ステップS125において、基準面作成部140は、各近似曲線について、ステップS123において算出した差分値が所定の閾値以下となる画素数を取得し、画素数が最大となる近似曲線を選択する。なお、この画素数は、近似曲線上の値とプロファイル情報とが略一致する領域(一致領域)に対応する。
【0052】
ステップS126において、基準面作成部140は、選択した近似曲線を表す式に注目画素位置の座標値を代入して算出した値を基準面の値とする。
その後、動作はメインルーチンに戻る。
【0053】
以上説明した変形例1−2によれば、近似曲線の作成に用いるデータをランダムに取得するので、作成された近似曲線に対する非対象領域近傍のデータの影響を抑制することができる。従って、非対象領域近傍における連続性をより正確に判定し、近似曲線の精度を向上させることが可能となる。
【0054】
(実施の形態2)
次に、本発明の実施の形態2について説明する。
実施の形態2に係る画像処理装置全体の構成及び動作は、
図1及び
図2に示すものと同様であり、ステップS103における周辺領域決定部130の詳細な動作、及びステップS104における基準面作成部140の詳細な動作のみが実施の形態1とは異なる。以下、本実施の形態2における周辺領域決定部130及び基準面作成部140の動作を説明する。
【0055】
ステップS103において、周辺領域決定部130は、注目画素位置及び非対象領域に基づいて周辺領域を決定する。具体的には、
図3に示す場合、注目画素位置P1を含む範囲であって、非対象領域A1を超えない注目画素領域内の第1の範囲(領域S1)と、該第1の範囲及び非対象領域A1を除く第2の範囲(領域S2)とを周辺領域として決定する。
【0056】
ステップS104において、基準面作成部140は、周辺領域内のプロファイル情報に基づいて基準面を作成する。この際に、実施の形態2においては、領域S1及び領域S2のそれぞれに対してモフォロジ処理(モフォロジのオープニング(opening)処理又はクロージング(closing)処理)を施すことにより基準面を作成する。
【0057】
ここで、モフォロジのオープニング処理とは、構造要素と呼ばれる基本図形を、プロファイル情報の値の小さい方からプロファイル情報に外接させて移動させた際に構造要素の外周の最大値が通過する軌跡を得る処理である。また、モフォロジのクロージング処理とは、構造要素をプロファイル情報の値の大きい方からプロファイル情報に外接させて移動させた際に構造要素の外周の最小値が通過する軌跡を得る処理である(参考文献:小畑秀文著、「モルフォロジー」、コロナ社)。
【0058】
より詳細には、基準面作成部140は、注目画素領域R1内の全画素位置に、注目画素領域R1と同じサイズの(例えば、注目画素領域R1の1辺と直径が等しい)構造要素の中心を配置し、オープニング又はクロージング処理を実行する。それによって得られた構造要素の外接面を比較し、オープニング処理においては最大値、クロージング処理においては最小値の面を、それぞれ基準面として採用する。
【0059】
ここで、周辺領域として、第1の範囲及び第2の範囲のそれぞれに対してモフォロジ処理を施すことにより基準面を作成する理由を、
図7〜
図8Bを参照しながら説明する。
図7は、プロファイルPR1に対し、領域S1及びS2に渡ってモフォロジのオープニング処理を施した例を示す模式図である。
図7に示すように、構造要素SE1をプロファイルPR1に外接させる処理を例えば領域S1側から施す場合、この処理は、構造要素SE1よりも領域が狭い非対象領域A1を跨いで、領域S2に移行する。このため、この処理により得られる軌跡T1は、領域S1におけるプロファイルPR1と領域S2におけるプロファイルPR1とをなだらかに接続することになる。この結果、軌跡T1は、非対象領域A1の近傍においてプロファイルPR1と乖離してしまう(S
ERROR)。従って、このような軌跡T1を基準面として用いると、異常部の検出精度が低下してしまう。
【0060】
一方、
図8A及び
図8Bは、プロファイルPR1に対し、領域S1及び領域S2のそれぞれにおいてモフォロジのオープニング処理を施した例を示す模式図である。
図8Aは、領域S1における処理結果を示しており、
図8Bは、領域S2における処理結果を示している。
図8Aに示すように、構造要素SE1をプロファイルPR1に外接させる処理は、領域S1の端部付近においても、領域S2の影響を受けない。そのため、この処理の結果得られる軌跡T2は、領域S1と非対象領域A1との境界付近においてもプロファイルPR1に沿った形状となる。
図8Bにおいても同様に、構造要素SE1をプロファイルPR1に外接させる処理は、領域S2の端部付近においても、領域S1の影響を受けない。そのため、この処理の結果得られる軌跡T3は、領域S2と非対象領域A1との境界付近においてもプロファイルPR1に沿った形状となる。従って、このようにして得られた軌跡T2、T3を基準面として用いることにより、異常部の検出精度を向上させることが可能となる。
【0061】
以上説明したように、実施の形態2によれば、注目画素の周辺の画素を参照することにより外れ値の画素を検出する際に、本来参照すべき周辺領域の情報のみを利用するので、異常部を精度良く検出することが可能となる。また、実施の形態2においては、非対象領域を除く全ての領域のプロファイル情報を用いることにより、基準面を作成する際のサンプル数を増やしているので、より広範囲の情報が反映された基準面を作成することが可能となる。
【0062】
なお、実施の形態2においては、設定された1つの注目画素領域に対し、注目画素位置だけでなく、注目画素位置を含む広がりを持った領域に対する基準面を作成することができる。従って、注目画素位置を移動する際には(
図2のステップS106)、注目画素領域間に隙間が生じない範囲で、隣接する注目画素間に間隔を開けても良い。
【0063】
また、実施の形態2においては、注目画素領域R1内の領域S1及びS2におけるプロファイル情報を用いて、実施の形態1や変形例1−1及び1−2と同様の手法により基準面を作成しても良い。この場合も基準面を作成する際のサンプル数を増やして、より広範囲の情報が反映された基準面を作成することが可能となる。
【0064】
(実施の形態3)
次に、本発明の実施の形態3について説明する。
図9は、実施の形態3に係る画像処理装置が備える演算部の構成を示すブロック図である。なお、実施の形態3に係る画像処理装置の演算部以外の構成については、
図1と同様である。
【0065】
図9に示すように、演算部300は、
図1に示す周辺領域決定部130の代わりに、注目画素領域に対し、非対象領域の分類に応じて周辺領域を決定する周辺領域決定部310を備える。
【0066】
より詳細には、周辺領域作成部310は、非対象領域を分類する分類部311と、非対象領域の分類に応じて周辺領域を決定する分類別周辺領域決定部312とを有する。分類部311は、非対象領域とその周囲の領域との連続性を判定する連続性判定部311aを含み、この連続性に基づいて、非対象領域を、周囲との連続性がある非対象領域と、周囲との連続性がない非対象領域とに分類する。また、分類別周辺領域決定部312は、連続性の有無に応じて周辺領域の決定方法を切り替える連続性切替部312aを含み、非対象領域の連続性に応じて設定された方法で周辺領域を決定する。
【0067】
次に、実施の形態3に係る画像処理装置の動作について説明する。
図10は、実施の形態3に係る画像処理装置全体の動作を示すフローチャートである。この内、ステップS100〜S102、及びS104〜S108については、実施の形態1と同様である。
【0068】
ステップS102に続くステップS301において、分類部311は、注目画素領域内の非対象領域を分類する。
図11は、ステップS301における分類部311の詳細な動作を示すフローチャートである。
【0069】
まず、ステップS311において、連続性判定部311aは、注目画素領域において、注目画素位置を通る複数方向におけるプロファイル情報を取得する。より詳細には、連続性判定部311aが、
図12に示すように、注目画素領域R1内で注目画素位置P1を通る横、縦、斜めの4方向(r
1〜r
4)におけるプロファイル情報を取得する。プロファイル情報としては、画像を構成するR、G、Bの各色成分の内、最も分光反射率の高いR成分の値や、波長の帯域幅の広いG成分の値や、各色成分を距離情報で割った色変化成分の値を用いることができる。実施の形態3においては、プロファイル情報として、分光反射率が高く、被検体との間の距離を最も良く反映するR成分を距離情報とし、G成分をR成分で除した色変化成分の値(G/R)を用いる。
【0070】
続くステップS312において、連続性判定部311aは、各方向r
1〜r
4におけるプロファイル情報の内、注目画素領域R1内で非対象領域A1の外側に位置する領域のプロファイル情報を基に近似曲線を作成する。なお、近似曲線の作成方法については、実施の形態1の変形例1−1において説明したものと同様である。
【0071】
ステップS313において、連続性判定部311aは、近似曲線とプロファイル情報との類似度に基づいて、非連続領域とその周囲の領域との連続性を判定する。具体的には、連続性判定部311aは、各方向r
1〜r
4の近似曲線上の値と、これに対応するプロファイル情報との差分値を算出し、この差分値が所定の閾値以下となる画素数を取得する。なお、この画素数は、近似曲線上の値とプロファイル情報とが略一致する領域(一致領域)に対応する。さらに、連続性判定部311aは、この画素数が所定の閾値未満(又は閾値以下)の場合、非対象領域を不連続領域と判定し、画素数が該所定の閾値以上(又は閾値より大きい)の場合、非対象領域を連続領域と判定する。
その後、動作はメインルーチンに戻る。
【0072】
ステップS302において、分類別周辺領域決定部312は、非対象領域の分類に基づいて、基準面の作成に用いられる周辺領域を決定する。より詳細には、連続性切替部312aが、ステップS301において非対象領域が不連続領域であると判定された場合、注目画素位置から見て、非対象領域を超えない注目画素領域内の範囲(即ち、領域S1)を周辺領域として決定する。一方、ステップS301において非対象領域が連続領域であると判定された場合、注目画素領域R1の内、非対象領域A1以外の範囲(即ち、領域S1及びS2)を周辺領域として決定する。
その後、動作はメインルーチンに戻る。
【0073】
以上説明したように、実施の形態3によれば、非対象領域の周囲との連続性に応じて、基準面の作成に用いられる周辺領域を決定するので、基準面の精度を向上させることができ、異常部の過検出を抑制することが可能となる。
【0074】
(変形例3−1)
次に、実施の形態3の変形例3−1について説明する。
ステップS301においては、近似曲線を作成する代わりに、平滑化処理により非対象領域の分類を行っても良い。以下、平滑化処理により非対象領域を分類する方法について説明する。
図13は、変形例3−1における非対象領域の分類方法を示すフローチャートである。
【0075】
ステップS321において、連続性判定部311aは、非対象領域からの距離に応じた重み付け係数を用いて注目画素領域に対する平滑化処理を実行する。例えば、
図14に示すように、画素値PR2を有する画素からなる注目画素領域内において、非対象領域A2が検出されている場合、連続性判定部311aは、注目画素領域内の各画素に対し、非対象領域との座標距離に比例して増加する重み付け係数W1を設定する。この際、非対象領域内部においては、重み付け係数の値をゼロとする。そして、この重み付け係数W1と例えばガウシアンフィルタにおける係数とを掛け合わせることによりフィルタを作成し、このフィルタを用いて注目画素領域内の各画素に対して平滑化処理を施す。
【0076】
続くステップS322において、連続性判定部311aは、注目画素領域に対応する平滑化画像とプロファイル情報とに基づいて、非対象領域の連続性を判定する。具体的には、連続性判定部311aは、注目画素領域において、注目画素位置を通る複数方向(
図12に示す方向r
1〜r
4)におけるプロファイル情報(色変化成分G/Rの値)を取得する。そして、方向r
1〜r
4毎に、平滑化画像及びプロファイル情報における例えばG/R値の差分値を算出する。続いて、連続性判定部311aは、差分値が所定の閾値よりも大きい外れ領域を検出し、方向r
1〜r
4毎に、外れ領域が連続する幅を取得する。連続性判定部311aは、この幅が所定の閾値未満(又は以下)である場合、非対象領域はその周囲の領域の連続領域であると判定する。一方、この幅が所定の閾値以上である(又は該所定の閾値より大きい)場合、非対象領域はその周囲の領域の不連続領域と判定する。
【0077】
(変形例3−2)
次に、実施の形態3の変形例3−2について説明する。
ステップS301においては、近似曲
面の係数を用いて非対象領域の分類を行っても良い。以下、近似曲
面の係数により非対象領域を分類する方法について説明する。
図15は、変形例3−2における非対象領域の分類方法を示すフローチャートである。
【0078】
ステップS331において、連続性判定部311aは、注目画素領域内の画素の画素値を近似する近似曲
面を算出する。より詳細には、次式(6)に示す二次関数に対し、次式(7)により係数a〜fを算出する。
z(x,y)=ax
2+by
2+cxy+dx+ey+f …(6)
【数4】
或いは、変形例1−1と同様にして、式(4)等によって表される各方向r
1〜r
4における近似曲線を算出しても良い。
【0079】
続くステップS332において、連続性判定部311aは、近似曲
面を表す式の係数を基に、非対象領域の連続性を判定する。具体的には、二次関数の極値点が非対象領域内に存在し、且つ、二次関数の2次の項の係数の絶対値(式(6)の場合|a|及び|b|、式(4)の場合|a|)が所定の閾値以上である場合、その非対象領域は不連続領域であると判定する。また、極値点が非対象領域内に含まれない場合、又は、二次関数の2次の項の係数の絶対値が所定の閾値よりも小さい場合、その非対象領域は連続領域であると判定する。ここで、式(6)の場合、X方向の極値点は{−(cy+d)/(2a)}、Y方向の極値点は{−(cx+e)/(2b)}によってそれぞれ与えられる。また、式(4)の場合、極値点は(−b/2a)によって与えられる。
【0080】
図16Aは、ある注目画素領域内のプロファイルPR3に対する近似曲
面M
D1の1回目の算出結果を示す模式図である。この近似曲
面M
D1は、非対象領域A3、A4以外の領域のプロファイル情報に基づいて算出されている。このような1回目の算出結果に対し、非対象領域A3、A4外部のプロファイルPR3と近似曲
面M
D1とが交差する位置において分割された各領域W
D1、W
D2について、2回目の近似曲
面の算出が行われる。
図16Bは、2回目の近似曲
面の算出結果を示す模式図である。この場合、非対象領域A3、A4の周囲の領域との連続性は、次のように判定される。例えば、非対象領域A3の場合、該非対象領域A3を含む領域W
D1に対して作成された近似曲
面M
D2の極大点P
MD2は非対象領域A3の外部に存在する。このような場合、非対象領域A3は周囲の領域と連続であると判定される。一方、非対象領域A4の場合、該非対象領域A4を含む領域W
D2に対して作成された近似曲
面M
D3の極小点P
MD3は、非対象領域A4内に存在する。この場合、近似曲
面M
D3の2次の項の係数の絶対値が所定の閾値以上であるとき、非対象領域A4は周囲の領域と不連続であると判定される。
【0081】
(変形例3−3)
次に、実施の形態3の変形例3−3について説明する。
図17は、変形例3−3における周辺領域決定部の構成を示すブロック図である。変形例3−3に係る画像処理装置は、
図9に示す周辺領域決定部310の代わりに、
図17に示す周辺領域決定部320を備える。周辺領域決定部320は、分類部311及び分類別周辺領域決定部312に加えて、非対象領域の周囲の領域におけるプロファイル情報を用いて、非対象領域におけるプロファイル情報を補正する補正部321を有する。
【0082】
補正部321は、分類部311により、非対象領域がその周囲の領域に対する連続領域であると判定された場合に、非対象領域の補正を行う。具体的には、非対象領域の周囲の領域におけるプロファイル情報の平均値により非対象領域を補間する。或いは、変形例3−1において説明したものと同様に、非対象領域の周囲の領域のプロファイル情報と重み付け係数とを用いた重み付け平滑化処理を実行することにより、非対象領域を補間しても良い。さらに、変形例3−2において説明したものと同様に、非対象領域の周囲の領域のプロファイル情報を用いた関数近似処理を実行することにより、非対象領域を補間しても良い。
【0083】
この場合、周辺領域決定部320は、基準面の作成に用いられる周辺領域として、補間された非対象領域を含む注目画素領域全体を設定することができる。
【0084】
(実施の形態4)
次に、本発明の実施の形態4について説明する。
図18は、実施の形態4に係る画像処理装置が備える演算部の構成を示すブロック図である。なお、実施の形態4に係る画像処理装置の演算部以外の構成については、
図9と同様である。
【0085】
図18に示すように、演算部400は、
図9に示す周辺領域決定部310の代わりに、注目画素領域に対し、非対象領域の分類に応じて周辺領域を決定する周辺領域決定部410を備える。
【0086】
より詳細には、周辺領域決定部410は、非対象領域を分類する分類部411と、非対象領域の分類に応じて周辺領域を決定する分類別周辺領域決定部412とを有する。
分類部411は、非対象領域の検出方法に応じて非対象領域を複数のカテゴリに分類するカテゴリ分類部411aを含み、非対象領域を暗部、ハレーション、溝、血管、泡といったカテゴリに分類する。なお、カテゴリとしては、これらのカテゴリの内の1つ以上を含んでいれば良く、以下の説明においては全てのカテゴリを含むものとする。
【0087】
一方、分類別周辺領域決定部412は、非対象領域のカテゴリに応じて周辺領域の決定方法を切り替えるカテゴリ切替部412aを含み、非対象領域のカテゴリに応じて設定された方法で周辺領域を決定する。
【0088】
次に、実施の形態4に係る画像処理装置の動作について説明する。実施の形態4に係る画像処理装置全体の動作は実施の形態3と同様であり、ステップS301及びステップS302における周辺領域決定部410の詳細な動作のみが実施の形態3とは異なる。以下、実施の形態4における周辺領域決定部410の動作を説明する。
【0089】
ステップS102に続くステップS301において、分類部411は、注目画素領域内の非対象領域を分類する。より詳細には、カテゴリ分類部411aが、実施の形態1と同様にして非対象領域を検出し、その際に、実施の形態1において説明した検出方法(1)〜(4)に応じたラベル情報を、検出した非対象領域内の各画素に付与する。なお、この検出方法別のラベル情報は、ステップS101において非対象領域検出部110が付与することとしても良い。
さらに、カテゴリ分類部411aは、各画素に付与されたラベル情報を基に、非対象領域を暗部、ハレーション、溝、残渣、泡、血管等のカテゴリに分類する。
【0090】
ステップS302において、分類別周辺領域決定部412は、非対象領域の分類に基づいて、基準面の作成に用いられる周辺領域を決定する。より詳細には、カテゴリ切替部412aが、非対象領域のカテゴリに応じて周辺領域を決定する。
【0091】
具体的には、カテゴリ切替部412aは、非対象領域のカテゴリが暗部、溝、又は残渣である場合、注目画素位置から見て、非対象領域を超えない注目画素領域内の範囲(例えば、
図5に示す領域S1)を周辺領域として決定する。これは、暗部、溝、又は残渣といった非対象領域は、隣接する対象領域との間で連続性を示さないからである。
【0092】
一方、カテゴリ切替部412aは、非対象領域のカテゴリが泡、血管、又はハレーションである場合、注目画素領域内の非対象領域を除いた範囲(例えば、
図12に示す非対象領域A1を除く領域)を周辺領域として決定する。これは、泡、血管、ハレーションといった非対象領域は、隣接する対象領域との間で連続性を示すからである。
【0093】
なお、この場合、周辺領域決定部410に変形例3−3と同様の補正部をさらに設け、泡、血管、又はハレーションに分類された非対象領域のプロファイル情報に対して補正を行っても良い。具体的には、非対象領域の周囲の領域におけるプロファイル情報の平均値や、重み付け平滑化処理や、関数近似処理等により、非対象領域内のプロファイル情報を補間する。この場合、基準面の作成に用いられる周辺領域として、補間された非対象領域を含む注目画素領域全体を設定することができる。
【0094】
以上説明したように、実施の形態4によれば、注目画素の周辺の画素を参照することにより外れ値となる画素を検出する際に、本来参照すべき周辺領域の情報のみを利用することができるので、異常部を精度良く検出することが可能となる。
【0095】
また、実施の形態4によれば、非対象領域のカテゴリに応じて周辺領域の範囲を決定するので、基準面作成の精度を向上させることができ、異常部の過検出を抑制することが可能となる。
【0096】
以上説明した実施の形態1〜4及び変形例に係る画像処理装置は、記録媒体に記録された画像処理プログラムをパーソナルコンピュータやワークステーション等のコンピュータシステムで実行することにより実現することができる。また、このようなコンピュータシステムを、ローカルエリアネットワーク(LAN)、広域エリアネットワーク(WAN)、又は、インターネット等の公衆回線を介して、他のコンピュータシステムやサーバ等の機器に接続して使用しても良い。この場合、実施の形態1〜3及び変形例に係る画像処理装置は、これらのネットワークを介して管腔内画像の画像データを取得したり、これらのネットワークを介して接続された種々の出力機器(ビュアーやプリンタ等)に画像処理結果を出力したり、これらのネットワークを介して接続された記憶装置(記録媒体及びその読取装置等)に画像処理結果を格納するようにしても良い。
【0097】
なお、本発明は、実施の形態1〜4及び変形例に限定されるものではなく、各実施の形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成できる。例えば、各実施の形態や変形例に示される全構成要素からいくつかの構成要素を除外して形成しても良いし、異なる実施の形態や変形例に示した構成要素を適宜組み合わせて形成しても良い。