(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5960708
(24)【登録日】2016年7月1日
(45)【発行日】2016年8月2日
(54)【発明の名称】ポリマー性中空繊維上のメソポーラスシリカ膜
(51)【国際特許分類】
B01D 53/22 20060101AFI20160719BHJP
B01D 71/02 20060101ALI20160719BHJP
B01D 71/82 20060101ALI20160719BHJP
B01D 69/08 20060101ALI20160719BHJP
B01D 69/10 20060101ALI20160719BHJP
B01D 69/12 20060101ALI20160719BHJP
【FI】
B01D53/22
B01D71/02 500
B01D71/82 500
B01D69/08
B01D69/10
B01D69/12
【請求項の数】24
【全頁数】19
(21)【出願番号】特願2013-536619(P2013-536619)
(86)(22)【出願日】2011年8月15日
(65)【公表番号】特表2013-540588(P2013-540588A)
(43)【公表日】2013年11月7日
(86)【国際出願番号】US2011047769
(87)【国際公開番号】WO2012060917
(87)【国際公開日】20120510
【審査請求日】2014年2月21日
(31)【優先権主張番号】61/408,719
(32)【優先日】2010年11月1日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】507071073
【氏名又は名称】ジョージア・テック・リサーチ・コーポレーション
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100091214
【弁理士】
【氏名又は名称】大貫 進介
(72)【発明者】
【氏名】ナイール,サンカー
(72)【発明者】
【氏名】チャン,グァンソク
(72)【発明者】
【氏名】ジョーンズ,クリストファー
(72)【発明者】
【氏名】コロス,ウィリアム
(72)【発明者】
【氏名】ジョンソン,ジャスティン
【審査官】
池田 周士郎
(56)【参考文献】
【文献】
米国特許出願公開第2007/0022877(US,A1)
【文献】
特開2002−338229(JP,A)
【文献】
国際公開第2010/103856(WO,A1)
【文献】
特開2008−173576(JP,A)
【文献】
特開2007−045691(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01D 61/00−71/82
B01D 53/22
C02F 1/44
(57)【特許請求の範囲】
【請求項1】
ガス分離装置であり、当該ガス分離装置は:
ポリマー性中空繊維を含む多孔性支持体構造;及び
前記多孔性支持体構造上に設けられる無機メソポーラス膜を含み、
前記無機メソポーラス膜のメソポアは、アミノ基含有ポリシルセスキオキサン(POSS(TM))分子で充填され、
前記無機メソポーラス膜が一様でかつ無欠陥であり、及び
前記無機メソポーラス膜が、前記多孔性支持体構造と相互接続する相互接続3次元ポアのネットワークを含み、及び
前記無機メソポーラス膜のガス透過性が、前記ポリマー性中空繊維ガス透過性よりも高い、ガス分離装置。
【請求項2】
請求項1に記載のガス分離装置であり、前記無機メソポーラス膜が、メソポーラスモービル組成物(MCM)を含む、ガス分離装置。
【請求項3】
請求項2に記載のガス分離装置であり、前記メソポーラスMCMがシリカ系である、ガス分離装置。
【請求項4】
請求項3に記載のガス分離装置であり、前記メソポーラスMCMがMCM−48を含む、ガス分離装置。
【請求項5】
請求項4に記載のガス分離装置であり、前記ポアが、直径1nmから5nmの間の範囲に及ぶ、ガス分離装置。
【請求項6】
請求項5に記載のガス分離装置であり、前記ポアが、直径2nmから4nmの間の範囲に及ぶ、ガス分離装置。
【請求項7】
請求項6に記載のガス分離装置であり、前記ポアが直径3nmである、ガス分離装置。
【請求項8】
請求項1に記載のガス分離装置であり、
前記無機材料が複合メソポーラス材料を含み、
前記複合メソポーラス材料が、メソポーラスMCM、及び4級アミン基、チオール基、カルボキシル基、シアノ基、アミド基及びカルボニル基を含む官能基を持つ分子を含む、ガス分離装置。
【請求項9】
請求項8に記載のガス分離装置であり、前記4級アミンが、セチルトリメチルアンモニウムブロミド(CTAB)である、ガス分離装置。
【請求項10】
請求項8に記載のガス分離装置であり、前記メソポーラスMCM及びがMCM−48を含む、ガス分離装置。
【請求項11】
請求項8に記載のガス分離装置であり、前記メソポーラスMCMが、3次元ポアのネットワークを持つメソポーラス構造を含み、かつ前記4級アミンが前記メソポーラスMCMの前記ポア内に設けられる、ガス分離装置。
【請求項12】
請求項1に記載の分離装置を製造するための方法であって、 当該方法が:
(a)コーティング溶液を調製するステップであって、前記コーティング溶液がシリカ原料、4級アンモニウム界面活性剤及び酸性水の混合物を含むステップ;
(b)ポリマー性中空繊維を提供するステップ;
(c)前記コーティング溶液中に前記ポリマー性中空繊維の少なくとも一部を浸漬させ、それにより前記ポリマー性中空繊維上に湿ったメソポーラスシリカ膜を形成させるステップ;
(d)前記ポリマー性中空繊維上の湿ったメソポーラスシリカ膜をリンスして乾燥し、それによりポリマー性中空繊維上に乾燥したメソポーラスシリカ膜を形成するステップ;
(e)前記乾燥したメソポーラスシリカ膜を、アルコキシシラン、ヒュームドシリカもしくはコロイダルシリカの蒸気原料に暴露させて熟成させるステップ;
(f)適切な溶媒で処理することにより、メソポーラスコーティングから界面活性剤を抽出するステップ;及び
(g)CO2への選択性を付与するため、前記メソポア内にポリシルセスキオキサン(POSS(TM))分子を浸潤させるステップ、
を含む、方法。
【請求項13】
請求項12に記載の方法であり、前記4級アンモニウム界面活性剤がセチルトリメチルアンモニウムブロミド(CTAB)を含み、さらに前記コーティング溶液が1.0R:aCTAB:bH2Oを含み、ここで、Rはシリカの原料であり、aは0.1から1であり、bは20から200の間である、方法。
【請求項14】
請求項12に記載の方法であり、前記調製ステップが、前記溶液に酸化学種を加えて、それにより前記調製溶液のpHを実質的に0から4の間にすることを含む、方法。
【請求項15】
請求項12に記載の方法であり、前記浸漬ステップが、前記ポリマー性中空繊維を、前記コーティング溶液中に、10分から24時間浸漬することを含む、方法。
【請求項16】
請求項12に記載の方法であり、前記熟成ステップが、前記乾燥メソポーラスシリカ膜を50℃から150℃の間の温度で熟成することを含む、方法。
【請求項17】
請求項12に記載の方法であり、前記熟成ステップが、前記乾燥メソポーラスシリカ膜を1時間から48時間の期間熟成することを含む、方法。
【請求項18】
請求項12に記載の方法であり、前記熟成ステップが、前記乾燥メソポーラスシリカ膜を飽和アルコキシシラン蒸気に暴露することを含む、方法。
【請求項19】
請求項12に記載の方法であり、前記コーティング溶液がさらに、セチルトリメチルアンモニウムブロミド(CTAB)を含み、かつ当該方法が:
前記CTABを前記熟成メソポーラスシリカ膜から抽出溶媒で抽出するステップ;及び
実質的に無CTABのメソポーラスシリカ膜をリンスし、乾燥するステップ
をさらに含む、方法。
【請求項20】
請求項19に記載の方法であり、前記抽出溶媒が水又はアルコール又はその混合物を含む、方法。
【請求項21】
請求項19に記載の方法であり、前記抽出ステップが、前記熟成メソポーラスシリカ膜を、前記抽出溶媒と、1時間から72時間の間の期間接触させることを含む、方法。
【請求項22】
請求項19に記載の方法であり、前記抽出ステップが、前記熟成メソポーラスシリカ膜を、前記抽出溶媒と、20℃から100℃の間の温度で接触させることを含む、方法。
【請求項23】
請求項19に記載の方法であり、前記抽出溶媒のpHが0から7の間である、方法。
【請求項24】
請求項19に記載の方法であり、前記メソポーラスシリカ膜が、次に、アミン基、チオール基、カルボキシル基、シアノ基、アミド基及びカルボニル基を含む官能基で官能基化される、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2010年11月1日出願の米国特許出願第61/408719号の基づき優先権を主張する特許出願であり、この内容は参照されて本明細書に援用される。
【0002】
本発明は、一般的には分子膜分離に関し、より具体的には多孔性ポリマー性中空繊維上に設けられた無機メソポーラス膜に関する。
【背景技術】
【0003】
分離膜は、天然ガス分離及び発電所煙道ガスからのCO
2回収を含む種々の潜在的な応用を持つ。膜系ガス分離は、その低エネルギー要求及び前記分離ユニットの容易なスケールアップによりその市場はますます拡大されている。現在、ガス分離応用は多孔性ポリマー性又は無機膜の使用を含み得る。ガス分離応用に使用される高分子膜は、中空繊維形状で製造され得る。中空繊維モジュールは、高表面積/体積比、通常5000から10000m
2/m
3の範囲を持つが、これは商業的大規模プロセスのために重要な設計上の検討事項である。ポリマー性中空繊維がある分離プロセスのために好適ある一方で、前記ポリマー性材料のガス分離性能は、その成分上及び構造上の制限がある。
【0004】
分子性能を改善するために高分子構造を好適化する集中的な努力にもかかわらず、現在の膜材料は、生産性と選択性のトレードオフにおいて限界に達しているように思われる。例えば、ULTEM(R)1000などの多くのポリイミド及びポリエーテルイミドガラス状高分子は、セルロースアセテート(約22)よりもずっと高い本来的CO
2/CH
4選択性(50℃及び690kPa(100psig)純ガス試験で約30)を持ち、これは実用上のガス分離応用のためにより魅力的である。これらのポリイミド及びポリエーテルイミドガラス状ポリマーは、しかし、現在市販されているセルロースアセテート膜製品に比較して興味を引くほどの透過性を示さない。さらに、かかるポリマーは、CO
2などの高圧ガスに暴露されると可塑性(即ち膨潤)する傾向にあり、これにより選択性を損なう結果となる。
【0005】
他方で、いくつかの無機膜、SAPO−34及びDDRゼオライト膜及びカーボン分子篩い膜などは、分離についてはポリマー性膜よりも高い透過性と選択性を与える。さらなる利点はこれらの材料は可塑化しないということである。しかし、この開発経路は現在では費用がかかり大規模製造することは困難である。
【0006】
したがっていまなお、前記ポリマー性膜に比較して改善された分離性を持つ他の費用対効果に優れた膜を提供することが強く望まれている。特に、長期目標は、スケールアアップ可能であって、経済的なプラットフォーム(ポリマー性中空繊維などの)に基づく選択的な無機膜を製造することである。
【0007】
蒸留、吸収及び低温分離などの他の分離プロセスとより競争力のある流体分離膜を製造するため、少なくとも次の性質を持つ新規な膜を開発することが必要である。
(a)ポリマー性膜と同程度の又はそれを超えるガス分離選択性と、ポリマー性膜よりも高いスループット;
(b)高い表面積/体積比(例えば、中空繊維膜モジュール);及び
(c)商業規模の分離プロセスへの容易なスケールアップ性、である。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、一般的には分子膜分離に関し、より具体的には多孔性ポリマー性中空繊維上に設けられた無機メソポーラス膜を提供することを課題とする。
【課題を解決するための手段】
【0009】
以下明細書及び特許請求の範囲で使用される用語「含む」と共に使用される「ひとつの」は、特に記載のない限り、複数を含む。用語「約」とは、測定方法が特に記載されていない限り、示された値プラスマイナス測定誤差の範囲、又はプラスマイナス10%の範囲を意味する。特に記載がない限り、用語「又は」は、「及び/又は」を意味するか、又は相互に排他的であることを意味する。用語「含む」、「持つ」、「成る」(及びそれらの変形)は、範囲無限定動詞であり、請求項で使用される場合には他の要素の追加を可能にすることを意味する。以下、次の略語が使用される。
【0010】
【表1】
「メソポーラス」とは、ここでは、直径0.1から10nmの範囲の相互接続ポア(孔)の3次元構造を持つとして定められる。好ましくは、前記ポアサイズは、直径1から5nm又は2から4nmの範囲であるが、前記サイズは分離されるガスに依存して変更され得る。
【0011】
ここで使用される用語「ポリマー」は、1以上のモノマー単位から製造されるポリマーであり、ポリマー、コポリマー、ブロックコポリマー、ターポリマーなどを含む。他の異なる意味が使用される場合には、文脈から明らかである。
【0012】
用語「無欠陥」とは、メソポーラスコーティングの少なくとも95%が無欠陥、及び好ましくは少なくとも97、98、99又は100%が無欠陥を意味し、既存の欠陥が、直径10nm未満、好ましくは前記ポアサイズ以下であることを意味し、従って、前記コーティングが本質的に連続であり、前記ガス又は液体が、例えば前記コーティング内の大きな亀裂を通って逃げないように処理されている、ことを意味する。
【0013】
これまで、ポリマー性中空繊維などの工業的にスケールアップ可能な多孔性無機膜を製造することは難しい。メソポーラスコーティングは、平坦表面上及びナノスケール球面体上で実証されているが、これらのコーティングは工業的スケールで膜として使用され得るものではなかった。前記表面が非多孔性である場合、分子透過性がないということから膜として使用され得ない。
【0014】
薄い(約1から10ミクロン)、一様な、無欠陥メソポーラスコーティングは、粗な多孔性表面(例えばポリマー性中空繊維などの)上に実施され得るかは明らかではなく、さらに、前記ポアが前記表面に垂直であり、膜として使用するためにお互いが相互接続されているかは明らかではなかった。
【0015】
我々は驚くべきことに、ポリマー性中空繊維上に、薄い、無欠陥のメソポーラスシリカコーティングを製造するためのプロセス経路を開発し、さらにそれらをガス分離のための選択的膜として使用することを可能にした。さらに、本発明の前記メソポーラスコーティング中空繊維は一緒にパック(数千から数百万)して、モジュール体積1立方メートル当たり数千平方メートルの膜表面積を有する高密度膜モジュールを製造することを可能にする。
【0016】
本発明の方法は、種々のガス分離技術で使用される多孔性ポリマー性中空繊維上に無機メソポーラスコーティングを、費用対効果に優れ簡単に合成することを可能にする。
【0017】
一般的に前記方法は4つのステップを含む。第1のステップは、多孔性ポリマー性中空繊維を、溶解シリカ及び長鎖4級アミン界面活性剤を含む酸性前駆体溶液中に浸漬する。前記後者の分子がメソポーラスシリカの形成のテンプレートとなる。次に、安定なメソポーラスコーティングの形成を完全にするためにシリカ原料で気相処理が実施される。第2に、前記4級アンモニウムを適切な溶媒で処理して前記メソポアから抽出し、それにより透過性のための前記メソポアを開ける。最後に、前記メソポアは、POSS(TM)などの多面体シルセスキオキサン分子で浸漬されて、前記膜に分子選択性を付与する。種々のタイプのPOSS(TM)分子が市販されている。前記多孔性ポリマー性中空繊維は、先行して確立されたスピニングプロセスで製造され得る。
【0018】
前記4級アミン分子は前記膜から溶媒で処理して抽出され、それにより空白のメソポーラス構造を残し、ここには後に前記膜の分子選択性を特別に与えるため、アミン基、チオール基、カルボキシル基、シアノ基、アミド基、カルボニル基、生体活性基などで充填又は官能基化され得る。
【0019】
より具体的には、前記方法は、コーティング溶液を調製することを含み、前記コーティング溶液はシリカ原料、4級アミン界面活性剤及び酸性水からなり;前記コーティング溶液中にポリマー性中空繊維を浸漬し、それにより前記ポリマー性中空繊維上に湿ったメソポーラスシリカ膜を形成し;前記ポリマー性中空繊維上の前記湿ったシリカ膜をリンスして乾燥し、それにより前記ポリマー性中空繊維上に乾燥したメソポーラスシリカ膜を形成させ;及び前記乾燥したメソポーラスシリカ膜を、例えば飽和アルコキシシランの蒸気中で熟成させ(aging)ることを含む。望む場合には、前記4級アミン分子は、前記膜から、適切な溶媒で処理することで抽出し、リンスして乾燥させる。前記残るメソポーラス中空繊維は、次に特定の応用のために望ましく誘導体化され得る。
【0020】
前記使用される支持体ポリマー性中空繊維は、従来の方法、例えば紡糸糸口から溶液をスピニングされて得られる好適なポリマー又はコポリマーであってよい。かかる中空繊維は、種々のタイプのポリイミド及びポリアミド(例えば、Torlon(R)、Ultem(R)、Matrimid(R))、PVP、CA、PSF、PAN、EC、ARなどを含むポリマー性中空繊維を含む。
【0021】
前記溶解シリカ中のシリカ(シリコン水酸化物、又はケイ酸又は[SiO
x(OH)
4−2x]
n)はすべての原料からであってよい。ケイ酸は、水溶液中のケイ酸塩(例えばケイ酸ナトリウム)を酸性化することで形成され、ここではシリカの共通の原料としてテトラエチルオルトシリケート(TEOS)を採用する。異なるアルコキシシランの使用はメソポーラスシリカのタイプを制御することができる、ということが知られている。TEOSの使用は、メソポーラスシリカモービル組成物48(MCM−48)表面(以下説明される)を形成させることを可能にし、一方他のシリケート及び表面活性剤では他のメソポーラスシリカを形成させることが可能である。
【0022】
4級アミン表面活性剤(これはquatsとしても知られている)は、前記構造NR
4+の正電荷多原子イオンを含み、Rはアルキル又はアルール基であり、かつそれぞれのRは同じであってもよく異なっていてもよい。好ましい実施態様では、前記Rは、少なくとも6、例えば8炭素原子のアルキル又はアリール基である。好適な4級アミン界面活性剤は、ベンザルコニウムクロリド、ベンゼトニウクロリド、メチルベンゼトニウムクロリド、セタルコニウムクロリド、セチルピリミジニウムクロリド、セトリモニウム、セトリミド、ドハニウムクロリド、テトラエチルアンモニウムブロミド、ジデシルジメチルアノモニウムクロリド及びドミフェンブロミドなどを含む。特に好ましくは、セチルトリメチルアンモニウムブロミドである。
【0023】
本発明によるガス分離装置の実施態様は、ポリマー性中空繊維を含む多孔性支持体構造と、前記多孔性支持体構造上に設けられるメソポーラス膜又はコーティングを含み、前記メソポーラス膜がシリカなどの無機材料を含む。他の実施態様では、前記無機材料が、複合メソポーラス材料を含み、前記複合メソポーラス材料がメソポーラスMCM及び4級アミンを含む。
【0024】
モービル組成物(MCM)は、モービルオイル株式会社の研究者により1992年に最初に合成された一連のメソポーラス結晶性材料に与えられた名前である。MCM−41及びMCM−48は、これまで広く研究されてきた2つのよく知られたメソポーラス分子篩い(モレキュラーシーブ)である。MCM−41及びMCM−48の顕著な構造は、アモルファスシリカ壁からなるけれども、それらは一様なメソポアを持つ長距離にわたり秩序だったポア構造を有する、ということである。特に、MCM−41は、一次元チャンネルのヘキサゴナル構造充填を示し、一方でMCM−48は、2つの独立した複雑に相互接続された3次元メソポーラスチャンネルを示す。MCMなどのメソポーラス材料を用いることは、また、それらが1000m
2g
−1を超えるまで可能な大きな表面積を有することから、重要である。さらに、これらの材料のポア直径は、その合成条件及び/又はその調製での異なる鎖長を持つ界面活性剤を適用することで、1.5nmから20nmのメソポーラス範囲内に制御され得る。しかし、小分子(サイズ0.5nm未満)の分離のためには、それらが比較的大きなサイズによることから前記ポアをさらに官能基化する必要がある。
【0025】
例示的実施態様では、前記MCMはMCM−48を含み、かつ前記4級アミンはセチルトリメチルアンモニウムブロミドを含み得る。他の実施態様では、前記メソポーラス膜は、3次元ポアのネットワークを持つメソポーラス構造を含み、かつ前記4級アミンは、前記メソポーラス膜のポア内に設けられ得る。
【0026】
ガス分離装置の製造方法はまた、ここで開示される。本方法は、本開示において、実質的に無欠陥の、1フィート以上のシリカ/CTAB膜に製造をスケールアップすることを可能にし、かかる長いコーティング中空繊維を共に束ねて種々の分離装置を作成することを可能にする。いかなる望ましい長さの中空繊維上にこれらのコーティングを形成することには限定はないと考えられる。これらの装置は次に、種々の分離又は精製プロセスで使用され得る。
【図面の簡単な説明】
【0027】
【
図1】
図1は、シリカ/CTAB膜コーティングULTEM(TM)中空繊維の断面走査電子顕微鏡画像である。
【
図2】
図2は、界面活性剤抽出後の前記メソポーラスシリカ膜コーティングULTEM(TM)中空繊維の断面走査電子顕微鏡画像である。
【
図3】
図3は、ULTEM(TM)膜上のシリカ/CTAB膜コーティングの小角X線回折パターンを示す。
【
図4】
図4は、界面活性剤抽出後のメソポーラスシリカ膜コーティングTORLON(TM)中空繊維の断面走査電子顕微鏡画像である。
【
図5】
図5は、アミノエチルアミノプロピルイソブチル−POSS(TM)浸潤後のメソポーラスシリカ膜コーティングTROLON(TM)のCO
2透過性を示す。
【
図6】
図6は、アミノエチルアミノプロピルイソブチル−POSS(TM)浸潤後のメソポーラスシリカ膜コーティングTROLON(TM)のN
2透過性を示す。
【
図7】
図7は、前記支持体ULTEM(TM)中空繊維の断面走査電子顕微鏡画像である。
【
図8】前記支持体TORLON(TM)中空繊維の断面走査電子顕微鏡画像である。
【
図9】
図9は、テンプレート抽出後のメソポーラスシリカ膜コーティングTROLON(TM)のN
2透過性を示す。
【
図10】
図10は、テンプレート抽出後のメソポーラスシリカ膜コーティングTROLON(TM)のCO
2透過性を示す。
【
図11】
図11は、TORLON(TM)溶出後に残るシリカ膜の断面走査電子顕微鏡画像である。
【発明を実施するための形態】
【0028】
本開示の側面はガス分離装置及びその製造方法及びその使用に関する。
図1及び2を参照して、これはガス分離装置100の断面画像であり、メソポーラス膜102が、ポリマー性中空繊維を含む多孔性支持体構造104上に設けられる。前記メソポーラス膜102は、メソポーラス構造を持ち、これは前記中空繊維のポアと接続する3次元ポアのネットワークを含む。前記膜102のポアは、直径0.1から10nm、好ましくは1から4nm、2から4nmの間であり又は約3nmである。前記メソポーラス膜102は、メソポーラスMCMなどの好適な無機材料を含む。前記MCMは、MCM−48又はMCM−41などのシリカ系であり得る。
【0029】
他の好適な無機材料は、複合メソポーラス材料であり得る。例えば、前記複合無機材料は、MCMタイプの材料と4級アミンを含み得る。例示的実施態様では、前記メソポーラス膜102は、MCM−48及びセチルトリメチルアンモニウムブロミド(CTAB)を含み得る。前記CTABは、前記MCM−48メソポーラス構造内に形成されるポアのネットワーク内に設けられ得る。
【0030】
前記多孔性支持体構造104は、従来の方法(例えば紡糸糸口から用をスピニングする)によりスピニングされて製造され得る。例示的中空繊維ポリマーは、ポリエーテルアミド及びポリアミド−イミドであり、それぞれ商品名ULTEM(TM)及びTORLON(TM)として市販されている。
【0031】
例示的自己配列方法がここでは、配列連続立方晶構造を持つメソポーラスシリカMCM−48/CTAB複合膜の製造のために提供される。高密平坦表面上に2次元ヘキサゴナル構造形、3次元ヘキサゴナル構造形及び単純な立方晶系を持つシリカ/界面活性剤複合膜をコーティングする従来技術は、I.A.Aksayらの「Science、vol.273(1996)pp.892−898」;H.Yangらの「J.Mater.Chem.、vol.7(1997)pp.1285−1290」;H.Miyataらの「Nat.Mater.、vol.3(2004)pp.651−656)」に記載されており、これらは参照されて本明細書に援用される。
【0032】
本開示は、しかし、平坦な高密表面だけではなく多孔性中空繊維上へ複合膜を設けるための改良された浸潤技術を提供する。多孔性の粗表面の存在は、平坦な高密の表面と比較して、前記メソポーラスコーティングの形成のメカニズムを変更する、というのは前記反応物と表面の間の物理的及び化学的相互作用の組合せが変化するからである。重要なことは、前記メソポーラスコーティングは広い面積及び/又は繊維長さにわたり一様であることが必要であり、広い領域及び/又は繊維長さにわたり無欠陥(ピンホールやひび割れなど)であるということである。従って、分子は、前記メソポーラス材料のポアのみを通って通過するべきである。かかる可能性はこれまでは示されたことはなかった。
【0033】
本開示の実施態様では、M−48複合体膜層は、ポリマー性中空繊維を溶解シリカ、CTAB及び酸性水を含むコーティング溶液中に10分から24時間、10から80℃で浸漬させて製造される。前記コーティング溶液のpHは0から4の間であり、酸(例えばHCl)で調節することができる。前記混合溶液の組成は、次のモル比:1.0SiO
2:aCTAB:bH
2Oで表現される。実施態様では、aは0.1と1の間、及びbは20と200の間である。実施態様では、前記シリカの原料はアルコシキシラン、例えばテトラエチルオルトシリケート(TEOS)、ヒュームドシリカ、コロイダルシリカなどである。
【0034】
前記ポリマー性中空繊維を前記コーティング溶液中に少なくとも一部分浸漬させた後、MCM−48/CTAB複合体膜層は前記ポリマー性中空繊維の表面上に成長させる。前記コーティング溶液中に基板を浸漬させている際に、界面活性剤が前記基板に吸収され、自己配列して配列ミセルを形成する、と考えられている。同時に、毛細管力が、前記反応溶液を前記表面に近い中空繊維のポア内に移動させ、それによりさらに連続的膜の形成を促進することとなる。シリカ前駆体は、前記自己配列界面活性剤内にインターカレーションし、シリカ/CTAB複合体がそれにより、前記多孔性基板表面で成長する。
【0035】
得られるMCM−48/CTAB膜は、CTAB分子で充填された3次元配列されたポアのネットワークを含むシリカ構造を含む。前記チャンネルの直径は、好ましくは1ナノメートルから5ナノメートルの間である。MCM−48/CTAB膜では、CTAB分子は、前記剛性シリカ壁内に閉じ込められ、かつお互いに連続的に接続され得る。
【0036】
MCM−48/CTAB膜又はコーティングの存在は、
図3で示されるXRD及び
図1で示されるSEMにより確認される。前記MCM−48/CTAB膜は、前記コーティングポリマー性中空繊維の移行層上に設けられているように見える。
【0037】
前記MCM−48/CTAB膜層の厚さは、前記浸漬時間に部分的に依存し、かつ前記ポリマー性中空繊維のポア構造に依存する。前記層構造は、走査電子顕微鏡で測定され得る。
【0038】
前記MCM−48/CTAB膜は次に、使用の前に密閉容器内で飽和されたTEOS蒸気で熟成される。我々は、前記最初のメソポーラスシリカコーティングは、シリコン欠陥性(即ち、立方晶ポア構造を形成するけれども、機械的に強いネットワークを形成するには十分なシリケートが存在しない)であることを見出した。しかし、TEOSの蒸気に暴露する際に追加のシリカ成分が与えられ、既存のネットワークに取り込まれ、それにより前記メソポーラス構造を強化する。実施態様では、熟成温度は、50℃から150℃の間であり、かつ熟成時間は1時間から48時間の間が使用され得る。
【0039】
中空繊維膜のガス透過性は、そのガス透過性を測定することで評価され得る。透過性は、ガス透過性単位(GPU)で測定され、次のように定義される。
【0040】
【数1】
言い換えると、膜の透過性は、前記膜を横切る単位圧力差当たり、前記膜の単位表面積(cm
2)当たり、単位時間当たりに前記膜に透過されたガスの量(cm
3(STP)/s)で、測定され得る。前記ガス分離膜の選択性は、より透過性の成分(例えばCO
2)の通過の速度と、より透過性でない成分(例えばN
2)の透過速度との比で定義される。
【0041】
実施態様では、前記支持体ULTEM(TM)中空繊維はCO
2/N
2選択性が、100psig供給圧力でガスに対して35℃で、6.7を示す。他の実施態様では、ULTEM(TM)中空繊維にコーティングしたシリカ/CTAB膜のN
2及びCO
2の透過性が、50psigから100psigの範囲の供給圧で測定され、その結果が以下の表1にまとめられている。
【0042】
【表2】
他の実施態様では、100psigでの供給圧でCO
2/N
2選択性は、シリカ/CTAB膜コーティング後に6.7から21へ増加した。シリカ/quat複合膜を通じるCO
2の選択的透過は、CO
2のCTABの4級アミン基への吸収により、かつ連続的接続されたCTABチャンネルを通る拡散により促進される。しかし前記透過性は時間と共に安定ではない。得られた結果を表2にまとめた。前記メソポア内のCTABは、前記ガス透過性測定の際に押し出され得る。
【0043】
【表3】
実施態様では、本開示のシリカ/quat膜はスキン層なしで中空繊維上にコーティングされ得る。他の実施態様では、前記支持体TORLON(TM)中空繊維はスキン層なしで、10psig供給圧でガスにつき35℃で、50000GPUのCO
2透過性及び0.93のCO
2/N
2選択性を持つ。他の実施態様では、TORLON(TM)中空繊維上のシリカ/CTAB膜コーティングのN
2及びCO
2透過性が50psig供給圧で測定された。前記シリカ/quat膜はCO
2透過性が11、かつCO
2/N
2選択性が1.9を持つ。
【0044】
他の実施態様では、前記配列シリカ壁内に閉じこまれた4級アミン分子が溶媒抽出で除去され得る。本開示で使用される前記抽出方法は、支持体ポリマー性中空繊維上に形成された連続開放ポアを持つメソポーラスシリカ膜の製造を可能にする。この実施態様では、前記4級アミン分子は、水、アルコール又はそれらの混合物などの溶媒を用いて、20℃から100℃の間で、1時間から72時間内に抽出される。前記抽出溶媒のpHは0から7の間であり、酸を加えて調節され得る(例えばHCl)。アルコールの例は、限定されるものではないが、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec−ブタノール及びtert−ブタノールを含む。
【0045】
溶媒抽出後、前記ポリマー性中空繊維上の前記連続シリカ膜層コーティングは
図2及び4で示されるように維持される。溶媒抽出後、前記ULTEM(TM)抽出繊維上のメソポーラスシリカ膜コーティングは、100psig供給圧でガスについて35℃で、3.2GPUのN
2透過性を持ち、かつ15GPUのCO
2透過性を持つ。前記N
2及びCO
2透過性は、支持体ULTEM(TM)中空繊維のものと同等である。前記溶媒抽出後、TORLON(TM)抽出繊維上のメソポーラスシリカ膜コーティングは、50psig供給圧でガスについて35℃で、4400GPUのCO
2透過性を持ち、かつ3300GPUのN
2透過性を持つ。前記支持体TORLON(TM)中空繊維は、10psig供給圧でガスについて35℃で、50000GPUのCO
2透過性を持ち、かつ54000GPUのN
2透過性を持つ。これらの透過性は、CTABが抽出され、前記メソポーラスシリカ膜が連続開放チャンネルを持つことを示す。
【0046】
前記の通り、quat抽出後、前記メソポーラスチャンネルは、他の望ましい分子で充填されるか又は前記膜のガス選択性を特化させるために官能基化され得る。従って、標準の化学反応により、前記シリカ系に種々の反応性基を誘導し又は結合させることができ、例えばチオール基、カルボキシル基、シアノ基、アミド基、カルボニル基などである。生体反応性基もまたそこに追加でき、例えばレセプター、リガンド、抗体、抗原、ストレプトアビジン、ビオチン、薬物分子などである。
【0047】
かかる官能基化基の選択的使用により、前記分離装置は多くの異なる応用に使用され得ることとなる。例えば、ガスが、種々の製造設備から回収され、呼吸ガス中の代謝物などが測定され得ることとなる。
【0048】
実施態様では、POSS(TM)として知られる多面体オリゴマーシルセスキオキサン分子がメソポア充填材料として使用される。POSS(TM)分子に基本構造は、立方体形状を形成する接続された8つのSiO
4四面体を含む。いくつかの有機側鎖が前記Si原子に結合され、それにより広い組合せの分子形状、及び官能性を生成し得る。本開示で使用される浸潤方法は、POSS(TM)浸潤メソポーラスシリカ膜の製造を可能にする。この実施態様では、CTAB抽出メソポーラス中空繊維は、クロロホルム、トルエン、アセトン、アルコール又はそれらの混合物を用いてPOSS(TM)溶液中に、浸潤時間は1分から72時間の間で、圧は0.01気圧から1気圧の間で、浸潤させる。
POSS(TM)の濃度は、0.1.g/mLから100mg/mLの間である。前記浸潤の際に、POSS(TM)分子が前記メソポア内に毛細管力で浸潤されると、考えられる。
【0049】
種々のPOSS(TM)分子のなかで、ヘプタイソブチル−(2−アミノエチル(3−アミノプロピル)オクタシルセスキオキサン(これはアミノエチルアミノプロピルイソブチル−POSS(TM)として知られている)が酸性ガス分離に使用され得る。実施態様では、本開示の前記POSS(TM)浸潤シリカ膜は、天然ガス流中の酸性ガス(例えば、CO
2及びH
2S)を他の成分(例えば、N
2、CH
4)から分離するために使用され得る。前記組成膜を通じて酸性ガスを選択的に移送することは、酸性ガスをアミノエチルアミノプロピルイソブチル−POSS(TM)への吸収及び、POSS(TM)−浸潤チャンネルを通る表面拡散により容易となる。アミノエチルアミノプロピルイソブチル−POSS(TM)の浸潤後、TORLON(TM)中空繊維上のメソポーラスシリカ膜コーティングは、50psig供給圧でガスに対して35℃でCO
2透過性が96GPU、かつ理想的なCO
2/N
2選択性16を持つ。
【0050】
これらの実施態様は、中空繊維支持体を持つガス選択的膜及びその経済的製造方法を提供するものである。本開示の前記POSS(TM)−浸潤シリカ膜は、単純に浸漬し、気相堆積させ、抽出し、及び浸潤技術により容易に製造され得る。
【実施例】
【0051】
実施例1:ULTEM(TM)上メソポーラスシリカ/CTAB
支持体ポリマー性繊維として、ULTEM(TM)−1000中空繊維を使用した。前記ULTEMN(TM)中空繊維は、紡糸糸口を通じて溶液からスピニングされた。前記支持体繊維の直径は270ミクロンであり、前記繊維層厚さは、30ミクロンから60ミクロンの間であった。前記支持体繊維層は、下部構造、移行層及びスキン層(内部層から外部層へ)からなる。前記移行層の厚さは8ミクロンであり、移行層のポアサイズは約100ナノメートルであった。前記スキン層の厚さは約100ナノメートルであり、前記スキン層はサブナノメートル領域のポア欠陥を持っていた。
【0052】
シリカ/CTAB膜は次に前記ULTEM(TM)中空繊維上に製造された。前記膜コーティングのために、前記支持体繊維を前記コーティング溶液中に20℃で1時間浸漬させた。前記混合溶液は、約モル比:1TEOS:0.425CTAB:0.00560HCl:62.2H
2Oであった。
【0053】
前記浸漬プロセス後、前記繊維をエタノールでリンスして乾燥した。製造された中空繊維膜は、使用の前に飽和TEOS蒸気で熟成させた。30cm長さの中空繊維を密閉容器内にいれ、50マイクロリットルのTEOSを入れて、100℃で24時間保持した。前記熟成プロセス後、前記中空繊維膜をエタノールでリンスして乾燥させた。
【0054】
ULTEM(TM)膜上のシリカ/CTAB膜の小角X線回折(XRD)パターンが
図3に示される。
図3のXRDピークは、連続立方晶系ia3d構造の(210)、(220)、(322)/(422)及び(440)として示される。
図3は、CTAB分子が、配列シリカ壁内に閉じ込められお互いに連続的に結合していることを示す。
【0055】
図7及び1はそれぞれ、前記支持体ULTEM(TM)中空繊維及びULTEM(TM)中空繊維上の前記シリカ/CTAB膜の断面走査電子顕微鏡画像である。
図7は、スキン層、移行層及び下部構造を示す。前記シリカ/CTAB組成層は前記多孔性移行層上に成長して、前記支持体繊維の外部部分に連続的なシリカ/CTAB膜層を形成する(
図1)。前記シリカ/CTAB膜厚さは1ミクロンである(
図1)。
【0056】
単一ガス透過性は、繊維透過性試験モジュールを用いて、Korosらの文献(米国特許第7247191号)に記載される、コーティングされていないULTEM(TM)繊維についての透過性試験を用いて測定された。純粋なガスを前記繊維の1つの端部を通じて繊維内部へ供給した。透過性試験システムの温度は測定の間約35℃に維持した。前記繊維からの流れはバブル流量計で測定した。下流で大気圧を維持し、下流側の温度は20℃近くであった。前記流れを前記の通りの透過性に変換した。
【0057】
試験繊維の、100psigでのN
2透過性及びCO
2透過性は、それぞれ2.1GPUと14GPUであった。前記繊維の理想CO
2/N
2選択性は6.7であった。100psigで、ULTEM(TM)中空繊維のN
2透過性及びCO
2透過性はそれぞれ0.45GPU及び9.4GPUであった(表1)。シリカ/CTAB膜コーティング後、理想CO
2/N
2選択性は6.7から21へ増加した。前記透過性性質は時間経過と共に不安定であった。前記測定から2日後、CO
2透過性は21GPUへ増加し、理想CO
2/N
2選択性は2.1へ減少した(表2)。メソポア内のCTABは前記ガス透過測定
の間に押し出された可能性がある。
【0058】
実施例2:TORLON(TM)上のメソポーラスsirika/CTAB
支持体ポリマー性繊維として、TORLON(TM)4000−LV中空繊維がまた使用された。前記TORLON(TM)中空繊維は溶液を紡糸糸口からスピニングして得られた。前記支持体繊維の直径は220ミクロンであり、前記繊維層の厚さは30ミクロンから60ミクロンの間の範囲であった。前記支持体繊維はスキン層を有さず、外部表面に開口ポアを持っていた(
図8)。10psig供給圧で、前記支持体TORLON(TM)中空繊維のCO
2及びN
2透過性はそれぞれ50000GPU及び54000GPUであった。
【0059】
次にシリカ/CTAB膜を前記TORLON(TM)中空繊維上に形成させた。前記膜コーティングのために、前記支持体繊維は、20℃で5時間前記コーティング溶液中に浸漬させた。浸漬プロセス後、前記繊維をエタノールでリンスして乾燥させた。前記製造された中空繊維を飽和TEOS蒸気で熟成させた。熟成プロセス後、前記中空繊維膜はエタノールでリンスされ乾燥された。50psigで、TORLON(TM)中空繊維上のシリカ/quart膜コーティングのN
2及びCO
2透過性はそれぞれ5.9GPU及び11GPUであった。
【0060】
実施例3:QUAT抽出
CTAB抽出のために、シリカ/CTABでコーティングされた30cm長さのULTEM(TM)中空繊維を、20℃で48時間ゆっくり撹拌された0.05NHCl/エタノールの100ミリリットル中に浸漬させた。抽出プロセス後、前記繊維をエタノールでリンスし乾燥した。テンプレートを抽出した後、前記ULTEM(TM)中空繊維上にコーティングした連続メソポーラスシリカ膜は、断面SEM画像で確認された(
図2)。テンプレート抽出後のULTEM(TM)中空繊維のコーティングしたメソポーラスシリカ膜のN
2透過性及びCO
2透過性を測定して、それぞれ100psigの供給圧で3.2GPUと15GPUとなった。
【0061】
TORLON(TM)中空繊維上のシリカ/CTAB膜コーティングのCTAB抽出のために、エタノール及び0.05HCl/エタノールを用いた。エタノールを用いて24時間抽出後、N
2透過性及びCO
2透過性を測定して、それぞれ50psigの供給圧で1900GPUと1700GPUとなった。0.05NHCl/エタノールを用いた場合は、N
2透過性及びCO
2透過性を測定して、それぞれ50psigの供給圧で3300GPUと4400GPUとなった。
【0062】
一様な無欠陥メソポーラス層を確認するために、テンプレート抽出後のメソポーラスシリカ膜コーティングTORLON(TM)中空繊維のN
2及びCO
2透過性が、10psigから50psigの供給圧の範囲で測定された(
図9、10)。前記圧範囲で一定のN
2透過性及びCO
2透過性は、前記膜を通るガス透過性が前記メソポア中のKnudsen拡散で制御されているものであり、ピンホールや割れ目などの欠陥を通じたものではないことを示す。前記メソポーラスコーティング層は、前記テンプレート抽出後に一様かつ無欠陥を維持する。
【0063】
前記テンプレート抽出後のTORLON(TM)中空繊維上の連続メソポーラスシリカ膜層コーティングはまた、断面SEM画像でも確認された(
図4)。前記メソポーラスシリカ膜厚は1.6ミクロンである。シリカ層の存在を保証するために、前記支持体TORLON(TM)はジクロロメタンを用いて除去された。
図11は、TORLON(TM)を溶解除去した後に残ったシリカ膜の断面SEMは、画像である。残されたシリカ層厚さは1.6ミクロンである。
【0064】
実施例4:POSS(TM)浸潤
アミノエチルアミノプロピルイソブチル−POSS(TM)として知られるヘプタイソブチル−(2−アミノエチル(3−アミノプロピル)オクタシルセスキオキサンを、酸性ガス分離のためのメソポア充填材料として使用した。浸潤プロセスの前に、前記テンプレート抽出後の前記TORLON(TM)中空繊維上にコーティングされたメソポーラスシリカ膜を1時間室温で真空乾燥した。前記POSS(TM)浸潤のために、2つの30cm長さのメソポーラス中空繊維を、POSS(TM)10ミリグラム/5ミリリットルのクロロホルム溶液注に浸漬させた。前記繊維浸漬溶液を、0.19気圧から0.12気圧に30分間減圧させて熟成させた。前記浸潤プロセス後、前記繊維をゆっくり撹拌されたエタノールで30分間洗浄し、乾燥した。アミノエチルアミノプロピルイソブチル−POSS(TM)の浸潤後、TORLON(TM)中空繊維上のメソポーラスシリカ膜は、50psig供給圧でガスに対して35℃で、96GPUの安定なCO
2透過性及び安定な16GPUのCO
2/N
2選択性を持つ。前記N
2及びCO
2透過性は、繰り返し24時間測定で安定であった。従って、POSS浸潤は透過性を安定化させた。
【0065】
開示された原理による種々の実施態様がこれまで説明されたが、理解されるべきことは、これらは例示するために与えられるものであり、なんらを制限するためではない、ということである。従って、本発明の本質及び範囲は前記記載の実施態様に限定されるものではなく、特許請求の範囲によって、及びこの開示と均等なもののみで定められるものである。さらに、前記利点及び構成は説明された実施態様に与えられているが、請求される本出願がかかる利点の全て又はいくらかを達成するプロセス及び構成に限定されるものではない。
【0066】
さらには、前記見出しは、37CFR1.77などでの示唆に整合するように与えられている。これらの見出しは、この開示に基づくいかなる特許請求の範囲で定められる本発明を制限又は特徴付けるものではない。特に例えば、見出しが「技術分野」を意味するが、特許請求の範囲が、この見出しでいわゆる技術分野を説明するために選択された用語により制限されるものではない。さらに、「背景技術」で説明される技術は、当該技術が本開示での発明に対して先行する技術であることを認めるものではない。また「要約」もまた、特許請求の範囲で定められる本発明の特徴として考えられるべきではない。さらに、単数形での「発明」に関して本開示におけるすべての意味は、本開示で単一の新規な点のみが存在するという反論を行うために使用されるべきではない。複数の発明が本開示から複数の請求項の限定により定められ、及び従って、かかる請求項は、前記発明及びその均等発明を定め、それにより保護される。全ての場合において、かかる請求項の範囲は本開示に照らして自体本案で考慮され、ここでの見出しにより制約されるべきではない。