【課題を解決するための手段】
【0007】
本発明者は、被覆層の耐摩耗性の向上について研究を重ね、被覆層の組成を最適化するとともに、その粒径を粗粒にすると耐摩耗性が向上し、被覆切削工具の長寿命化を実現できるという知見を得て、本発明を完成させるに至った。
【0008】
すなわち、本発明の要旨は以下の通りである。
(1)基材と、基材の表面に形成された被覆層とを含み、被覆層の少なくとも1層は、被覆層と基材との界面に平行な方向で測定したときの平均粒径Lxが200nmを超え、その組成が(Al
aTi
bM
c)X[但し、MはZr、Hf、V、Nb、Ta、Cr、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を表し、XはC、NおよびOから成る群より選択された少なくとも1種の元素を表し、aはAl元素とTi元素とM元素の合計に対するAl元素の原子比を表し、bはAl元素とTi元素とM元素の合計に対するTi元素の原子比を表し、cはAl元素とTi元素とM元素の合計に対するM元素の原子比を表し、a、b、cは、0.30≦a≦0.65、0.35≦b≦0.70、0≦c≦0.20、a+b+c=1を満足する。]と表される粗粒層であり、粗粒層の平均層厚が0.2〜10μmである被覆切削工具。
(2)a、b、cは、0.30≦a≦0.50、0.50≦b≦0.70、0≦c≦0.20、a+b+c=1を満足する(1)の被覆切削工具。
(3)粗粒層のXはNを表す(1)または(2)の被覆切削工具。
(4)被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxは400nmを超え1000nm以下である(1)〜(3)のいずれかの被覆切削工具。
(5)被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxに対する被覆層と基材との界面に垂直な方向で測定したときの粗粒層の平均粒径Lyの粒径比(Ly/Lx)が0.7以上1.5未満である(1)〜(4)のいずれかの被覆切削工具。
(6)粗粒層は立方晶である(1)〜(5)のいずれかの被覆切削工具。
(7)粗粒層の(200)面のX線回折ピークの半価幅が0.6度以下である(6)の被覆切削工具。
(8)被覆層は、基材の表面に形成された下層と、下層の表面に形成された粗粒層を含み、下層は、
Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、AlおよびSiから成る群より選択された金属元素の少なくとも1種からなる金属と、
これら金属元素の少なくとも1種と、炭素、窒素、酸素および硼素から成る群より選択された非金属元素の少なくとも1種とからなる化合物と、
から成る群より選択された少なくとも1種からなる単層または多層である(1)〜(7)のいずれかの被覆切削工具。
(9)粗粒層は最上層である(1)〜(8)のいずれかの被覆切削工具。
(10)基材と、基材の表面に形成された被覆層とを含み、被覆層の少なくとも1層は、被覆層と基材との界面に平行な方向で測定したときの平均粒径Lxが200nmを超え、その組成が(Al
dCr
eL
f)Z[但し、LはTi、Zr、Hf、V、Nb、Ta、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を表し、ZはC、NおよびOから成る群より選択される少なくとも1種の元素を表し、dはAl元素とCr元素とL元素の合計に対するAl元素の原子比を表し、eはAl元素とCr元素とL元素の合計に対するCr元素の原子比を表し、fはAl元素とCr元素とL元素の合計に対するL元素の原子比を表し、d、e、fは、0.25≦d≦0.70、0.30≦e≦0.75、0≦f≦0.20、d+e+f=1を満足する。]と表される粗粒層であり、粗粒層の平均層厚が0.2〜10μmである被覆切削工具。
(11)d、e、fは、0.40≦d≦0.70、0.30≦e≦0.50、0≦f≦0.20、d≧e、d+e+f=1を満足する(10)の被覆切削工具。
(12)粗粒層のZはNを表す(10)または(11)の被覆切削工具。
(13)被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxは400nmを超え1000nm以下である(10)〜(12)のいずれかの被覆切削工具。
(14)被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxに対する被覆層と基材との界面に垂直な方向で測定したときの粗粒層の平均粒径Lyの粒径比(Ly/Lx)が0.7以上1.5未満である(10)〜(13)のいずれかの被覆切削工具。
(15)粗粒層は立方晶である(10)〜(14)のいずれかの被覆切削工具。
(16)粗粒層の(200)面のX線回折ピークの半価幅が0.6度以下である(15)の被覆切削工具。
(17)被覆層は、基材の表面に形成された下層と、下層の表面に形成された粗粒層を含み、下層はTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、AlおよびSiから成る群より選択された金属元素の少なくとも1種からなる金属と、これら金属元素の少なくとも1種と炭素、窒素、酸素および硼素から成る群より選択された非金属元素の少なくとも1種とからなる化合物とから成る群より選択された少なくとも1種からなる単層または多層である(10)〜(16)のいずれかの被覆切削工具。
(18)粗粒層は最上層である(10)〜(17)のいずれかの被覆切削工具。
【0009】
本発明の被覆切削工具は、基材と、基材の表面に形成された被覆層とを含む。本発明の基材は被覆切削工具の基材として用いられるものであれば特に限定されないが、例えば、超硬合金、サーメット、セラミックス、立方晶窒化硼素焼結体、ダイヤモンド焼結体、高速度鋼などを挙げることができる。その中でも、基材が超硬合金であると、耐摩耗性および耐欠損性に優れるので、さらに好ましい。
【0010】
本発明の被覆層は、被覆切削工具の被覆層として使用されるものであれば特に限定されないが、その中でも、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、AlおよびSiから成る群より選択された金属元素の少なくとも1種からなる金属と、これら金属元素の少なくとも1種と炭素、窒素、酸素および硼素から成る群より選択された非金属元素の少なくとも1種とからなる化合物とからなる群より選択された少なくとも1種の単層または多層であると耐摩耗性が向上するのでさらに好ましい。本発明の被覆層を構成する各層の組成は、走査電子顕微鏡(SEM)、電界放射型走査電子顕微鏡(FE−SEM)、透過電子顕微鏡(TEM)などの電子顕微鏡に付属するエネルギー分散型X線分光器(EDS)や波長分散型X線分光器(WDS)などを用いて測定することができる。
【0011】
本発明の被覆層全体の平均層厚は0.2〜10μmであると好ましい。これは、本発明の被覆層全体の平均層厚が0.2μm未満では耐摩耗性を向上させる効果が少なく、10μmを超えると剥離しやすくなるためである。本発明の被覆層全体の層厚および被覆層を構成する各層の層厚は、光学顕微鏡、SEM、FE−SEM、TEMなどを用いて、金属蒸発源に対向する面の刃先から当該面の中心部に向かって50μmの位置で、5箇所以上測定し、それらの平均値を、被覆層全体の平均層厚および被覆層を構成する各層の平均層厚とした。
【0012】
本発明の1つは、被覆層の少なくとも1層が、被覆層と基材との界面に平行な方向で測定したときの平均粒径が200nmを超え、その組成が(Al
aTi
bM
c)X[但し、MはZr、Hf、V、Nb、Ta、Cr、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を表し、XはC、NおよびOから成る群より選択された少なくとも1種の元素を表し、aはAl元素とTi元素とM元素の合計に対するAl元素の原子比を表し、bはAl元素とTi元素とM元素の合計に対するTi元素の原子比を表し、cはAl元素とTi元素とM元素の合計に対するM元素の原子比を表し、a、b、cは、0.30≦a≦0.65、0.35≦b≦0.70、0≦c≦0.20、a+b+c=1を満足する。]と表される粗粒層である。aが0.30未満であると粗粒になりすぎて耐欠損性が低下し、aが0.65を超えて多くなると微粒になりすぎて耐摩耗性が低下し、bが0.35未満であると微粒になりすぎて耐摩耗性が低下し、bが0.70を超えて多くなると粗粒になりすぎて耐欠損性が低下する。粗粒層にはAl元素とTi元素以外に、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を含んでもよいが、cが0以上0.20以下の範囲であると、粗粒層の組織が緻密化し、粗粒層の強度が向上し、被覆層全体の耐摩耗性を高めることができる。cが0.20を超えて多くなると、微粒になりすぎて耐摩耗性が低下する。そのため、0.30≦a≦0.65、0.35≦b≦0.70、0≦c≦0.20、a+b+c=1とした。その中でも0.30≦a≦0.50、0.50≦b≦0.70、0≦c≦0.20、a+b+c=1であると、平均粒径が大きくなりやすく、耐摩耗性が向上する傾向が見られるため、さらに好ましい。XはC、NおよびOから成る群より選択された少なくとも1種の元素を表すが、その中でもXはCNまたはNを表すと耐摩耗性が向上するので好ましく、その中でもXはNを表すと耐摩耗性が向上するのでさらに好ましい。
【0013】
本発明の1つは、被覆層の少なくとも1層が、被覆層と基材との界面に平行な方向で測定したときの平均粒径Lxが200nmを超え、その組成が(Al
dCr
eL
f)Z[但し、LはTi、Zr、Hf、V、Nb、Ta、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を表し、ZはC、NおよびOから成る群より選択された少なくとも1種の元素を表し、dはAl元素とCr元素とL元素の合計に対するAl元素の原子比を表し、eはAl元素とCr元素とL元素の合計に対するCr元素の原子比を表し、fはAl元素とCr元素とL元素の合計に対するL元素の原子比を表し、d、e、fは、0.25≦d≦0.70、0.30≦e≦0.75、0≦f≦0.20、d≦e、d+e+f=1を満足する。]と表される粗粒層である。dが0.25未満であると、粗粒になりすぎて耐欠損性が低下し、dが0.70を超えて多くなると、微粒になりすぎて耐摩耗性が低下し、eが0.3未満であると、微粒になりすぎて耐摩耗性が低下し、eが0.75を超えて多くなると、粗粒になりすぎて耐欠損性が低下する。粗粒層にはAl元素とCr元素以外に、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を含んでもよく、fが0以上0.20以下の範囲であると、粗粒層の組織が緻密化し、粗粒層の強度が向上し、被覆層全体の耐摩耗性を高めることができる。fが0.20を超えて多くなると、微粒になりすぎて耐摩耗性が低下する。そのため、0.25≦d≦0.70、0.3≦e≦0.75、0≦f≦0.20、d+e+f=1とした。その中でもd≦eであり、0.40≦d≦0.70、0.3≦e≦0.50、0≦f≦0.20、d+e+f=1であると、平均粒径が大きくなりやすく、耐摩耗性が向上する傾向が見られるため、さらに好ましい。ZはC、NおよびOから成る群より選択された少なくとも1種の元素を表すが、その中でもZはCNまたはNを表すと耐摩耗性が向上するので好ましく、その中でもZはNを表すと耐摩耗性が向上するのでさらに好ましい。
【0014】
以上のように、本発明では、被覆層の少なくとも1層の組成が、(Al
aTi
bM
c)Xまたは(Al
dCr
eL
f)Zで表され、TiまたはCrの含有量が上記の範囲にある場合に、耐摩耗性及び耐欠損性の両方に優れた被覆切削工具を得ることができる。なお、Tiの含有量を0.35≦b≦0.70の範囲に収めた場合には、Crの含有量は0.20以下に抑えることが好ましく、Crの含有量を0.3≦e≦0.75の範囲に収めた場合には、Tiの含有量を0.20以下に抑えることが好ましい。
【0015】
本発明の粗粒層は、被覆層と基材との界面に平行な方向で測定したときの平均粒径Lxが200nmを超えるので、耐摩耗性に優れる。その理由は以下のように考えられる。
図1に示すように被覆層の平均粒径が小さいと、切削時に発生する外力によって、
図2に示すように被覆層の結晶粒の脱落が生じやすくなる。一方、
図3に示すように被覆層の平均粒径が大きいと、切削時に発生する外力によって、
図4に示すように被覆層の結晶粒の脱落が生じにくい。本発明の粗粒層は、被覆層と基材との界面に平行な方向で測定したときの平均粒径Lxが200nmを超える。平均粒径Lxが大きいほど優れた耐摩耗性を示すので、平均粒径Lxが400nm以上であるとさらに好ましいが、平均粒径Lxが1000nmを超える粗粒層の製造は困難であり、生産性を考慮すると、平均粒径Lxは400〜1000nmの範囲がさらに好ましい。また、切削時は被覆層の表面から結晶粒の脱落が生じるので、被覆層の最も表面側が粗粒層であると、すなわち最上層が粗粒層であると耐摩耗性を向上させる効果が高くなるので、さらに好ましい。本発明の粗粒層は耐摩耗性に優れる。そのため被覆層の耐摩耗性は向上し、本発明の被覆切削工具の工具寿命を長くすることができる。
【0016】
本発明において被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxは、粗粒層の表面側界面を鏡面研磨して得られた表面組織から直径100nm以上のドロップレットを除いた組織で測定される。具体的には、粗粒層の表面側界面から深さ100nmまでを研磨等で除去し、鏡面になった表面組織で粗粒層の平均粒径Lxを測定する。研磨方法としては、ダイヤモンドペーストやコロイダルシリカを用いて鏡面に研磨する方法や、イオンミリングなどを挙げることができる。鏡面になった粗粒層の表面組織をSEM、FE−SEM、TEM、電子線後方散乱回折装置(EBSD)などで観察して、直径100nm以上のドロップレットを除いた組織から、粗粒層のある1つの結晶粒の面積と等しい面積の円の直径をその結晶粒の粒径とする。同様の方法により、観察した表面組織中に含まれる結晶粒の粒径を求める。その後、5nm間隔の区分けした粒径を示す横軸と、5nm間隔の区分けに含まれる結晶粒全部の面積比を示す縦軸とからなる粒度分布を作成する。次に、5nm間隔の区分けの中心値(例えば、5〜10nmの区分けの中心値は7.5nm)とその区分けに含まれる結晶粒全部の面積比を乗じる。5nm間隔の区分けの中心値とその区分けに含まれる結晶粒全部の面積比を乗じて得られた値をすべて合計した値を粗粒層の平均粒径Lxとする。測定装置としては、EBSDが、結晶粒の粒界が明瞭になるので好ましく、EBSDの設定としては、ステップサイズが0.01μm、測定範囲が2μm×2μm、方位差が5°以上の境界を粒界とみなすという設定が好ましい。なお、鏡面になった粗粒層の表面組織から直径100nm以上のドロップレットとドロップレット以外の組織は容易に区別できる。鏡面の表面組織を観察すると、ドロップレットは円形であり、ドロップレットの周りには厚さ数nm〜数十nmの空隙ができている。また、ドロップレットは鏡面研磨中に粗粒層から抜け落ちることがある。その場合は粗粒層に円形の孔が生じる。そのため、粗粒層において直径100nm以上のドロップレットとドロップレット以外の組織とは容易に区別することができる。
【0017】
本発明において被覆層と基材との界面に垂直な方向で測定したときの粗粒層の平均粒径Lyは粗粒層の断面を鏡面研磨して得られた断面組織から幅100nm以上のドロップレットを除いた組織で測定される。粗粒層の断面を鏡面研磨する方法としては、ダイヤモンド砥石により研削した後、ダイヤモンドペーストまたはコロイダルシリカを用いて研磨する方法や、イオンミリングなどを挙げることができる。鏡面になった粗粒層の断面組織をSEM、FE−SEM、TEM、EBSDなどで観察して、被覆層と基材との界面に垂直な方向で測定したときの粗粒層の平均粒径Lyを測定することができる。具体的には粗粒層の断面組織をSEM、FE−SEM、TEM、EBSDなどで5000〜50000倍に拡大して観察して得られた画像に、
図5に示すように被覆層と基材との界面に垂直な方向に直線を500nm間隔で引いた。直線が幅100nm以上のドロップレットにかかった場合は、さらに500nm離れた場所に直線を引いた。粗粒層の基材側界面または粗粒層の表面側界面から直線と粒界の交差した点までの長さ、もしくは、直線と粒界の交差した点から直線と粒界の交差した次の点までの長さをLn(n=1,2,3,…)とした。直線と粒界が交差しないときは粗粒層の基材側界面から粗粒層の表面側界面までの長さをLnとした。それらを平均した値を平均粒径Lyとした。このとき測定に用いる直線の本数は、10本以上であると好ましい。なお、鏡面になった粗粒層の断面組織から幅100nm以上のドロップレットとドロップレット以外の組織は容易に区別できる。鏡面の断面組織を観察すると、ドロップレットは円形、楕円形もしくは涙滴形であり、ドロップレットの基材側の界面には厚さ数nm〜数十nmの空隙ができている。また、ドロップレットは鏡面研磨中に粗粒層から抜け落ちることがある。その場合は粗粒層には円形、楕円形もしくは涙滴形の孔が生じる。そのため、粗粒層において幅100nm以上のドロップレットとドロップレット以外の組織とは容易に区別することができる。
【0018】
本発明において、被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxに対する被覆層と基材との界面に垂直な方向で測定したときの粗粒層の平均粒径Lyの粒径比(Ly/Lx)が1.5を超えると、切削加工中に刃先にかかる負荷により工具表面から発生したクラックが進展しやすくなり耐欠損性が低下する傾向がみられる。一方、Lxに対するLyの粒径比(Ly/Lx)が0.7以上1.5以下であると耐摩耗性および耐欠損性の両方が良くなる傾向が見られる。そのため、Lxに対するLyの粒径比(Ly/Lx)は0.7以上1.5以下であると、さらに好ましい。
【0019】
本発明の粗粒層の平均層厚は0.2〜10μmとした。0.2μm未満では耐摩耗性を向上させる粗粒層の効果が少なくなり、10μmを超えるとの基材と被覆層の密着性が低下して剥離やチッピングが生じやすくなるためである。その中でも本発明の粗粒層の平均層厚は0.5〜10μmであるとさらに好ましい。
【0020】
本発明の粗粒層が立方晶であると、硬さが高く、耐摩耗性に優れるのでさらに好ましい。その中でも、Cu−Kα線を用いたX線回折測定で得られる本発明の粗粒層の(200)面のX線回折ピークの半価幅が0.6度以下であると、本発明の粗粒層の結晶粒の脱落が抑制されるため、さらに好ましい。粗粒層の(200)面のX線回折ピークの半価幅は市販のX線回折装置を用いて測定することができる。例えば、ターゲット:Cu、管電圧:50kV、管電流:250mA、Cu−Kα線、走査軸:2θ/θ、入射側ソーラースリット:5度、発散縦スリット2/3度、発散縦制限スリット:5mm、散乱スリット:2/3度、受光側ソーラースリット:5度、受光スリット:0.30mm、受光モノクロスリット:0.8mm、X線の単色化:グラファイト受光モノクロメータ(湾曲モード)、サンプリング幅:0.01度、スキャンスピード:4度/min、ブラッグ角(2θ)の測定範囲を30度〜70度とするX線回折測定を行うとよい。この測定条件で本発明の粗粒層のX線回折測定を行うと、本発明の粗粒層の立方晶の(200)面のX線回折ピークが観察される。このようにして得られた粗粒層の(200)面のX線回折ピークについて半価幅を測定するとよい。半価幅の測定はX線回折装置付属の解析ソフトウエアを用いてもよい。解析ソフトウエアを用いる場合、三次式近似を用いてバックグラウンド処理およびKα2ピーク除去を行い、Pearson−VII関数を用いてプロファイルフィッティングを行った後、ピークトップ法よりピーク位置を求め、半価幅が導出される。
【0021】
基材上に形成される被覆層において、所定の層(例えば、粗粒層)に対して表面側に形成された層を上層、所定の層に対して基材側に形成された層を下層と称することができる。本発明の被覆層は、基材の表面に形成された下層と、下層の表面に形成された粗粒層を含み、下層はTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、AlおよびSiから成る群より選択された金属元素の少なくとも1種からなる金属と、これら金属元素の少なくとも1種と炭素、窒素、酸素および硼素から成る群より選択された非金属元素の少なくとも1種とからなる化合物とから成る群より選択された少なくとも1種からなる単層または多層であると、さらに好ましい。基材との密着性や耐欠損性に優れる下層と、耐摩耗性に優れる粗粒層とを積層すると、切削性能をさらに向上させることができる。本発明の粗粒層の表面に上層を形成しても良いが、被覆層の最上層は粗粒層の方が好ましい。
【0022】
本発明の被覆層はアークイオンプレーティング法、イオンプレーティング法、スパッター法、イオンミキシング法などの種々の物理蒸着法によって形成することができる。具体的には、物理蒸着装置の反応容器内に基材を入れて、基材の表面をイオンボンバードメント処理した後に、被覆層の組成に応じた金属蒸発源を蒸発させ、反応容器内をN
2、CH
4などの反応ガスで満たし、反応容器内を所定の圧力にして、基材に所定のバイアス電圧を印加して本発明の被覆層を形成するとよい。
【0023】
本発明の粗粒層を形成する方法としては、アークイオンプレーティング法を用い、金属蒸発源の中心の磁束密度を低くし、形成時の基材温度を低くすると、耐摩耗性を向上させる効果が高くなるので、さらに好ましい。具体的には、反応容器内の圧力を0.5〜5.0Paの所定の圧力にして、基材に−10V〜−150Vのバイアス電圧を印加し、金属蒸発源の中心の磁束密度を7mT〜12mTの所定の磁束密度とし、試料の温度を500〜700℃の所定の温度にして、本発明の粗粒層を形成すると、さらに好ましい。なお、金属蒸発源の中心の磁束密度は、ガウスメーターで測定することができる。