(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5961785
(24)【登録日】2016年7月8日
(45)【発行日】2016年8月2日
(54)【発明の名称】スイッチングが改良されたハイブリッド磁気トンネル接合要素を提供するための方法およびシステム
(51)【国際特許分類】
H01L 21/8246 20060101AFI20160719BHJP
H01L 27/105 20060101ALI20160719BHJP
H01L 29/82 20060101ALI20160719BHJP
H01L 43/08 20060101ALI20160719BHJP
【FI】
H01L27/10 447
H01L29/82 Z
H01L43/08 Z
【請求項の数】23
【外国語出願】
【全頁数】15
(21)【出願番号】特願2011-242355(P2011-242355)
(22)【出願日】2011年11月4日
(65)【公開番号】特開2012-104825(P2012-104825A)
(43)【公開日】2012年5月31日
【審査請求日】2014年10月22日
(31)【優先権主張番号】12/940,926
(32)【優先日】2010年11月5日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】595083198
【氏名又は名称】サムスン セミコンダクター,インコーポレーテッド
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100154922
【弁理士】
【氏名又は名称】崔 允辰
(72)【発明者】
【氏名】ドミトロ・アパルコフ
(72)【発明者】
【氏名】モハマド・トウフィック・クロウンビ
【審査官】
加藤 俊哉
(56)【参考文献】
【文献】
特開2010−109372(JP,A)
【文献】
特開2009−043993(JP,A)
【文献】
特開2012−009538(JP,A)
【文献】
米国特許出願公開第2007/0215967(US,A1)
【文献】
国際公開第2010/126854(WO,A1)
【文献】
特開2009−081215(JP,A)
【文献】
特開2012−064863(JP,A)
【文献】
特表2008−526046(JP,A)
【文献】
特開2002−324929(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/8246
H01L 27/105
H01L 29/82
H01L 43/08
(57)【特許請求の範囲】
【請求項1】
磁気デバイスで使用するための磁気接合であって、
ピンド層と、
非磁性スペーサ層と、
円錐状の容易磁気異方性を有する自由層と、を備え、
前記非磁性スペーサ層が前記ピンド層と前記自由層の間に位置し、
磁気接合が、磁気接合に書き込み電流が流されるときに前記自由層が複数の安定な磁気状態間で切替え可能であるように構成され、
前記自由層が、高い垂直異方性の層と、負の垂直異方性の層と、前記高い垂直異方性の層と前記負の垂直異方性の層の間の相互作用制御層と、を含み、前記高い垂直異方性の層と前記負の垂直異方性の層が円錐異方性を提供し、
前記自由層が、追加の負の垂直異方性の層と追加の相互作用制御層とをさらに含み、前記追加の相互作用制御層が、前記高い垂直異方性の層と前記追加の負の垂直異方性の層の間に位置する、磁気デバイスで使用するための磁気接合。
【請求項2】
前記高い垂直異方性の層が、少なくとも1000エルステッドの垂直異方性磁場を有する、請求項1に記載の磁気接合。
【請求項3】
前記高い垂直異方性磁場が、少なくとも5000エルステッドである、請求項2に記載の磁気接合。
【請求項4】
前記相互作用制御層が、Ru、Ta、Mg、MgO、Ti、W、およびCrの少なくとも1つを含む、請求項1に記載の磁気接合。
【請求項5】
前記相互作用制御層が、少なくとも0.1nmであり、かつ1.5nm以下の厚さを有する、請求項4に記載の磁気接合。
【請求項6】
前記高い垂直異方性の層が、前記負の垂直異方性の層よりも前記ピンド層に近い、請求項1に記載の磁気接合。
【請求項7】
前記負の垂直異方性の層が、前記高い垂直異方性の層よりも前記ピンド層に近い、請求項1に記載の磁気接合。
【請求項8】
前記負の垂直異方性の層が、部分垂直異方性をさらに有する、請求項1に記載の磁気接合。
【請求項9】
前記自由層が、前記磁気接合の平面に垂直な方向から実質的にゼロ度の角度で極大値を有する異方性エネルギーを有する、請求項1に記載の磁気接合。
【請求項10】
前記極大値が、ボルツマン定数と前記磁気接合の温度との積の少なくとも10倍である、請求項9に記載の磁気接合。
【請求項11】
前記極大値が、ボルツマン定数と前記磁気接合の温度との積の少なくとも20倍である、請求項10に記載の磁気接合。
【請求項12】
前記非磁性スペーサ層がトンネル障壁層である、請求項1に記載の磁気接合。
【請求項13】
前記非磁性スペーサ層が結晶MgOを含む、請求項12に記載の磁気接合。
【請求項14】
追加のピンド層と、
追加の非磁性スペーサ層と、をさらに備え、
前記追加の非磁性スペーサ層が、前記追加のピンド層と前記自由層の間に位置する、
請求項1に記載の磁気接合。
【請求項15】
前記非磁性スペーサ層と前記追加の非磁性スペーサ層の少なくとも一方がトンネル障壁層である、請求項14に記載の磁気接合。
【請求項16】
複数の磁気記憶セルと、
複数のビット線と、を備える磁気メモリであって、
前記複数の磁気記憶セルがそれぞれ、少なくとも1つの磁気接合を含み、前記少なくとも1つの磁気接合が、ピンド層と、非磁性スペーサ層と、円錐状の容易磁気異方性を有する自由層とを含み、前記非磁性スペーサ層が前記ピンド層と前記自由層の間に位置し、前記磁気接合が、前記磁気接合に書き込み電流が流されるときに前記自由層が複数の安定な磁気状態の間で切替え可能であるように構成され、
前記自由層が、高い垂直異方性の層と、負の垂直異方性の層と、前記高い垂直異方性の層と前記負の垂直異方性の層の間の相互作用制御層と、を含み、前記高い垂直異方性の層と前記負の垂直異方性の層が円錐状の容易異方性を提供し、
前記自由層が、追加の負の垂直異方性の層と追加の相互作用制御層とをさらに含み、前記追加の相互作用制御層が、前記高い垂直異方性の層と前記追加の負の垂直異方性の層の間に位置する、磁気メモリ。
【請求項17】
前記高い垂直異方性の層が、少なくとも1000エルステッドの垂直異方性磁場を有する、請求項16に記載の磁気メモリ。
【請求項18】
前記垂直異方性磁場が、少なくとも5000エルステッドである、請求項17に記載の磁気メモリ。
【請求項19】
前記負の垂直異方性の層が、部分垂直異方性をさらに有する、請求項16に記載の磁気メモリ。
【請求項20】
前記自由層が、前記磁気接合の平面に垂直な方向から実質的にゼロ度の角度で極大値を有する異方性エネルギーを有する、請求項16に記載の磁気メモリ。
【請求項21】
前記極大値が、ボルツマン定数と前記磁気接合の温度との積の少なくとも10倍である、請求項20に記載の磁気メモリ。
【請求項22】
前記極大値が、ボルツマン定数と前記磁気接合の温度との積の少なくとも20倍である、請求項21に記載の磁気メモリ。
【請求項23】
前記複数の磁気接合がそれぞれ、
追加のピンド層と、
追加の非磁性スペーサ層と、をさらに含み、前記追加の非磁性スペーサ層が前記追加のピンド層と前記自由層の間に位置する、
請求項16に記載の磁気メモリ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、DARPAによって与えられた交付/契約番号HR0011-09-C-0023の下で米国政府の支援を受けた。米国政府は本発明に一定の権利を有する。
【背景技術】
【0002】
磁気メモリ、特に磁気ランダムアクセスメモリ(MRAM)は、それらの高い読み取り/書き込み速度、優れた耐久性、不揮発性、および動作中の低い電力消費の可能性により、ますます注目されている。MRAMは、情報記録媒体として磁性材料を利用して情報を記憶することができる。MRAMの1タイプは、スピントランスファートルクランダムアクセスメモリ(STT-RAM)である。STT-RAMは、磁気接合を通してドライブされた電流によって少なくとも一部書き込まれる磁気接合を利用する。磁気接合を通してドライブされたスピン偏極電流が、磁気接合での磁気モーメントにスピントルクを及ぼす。その結果、スピントルクに応答する磁気モーメントを有する層を所望の状態に切り替えることができる。
【0003】
例えば、
図1は、従来のSTT-RAMで使用することができるものなど、従来の磁気トンネル接合(MTJ)10を示す。従来のMTJ10は、典型的には、底部コンタクト11上に位置し、従来のシード層12を使用し、従来の反強磁性(AFM)層14と、従来のピンド層16と、従来のトンネル障壁層18と、従来の自由層20と、従来のキャップ層22とを含む。また、上部コンタクト24も図示されている。
【0004】
図1に示されるように、従来のコンタクト11および24は、膜面垂直通電(CPP)方向で、またはz軸に沿って電流をドライブする際に使用される。従来のシード層12は、典型的には、所望の結晶構造を有するAFM層14など後続の層の成長を助けるために利用される。従来のトンネル障壁層18は非磁性であり、例えばMgOなどの薄い絶縁体である。
【0005】
従来のピンド層16および従来の自由層20は磁性である。従来のピンド層16の磁化17は、典型的にはAFM層14との交換バイアス相互作用によって特定の方向で固定またはピン止めされる。単層(単一の層)として図示されているが、従来のピンド層16は複数の層を含むこともある。例えば、従来のピンド層16は、Ruなどの薄い導電層を介して反強磁性結合された磁性層を含む合成反強磁性(SAF)層でよい。そのようなSAFでは、Ruの薄層と交互配置された複数の磁性層を使用することができる。別の実施形態では、Ru層をまたぐ結合は強磁性でよい。さらに、従来のMTJ10の他のタイプは、追加の非磁性障壁または導電層(図示せず)によって自由層20から分離された追加のピンド層(図示せず)を含むことがある。
【0006】
従来の自由層20は、変化可能な磁化21を有する。単層として図示されているが、従来の自由層20も複数の層を含むことがある。例えば、従来の自由層20は、Ruなどの薄い導電層を介して反強磁性または強磁性結合された磁性層を含む合成層でよい。従来の自由層20の磁化21は、平面内にあるものとして示されているが、垂直異方性を有することもある。
【0007】
従来の自由層20の磁化21を切り替えるために、電流が平面に垂直に(z方向で)ドライブされる。十分な電流が上部コンタクト24から底部コンタクト11にドライブされるとき、従来の自由層20の磁化21は、従来のピンド層16の磁化17に平行に切り替わり得る。十分な電流が底部コンタクト11から上部コンタクト24にドライブされるとき、自由層の磁化21は、ピンド層16の磁化に反平行に切り替わり得る。磁気的構成の相違は、異なる磁気抵抗に対応し、したがって従来のMTJ10の異なる論理状態(例えば論理「0」と論理「1」)に対応する。
【0008】
STT-RAM用途で使用されるとき、従来のMTJ10の自由層21は、比較的低い電流で切り替えられることが望ましい。臨界スイッチング電流(I
c0)は、平衡の向きを軸とする自由層磁化21の無限小の歳差が不安定になる最小の電流である。例えば、I
c0は、数mA以下のオーダーであることが望ましいことがある。さらに、より高いデータレートで従来の磁性要素10をプログラムする際、短い電流パルスを使用するのが望ましい。例えば、20〜30ns以下のオーダーの電流パルスが望ましい。
【0009】
従来のMTJ10は、スピントランスファーを使用して書き込むことができ、STT-RAMで使用することができるが、欠点がある。例えば、受け入れることができるI
c0およびパルス幅を有するメモリに関して、書き込みエラー率(WER)が、望まれるよりも高いことがある。書き込みエラー率は、少なくとも典型的なスイッチング電流に等しい電流を受けたときにセル(すなわち従来の磁気接合の自由層20の磁化21)が切り替えられない確率である。WERは、10
-9以下であることが望ましい。しかし、従来の自由層20は、典型的にはこの値を大きく超えるWERを有する。さらに、WERは、より短い書き込み電流パルスに関して改良することが難しいことが分かっている。例えば、
図2は、様々な幅のパルスに関するWERの傾向を示すグラフ50である。グラフ50に描かれているのは実際のデータではないことに留意されたい。そうではなく、グラフ50は、傾向を示す意味合いのものである。パルス幅は、最長のものから最短のものへ、曲線52、54、56、および58に関係している。グラフ50で見ることができるように、より高いパルス幅に関しては、WERと書き込み電流の関係がより高い傾きを有する。したがって、同じパルス幅に関して、より高い書き込み電流の印加がWERを大幅に減少させることがある。しかし、曲線54、56、および58でパルス幅が短くなるにつれて、曲線54、56、および58の傾きは減少する。パルス幅が小さくなるにつれて、電流の増加がWERをあまり減少しなくなる。したがって、従来のMTJ10を採用するメモリは、受け入れられないほど高いWERを有することがあり、これは、書き込み電流の増加によっては修正されないことがある。
【0010】
WERなどの特性を改良するために、様々な従来の解決策が提案されている。例えば、磁場を用いたスイッチング、および/または複雑な構造を有する磁気接合を使用することができる。しかし、そのような従来の方式が他の特性を保ちながらWERを減少させることができる能力は限られている。例えば、そのような従来の方法によって、スケーラビリティ、エネルギー消費、および/または熱的安定性に悪影響が及ぼされることがある。したがって、従来のMTJを使用するメモリの性能は、引き続き改良が望まれている。
【発明の概要】
【発明が解決しようとする課題】
【0011】
したがって、スピントランスファートルクベースのメモリの性能を改良することができる方法およびシステムが必要とされる。本明細書で説明する方法およびシステムは、そのような必要性に対処する。
【課題を解決するための手段】
【0012】
磁気デバイスで有用な磁気接合を提供するための方法およびシステムを説明する。磁気接合は、ピンド層、非磁性スペーサ層、および自由層を含む。非磁性スペーサ層は、ピンド層と自由層の間にある。自由層は、円錐状の容易磁気異方性(easy cone magnetic anisotropy)を有する。磁気接合は、磁気接合に書き込み電流が流されるときに自由層が複数の安定な磁気状態間で切替え可能であるように構成される。
【図面の簡単な説明】
【0013】
【
図2】書き込み電流と書き込みエラー率の関係の傾向を示すグラフである。
【
図3】円錐状の容易異方性を有する自由層を含む磁気接合の例示的実施形態を示す図である。
【
図4】自由層磁化に関する異方性エネルギーの例示的実施形態を示す図である。
【
図5】円錐状の容易異方性を有する自由層を含む磁性要素の例示的実施形態を示す図である。
【
図6】様々な磁気接合に関する異方性エネルギーの例示的実施形態を示す図である。
【
図7】円錐状の容易異方性を有する自由層の磁気モーメントを示す図である。
【
図8】円錐状の容易異方性を有する自由層を含む磁気接合の例示的実施形態を示す図である。
【
図9】磁気接合で有用な円錐状の容易異方性を有する自由層の別の例示的実施形態を示す図である。
【
図10】磁気接合で有用な円錐状の容易異方性を有する自由層の別の例示的実施形態を示す図である。
【
図11】円錐状の容易異方性を有する自由層を含む磁気接合の別の例示的実施形態を示す図である。
【
図12】円錐状の容易異方性を有する自由層を含む磁気接合を製造するための方法の例示的実施形態を示す図である。
【
図13】記憶セルのメモリ要素で磁気接合を利用するメモリの例示的実施形態を示す図である。
【発明を実施するための形態】
【0014】
例示的実施形態は、磁気メモリなど磁気デバイスで有用な磁気接合、およびそのような磁気接合を使用するデバイスに関する。以下の説明は、当業者が本発明を実施および使用できるように提示され、特許出願およびその要件との関連で提供される。例示的実施形態、ならびに本明細書で説明する全般的な原理および特徴に対する様々な修正が容易に明らかであろう。主に特定の実装形態で提供される特定の方法およびシステムに関して例示的実施形態を説明する。しかし、方法およびシステムは、他の実装形態でも効果的に機能する。「例示的実施形態」、「一実施形態」、および「別の実施形態」などの語句は、同一の実施形態を表すことも異なる実施形態を表すこともあり、また複数の実施形態を表すこともある。いくつかの構成要素を有するシステムおよび/またはデバイスに関して実施形態を説明する。しかし、システムおよび/またはデバイスは、図示されるよりも多い構成要素を含むことも、少ない構成要素を含むこともあり、本発明の範囲から逸脱することなく構成要素の構成およびタイプの変更を行うことができる。また、いくつかのステップを有する特定の方法との関連で例示的実施形態を説明する。しかし、方法およびシステムは、例示的実施形態と矛盾しない異なるステップおよび/または追加のステップ、ならびに異なる順序のステップを有する他の方法に関しても効果的に機能する。したがって、本発明は、図示される実施形態に限定されるものとは意図されず、本明細書で説明する原理および特徴と整合性のある最も広い範囲を与えられるべきである。
【0015】
磁気接合を提供するための方法およびシステム、ならびに磁気接合を利用する磁気メモリを説明する。例示的実施形態は、磁気デバイスで有用な磁気接合を提供するための方法およびシステムを提供する。磁気接合は、ピンド層、非磁性スペーサ層、および自由層を含む。非磁性スペーサ層は、ピンド層と自由層の間にある。自由層は、円錐状の容易磁気異方性を有する。磁気接合は、磁気接合に書き込み電流が流されるときに自由層が複数の安定な磁気状態間で切替え可能であるように構成される。
【0016】
いくつかの構成要素を有する特定の磁気接合および磁気メモリとの関連で例示的実施形態を説明する。当業者は、本発明が、本発明と矛盾しない他の構成要素および/または追加の構成要素および/または他の特徴を備える磁気接合および磁気メモリの使用とも整合性があることを容易に認識されよう。また、方法およびシステムは、スピントランスファー現象、磁気異方性、および他の物理的現象の現在の理解との関連で説明される。したがって、方法およびシステムの挙動の理論的な説明が、このスピントランスファー、磁気異方性、および他の物理的現象の現在の理解に基づいて行われていることを当業者は容易に理解されよう。しかし、本明細書で説明する方法およびシステムは、特定の物理的な説明に依存しない。また、方法およびシステムが、基板に対して特定の関係を有する構造との関連で説明されていることを当業者は容易に理解されよう。しかし、方法およびシステムが他の構造とも整合性があることを当業者は容易に理解されよう。さらに、いくつかの層が合成層および/または単層であるとの関連で方法およびシステムを説明する。しかし、層が別の構造を有することもできることを当業者は容易に理解されよう。さらに、特定の層を有する磁気接合および/または基礎構造との関連で方法およびシステムを説明する。しかし、方法およびシステムと矛盾しない追加の層および/または異なる層を有する磁気接合および/または基礎構造を使用することもできることを当業者は容易に理解されよう。さらに、いくつかの構成要素を磁性、強磁性、フェリ磁性として説明する。本明細書で使用するとき、用語「磁性」は、強磁性、フェリ磁性、または同様の構造を含むことがある。したがって、本明細書で使用するとき、用語「磁性」または「強磁性」は、強磁性体およびフェリ磁性体を含むが、それらに限定されない。また、単一の磁気接合および基礎構造との関連で方法およびシステムを説明する。しかし、方法およびシステムが、複数の磁気接合を有し、複数の基礎構造を使用する磁気メモリの使用とも整合性があることを当業者は容易に理解されよう。さらに、本明細書で使用する際、「平面内」は、実質的に磁気接合の層のうちの1層もしくは複数層の平面内にあるか、またはその平面に平行である。逆に、「垂直」は、磁気接合の層のうちの1層または複数層に実質的に垂直な方向に対応する。
【0017】
図3は、磁気デバイス、例えばSTT-RAMなど磁気メモリでの磁気接合100の使用の例示的実施形態を示す。分かりやすくするために、
図3は正確な縮尺では描かれていない。磁気接合100は、ピンド層110、非磁性スペーサ層120、および自由層130を含む。また、任意選択のピンニング層104が図示され、このピンニング層104は、ピンド層110の磁化(図示せず)を固定するために使用することができる。いくつかの実施形態では、任意選択のピンニング層104はAFM層または多層でよく、交換バイアス相互作用によってピンド層110の磁化(図示せず)をピン止めする。しかし、他の実施形態では、任意選択のピンニング層104を省くこともでき、または別の構造を使用することもできる。さらに、磁気接合100は、任意選択のシード層102および/または任意選択のキャップ層140など、他の層および/または追加の層を含むことができる。また、磁気接合100は、磁気接合100に書き込み電流が流されるときに自由層130を安定な磁気状態間で切り替えられるように構成される。したがって、自由層130は、スピントランスファートルクを利用して切替え可能である。
【0018】
ピンド層110は磁性であり、したがって特に合金形態でNi、Fe、およびCoの1つまたは複数を含むことがある。単層として示されているが、ピンド層110は複数の層を含むこともできる。例えば、ピンド層110は、Ruなどの薄層を介して反強磁性または強磁性結合された磁性層を含むSAFでよい。そのようなSAFでは、Ruまたは他の材料の薄層と交互配置された複数の磁性層を使用することができる。また、ピンド層110は別の多層でもよい。
図3には磁化が示されていないが、自由層は、平面外の減磁エネルギーを超える垂直な異方性エネルギーを有することがある。図示される実施形態では、円錐状の容易対称軸が、自由層の平面に実質的に垂直である。別の実施形態では、自由層での垂直異方性は、平面外の減磁エネルギー未満でよい。そのような場合には、円錐状の容易対称軸は、実質的に自由層の平面内にある。
【0019】
スペーサ層120は非磁性である。いくつかの実施形態では、スペーサ層120は絶縁体、例えばトンネル障壁である。そのような実施形態では、スペーサ層120は結晶MgOを含むことができ、これは磁気接合のトンネル磁気抵抗(TMR)を高めることができる。他の実施形態では、スペーサ層は導体、例えばCuでよい。代替実施形態では、スペーサ層120は別の構造を有することがあり、例えば絶縁性マトリックス内に導電性チャネルを含む粒層である。
【0020】
自由層130は磁性であり、したがってFe、Ni、および/またはCoの少なくとも1つを含むことがある。自由層130は、スピントランスファーによって切り替えることができる変化可能な磁化(図示せず)を有する。自由層130は単一層として示される。以下に説明する他の実施形態では、自由層130は、他の層を含むこともある。
【0021】
さらに、自由層130は、円錐状の容易磁気異方性を有する。
図3では、円錐状の容易異方性が磁化Mによって示される。円錐状の容易異方性により、自由層130の全体の磁化は、磁気接合100の層の平面に垂直な方向(すなわち
図3でのz軸)からある角度で安定な状態を有する。また、その角度はz軸から90°未満である。すなわち、平面に対して垂直な磁化成分が存在する。図示される実施形態では、円錐状の容易対称軸がz方向に沿っている。しかし、他の実施形態では、円錐状の容易対称軸は別の方向でよく、例えば平面内のxまたはy方向に沿っている。
【0022】
円錐状の容易異方性は、
図3および
図4を参照して理解することができる。
図4は、自由層130に関する磁気異方性エネルギー145の一実施形態を示す。
図3および
図4を参照すると、円錐状の容易異方性に関して、磁気異方性エネルギー145は、磁気接合100の平面に対する垂線で、または垂線の近くで極大値を有する。図示される実施形態では、極大値は、z軸からゼロ度であるか、またはゼロ度に近い。いくつかの実施形態では、極大値は、k
bTの少なくとも10倍であり、ここでk
bはボルツマン定数であり、Tは磁気接合の動作温度である。他の実施形態では、極大値は少なくとも20k
bTである。さらに、磁気異方性エネルギー145は、極大値からある角度で極小値を有する。自由層130の磁化は、極小値に沿って安定である。したがって、
図3での磁化Mおよびエネルギー145によって見ることができるように、自由層の磁化は、z軸の周りのある角度で安定である。これらの安定な状態は、磁気接合100の層の平面に対する垂線の周りで円錐形を成す。したがって、自由層130の磁気異方性を、円錐状の容易異方性と呼ぶ。
【0023】
自由層130での円錐状の容易異方性の導入は、自由層130のスイッチング特性を改良することができる。円錐状の容易異方性により、自由層130の磁化は、磁気接合100の層に対する垂線との位置合わせから傾斜されて(例えばz軸から傾斜されて)安定な状態を有することができる。この初期の非ゼロ角度は、スピントランスファートルクによって自由層130の磁化をより簡単に切り替えることができるようにする。この特性は、より低い書き込みエラー率に対応する。低いパルス幅(高いデータレート)でさえ、より低いWERを実現することができる。特に、書き込みエラー率と書き込み電流の関係の傾きは、10ns未満のパルス幅に関してさえ、十分に大きいままであることがある。いくつかの実施形態では、10〜30ns以下のパルス幅に関して、10
-9以下の許容できる書き込みエラー率を実現することができる。したがって、外部磁場などのメカニズムを使用してスイッチングを補助するのではなく、円錐状の容易異方性が、高いエラー率の物理的な原因に対処する。したがって、自由層130は、より低いパルス幅に関してさえ、改良された書き込みエラー率を有する。
【0024】
また、磁気接合100の他の特性を高めることもできる。磁気接合100の熱的安定性および対称性には悪影響を及ぼさないことがある。z軸から0度での磁気異方性エネルギー145の極大値の大きさは、k
bTの20倍以上でよい。いくつかの実施形態では、極大値は、k
bTの少なくとも60倍である。この大きさの極大値は、磁気接合100の熱的安定性を保証するのに十分であることがある。さらに、磁気接合100を切り替えるのに外部磁場が必要ないことがあるので、磁気接合100は、より高いメモリ密度へより良く拡張可能であることがある。したがって、磁気接合100、および磁気接合100を使用するメモリの性能および汎用性を改良することができる。
【0025】
自由層に関する円錐状の容易異方性は、いくつかの方法で実現することができる。
図5は、円錐状の容易異方性を有する自由層を含む磁気接合100'の例示的実施形態を示す。分かりやすくするために、
図5は正確な縮尺では描かれていない。磁気接合100'は、STT-RAMなどの磁気メモリで使用することができる。磁気接合100'は磁気接合100と同様であり、すなわち同様の構造を含む。磁気接合100'は、任意選択のシード層102'、任意選択のピンニング層104'、ピンド層110'、非磁性スペーサ層120'、自由層130'、および任意選択のキャップ層140'を含み、これらの層は、任意選択のシード層102、任意選択のピンニング層104、ピンド層110、非磁性スペーサ層120、自由層130、および任意選択のキャップ層140とそれぞれ同様である。層110'、120'、130'、および140'は、それぞれ層110、120、130、および140と同様の構造および機能を有する。
【0026】
自由層130'は複数の層を含む。特に、非磁性の交換相互作用制御層134によって分離された磁性層132と136が示される。図示される実施形態では、1つの磁性層132が、負の垂直異方性H
kを有する。したがって、単独では、この層の磁化は薄膜の平面内に留まる。いくつかの実施形態では、層132は、部分垂直異方性の効果を含むことができる。この効果は、z方向に沿ったこの層の磁化を飽和するのに必要な磁場を減少させる。いくつかの実施形態では、部分垂直異方性は、少なくとも4πM
sの20パーセントであり、かつ4πM
sの90パーセント未満である。他の磁性層136は、高い垂直異方性H
kを有する。いくつかの実施形態では、高い垂直異方性の大きさは、磁気接合の大きさに依存する。例えば、直径が100ナノメートル程度である比較的大きな磁気接合100'に関しては、大きなH
kは1000エルステッド(1kOe)よりも大きくなることがある。対照的に、10ナノメートル程度の直径を有する比較的小さな磁気接合100'に関しては、H
kは約5000エルステッド(5kOe)である。層132および136は強磁性であり、したがってFe、Co、およびNiの1つまたは複数を含む。B、Ta、Cs、Zr、Pt、Pd、Tb、および/またはRuを含むが、それらに限定されない他の材料が層132および136に含まれることもある。層132と136に関して同一の材料を使用することも異なる材料を使用することもできることに留意されたい。層132および136、ならびに交換相互作用制御層134の使用される材料の組合せおよび/または厚さは、層132および136で所望の異方性が生成されるように調整することができる。
【0027】
自由層130'は相互作用制御層134も含む。相互作用制御層は、磁性層132と136の交換相互作用など、磁気相互作用を扱うために使用することができる。相互作用制御層134は非磁性である。例えば、相互作用制御層134に関してTa、Cr、Mg、MgO、Ti、W、および/またはRuを使用することができる。また、相互作用制御層134の厚さを変えることもできる。いくつかの実施形態では、相互作用制御層134は少なくとも0.1nmであり、かつ1.5nm以下である。例えば、Ruが使用される場合、相互作用制御層134は少なくとも0.3nmであり、かつ1.3nm以下でよい。Taが使用される場合、相互作用制御層134は少なくとも0.1nmであり、かつ1.0nm以下でよい。
【0028】
図6を参照して相互作用制御層134の使用を考察することができる。
図6は、様々な磁気交換相互作用に関する総エネルギーと角度の関係を示す。磁気接合100'は、(そうである必要はないが)z軸の周りで対称であることがあるので、単純にするために
図6での曲線は2次元で示される。
図5および
図6を参照すると、曲線152が、層132と136の非常に低い交換結合に関して、磁気異方性エネルギーと角度の関係を示す。曲線154は、層132と136の中度の交換結合に関して、磁気異方性エネルギーと角度の関係を示す。図示される実施形態では、交換結合は、1.5×10
-4J/m
2程度である。一般に、交換結合は、0.5×10
-4J/m
2〜20×10
-4J/m
2程度である。曲線156は、層132と136の高い交換結合に関して、磁気異方性エネルギーと角度の関係を示す。曲線152および156で見ることができるように、低い交換結合および高い交換結合に関しては、円錐状の容易異方性のための極小値によって取り囲まれる極大値は存在しない。しかし、中程度の交換結合に関しては、磁気異方性エネルギーは、表面に対する垂線からゼロ度付近で極大値を有する。
【0029】
図7を参照して自由層130'の磁化を見ることができ、
図7は、円錐状の容易異方性を有する自由層130'に関する磁化の一実施形態を示す。
図5〜
図7を参照すると、負の垂直異方性の層132が磁化133を有する。磁性層132と136の相互作用がない場合、磁化133は平面内に位置する。しかし、層132と136の交換相互作用により、磁化133は、(磁気接合100'の平面に対して垂直な)z軸からある角度θにある。高い垂直異方性の層136は磁化135を有する。この磁化135は、他方の層132がない場合には、z軸に沿って位置することがある。しかし、交換相互作用により、磁化135はz軸からある角度αにある。自由層130'の全体の磁化は、磁化137によって与えられる。全体の磁化137は、z軸からある角度φにある。この角度φは、エネルギー曲線154の最小値に対応する。
【0030】
円錐状の容易異方性の効果は、数学的に理解することができる。自由層130'の単位面積当たりの磁気異方性エネルギーは、特定の方向からの角度の関数として与えることができる。
【0031】
E(θ,α)=-H
k,132*M
132*t
132*cos
2(θ)-H
k,136*M
136*t
136*cos
2(α)+σ
*cos(θ-α)
【0032】
ここで、H
k,132は、層132に関する実効の垂直異方性磁場であり、M
132は層132の磁化であり、t
132は層132の厚さであり、H
k,136は、層136に関する実効の垂直異方性磁場であり、M
136は層136の飽和磁化であり、t
136は層136の厚さであり、σは、実質交換エネルギー密度である。最終的に、
図7に示されるように、自由層の磁化137がz軸からある角度で安定になる。したがって、自由層130'は円錐状の容易異方性を示す。上で論じたように、自由層130'は円錐状の容易異方性を有する。したがって、スイッチング特性、熱的安定性、およびスケーラビリティの改良を実現することができる。
【0033】
図8は、円錐状の容易異方性を有する自由層を含む磁気接合100''の例示的実施形態を示す。分かりやすくするために、
図8は正確な縮尺では描かれていない。磁気接合100''は、STT-RAMなどの磁気メモリで使用することができる。磁気接合100''は磁気接合100および100'と同様であり、すなわち同様の構造を含む。磁気接合100''は、任意選択のシード層102''、任意選択のピンニング層104''、ピンド層110''、非磁性スペーサ層120''、自由層130''、および任意選択のキャップ層140''を含み、これらの層は、任意選択のシード層102/102'、任意選択のピンニング層104/104'、ピンド層110/110'、非磁性スペーサ層120/120'、自由層130/130'、および任意選択のキャップ層140/140'とそれぞれ同様である。層110''、120''、130''、および140''は、それぞれ層110/110'、120/120'、130/130'、および140/140'と同様の構造および機能を有する。
【0034】
自由層130''は複数の層を含む。特に、非磁性の交換制御層134'によって分離された磁性層132'と136'が示される。しかし、層132'と136の位置が磁気接合100'とは逆になっている。図示される実施形態では、一方の磁性層132'が、負の垂直異方性H
kを有し、層136'よりもピンド層110''から離れている。他方の磁性層136'は、高い垂直異方性H
kを有する。層132'および136'の材料および厚さは、層132および136のものと同様である。この層136'は、層132'よりもピンド層110''に近い。磁性層132'および136'の位置の変更に関わらず、自由層130''は依然として円錐状の容易異方性を保つ。したがって、磁気接合100''は、磁気接合100および100'と同様に機能し、それらと同じ利点を有することができる。
【0035】
図9は、磁気接合100、100'、および/または100''で使用可能であることがある別の自由層200の例示的実施形態を示す。分かりやすくするために、
図9は正確な縮尺では描かれていない。自由層200は、自由層130/130'/130''と同様であり、すなわち同様の構造を含む。自由層200は、負の垂直異方性の層202および210と、高い垂直異方性の層206と、相互作用制御層204および208とを含む。層202および210は層132/132'と同様であり、層206は層136/136'と同様である。同様に、相互作用制御層204および208は相互作用制御層134/134'と同様である。自由層200では、高い垂直異方性の層206が2つの負の異方性層202と208の間に挟まれる。得られる自由層200は、円錐状の容易異方性を有することができる。したがって、磁気接合で使用されるとき、自由層200は、熱的安定性、スケーラビリティ、または低い臨界スイッチング電流を犠牲にすることなく、書き込みエラー率を改良することができる。
【0036】
図10は、磁気接合100、100'、および/または100''で使用可能であることがある別の自由層200'の例示的実施形態を示す。分かりやすくするために、
図10は正確な縮尺では描かれていない。自由層200'は、自由層130/130'/130''/200と同様であり、すなわち同様の構造を含む。自由層200'は、高い垂直異方性の層202'および210'と、負の垂直異方性の層206'と、相互作用制御層204'および208'とを含む。層202'および210'は層136/136'/206と同様であり、層206'は層132/132'/202/210と同様である。同様に、相互作用制御層204'および208'は相互作用制御層134/134'/204/208と同様である。自由層200'では、負の垂直異方性の層206'が2つの高い異方性の層202'と210'の間に挟まれる。得られる自由層200'は、円錐状の容易異方性を有することができる。したがって、接合で使用されるとき、自由層200'は、熱的安定性、スケーラビリティ、または低い臨界スイッチング電流を犠牲にすることなく、書き込みエラー率を改良することができる。
【0037】
図11は、円錐状の容易異方性を有する自由層を含む別の磁気接合250の例示的実施形態を示す。分かりやすくするために、
図11は正確な縮尺では描かれていない。磁気接合250は、STT-RAMなどの磁気メモリで使用することができる。磁気接合250は磁気接合100、100'、100''と同様であり、すなわち同様の構造を含む。磁気接合250は、任意選択のシード層252、任意選択のピンニング層254、ピンド層256、非磁性スペーサ層258、自由層260、および任意選択のキャップ層268を含み、これらの層は、任意選択のシード層102/102'、任意選択のピンニング層104/104'、ピンド層110/110'、非磁性スペーサ層120/120'、自由層130/130'、および任意選択のキャップ層140/140'とそれぞれ同様である。さらに、磁気接合250は、追加の非磁性スペーサ層262と、追加のピンド層264と、追加の任意選択のピンニング層266とを含む。したがって、磁気接合250は二重接合である。追加の非磁性スペーサ層262、追加のピンド層264、および追加の任意選択のピンニング層266は、非磁性スペーサ層258、ピンド層256、および任意選択のピンニング層254と同様である。したがって、磁気接合250は、接合100、100'、および100''と同じ利点を有することができる。さらに、磁気接合250は二重トンネル接合などの二重接合であり得るので、磁気接合250用のスイッチング電流を低減することができ、スイッチング特性を改良することができる。
【0038】
図12は、磁気的基礎構造(substructure)を製造するための方法300の例示的実施形態を示す。単純にするために、いくつかのステップを省いても、組み合わせてもよい。磁気接合100との関連で方法300を説明する。しかし、方法300は、接合100'、100''、および/または250など他の磁気接合で使用することもできる。さらに、方法300は、磁気メモリの製造に組み込むこともできる。すなわち、方法300は、STT-RAMまたは他の磁気メモリを製造するのに使用することもできる。方法300は、シード層102と任意選択のピンニング層104が提供された後に開始することができる。
【0039】
ステップ302によって、ピンド層110が提供される。ステップ302は、所望の材料を、ピンド層110の所望の厚さで堆積するステップを含むことができる。さらに、ステップ302は、SAFを提供するステップを含むこともある。ステップ304によって、非磁性層120が提供される。ステップ304は、結晶MgOを含めた、しかしそれに限定されない所望の非磁性材料を堆積するステップを含むことがある。さらに、ステップ304で、所望の厚さの材料を堆積することができる。
【0040】
ステップ306によって、円錐状の容易異方性を有する自由層130が提供される。いくつかの実施形態では、ステップ306は、自由層130'、130''、200、および/または200'などの多層を堆積することによって完了することができる。次いで、ステップ308で製造が完了する。例えば、キャップ層140を提供することができる。他の実施形態では、追加のスペーサ層262と、追加のピンド層264と、任意選択の追加のピンニング層266とを提供することができる。磁気接合の層が積層として堆積され、次いで画定されるいくつかの実施形態では、ステップ308は、磁気接合100を画定するステップ、アニールを行うステップ、または他の形で磁気接合100の製造を完成させるステップを含むことができる。さらに、磁気接合100が、STT-RAMなどのメモリ内に組み込まれる場合、ステップ308は、コンタクトと、バイアス構造と、メモリの他の部分とを提供するステップを含むことがある。こうして、磁気接合100、100'、100''、および/または250が形成される。その結果、磁気接合の利益を実現することができる。
【0041】
さらに、磁気接合100、100'、100''、および/または250を磁気メモリで使用することができる。
図13は、1つのそのようなメモリ400の例示的実施形態を示す。磁気メモリ400は、読み取り/書き込み列選択ドライバ402および406と、ワード線選択ドライバ404とを含む。他の構成要素および/または異なる構成要素を提供することもできることに留意されたい。メモリ400の記憶領域は、磁気記憶セル410を含む。各磁気記憶セルは、少なくとも1つの磁気接合412と、少なくとも1つの選択デバイス414とを含む。いくつかの実施形態では、選択デバイス414はトランジスタである。磁気接合412は、磁気接合100、100'、100''、および/または250の1つでよい。1つのセル410につき1つの磁気接合412が示されているが、他の実施形態では、1つのセルにつき別の数の磁気接合412を提供することができる。したがって、磁気メモリ400は、より低いソフトエラー率および低い臨界スイッチング電流など、上述した利益を享受することができる。
【0042】
様々な磁気接合100、100'、100''、および250、ならびに自由層130、130'、130''、200、および200'を開示してきた。磁気接合100、100、および250の様々な特徴を組み合わせることができることに留意されたい。したがって、書き込みエラー率の減少、垂直異方性、熱的安定性、および/またはスケーラビリティなど、磁気接合100、200、200'、および250、および/または自由層130、130'、130''、200、および/または200'の利益の1つまたは複数を実現することができる。
【0043】
磁気接合を提供するための方法およびシステム、ならびに磁気接合を使用して製造されるメモリを説明してきた。図示される例示的実施形態に従って方法およびシステムを説明してきたが、当業者は、それらの実施形態に対する変形がありえ、任意の変形形態が、方法およびシステムの精神および範囲内にあることを容易に理解されよう。したがって、添付の特許請求の範囲の精神および範囲から逸脱することなく当業者が多くの修正を行うことができる。
【符号の説明】
【0044】
100 磁気接合
102 シード層
104 ピンニング層
110 ピンド層
120 非磁性スペーサ層
130 自由層
132 磁性層
134 非磁性の交換相互作用制御層
136 磁性層
140 キャップ層