(58)【調査した分野】(Int.Cl.,DB名)
前記エチレン・α−オレフィン共重合体は、エチレンに由来する構成単位の含有割合が80〜90mol%であり、かつ、炭素数3〜20のα−オレフィンに由来する構成単位の含有割合が10〜20mol%である、請求項1または2に記載の太陽電池封止材。
ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定される、前記エチレン・α−オレフィン共重合体のMFRが、5〜50g/10分である、請求項1乃至6いずれか一項に記載の太陽電池封止材。
前記エチレン・極性モノマー共重合体が、エチレン・不飽和カルボン酸共重合体、エチレン・不飽和カルボン酸無水物共重合体、エチレン・不飽和カルボン酸エステル共重合体、エチレン・不飽和カルボン酸エステル・不飽和カルボン酸共重合体、エチレン・不飽和グリシジルエステル共重合体、エチレン・不飽和グリシジルエーテル共重合体、エチレン・不飽和グリシジルエステル・不飽和カルボン酸エステル共重合体、エチレン・不飽和グリシジルエーテル・不飽和カルボン酸エステル共重合体、および、エチレン・ビニルエステル共重合体の群から選ばれる少なくとも1種である、請求項1乃至8いずれか一項に記載の太陽電池封止材。
前記樹脂組成物は、シランカップリング剤を含み、前記シランカップリング剤の含有量が、前記架橋性樹脂100重量部に対して、0.1〜2.0重量部である、請求項1乃至12いずれか一項に記載の太陽電池封止材。
前記樹脂組成物は、紫外線吸収剤、光安定剤および耐熱安定剤からなる群より選択される少なくとも一種を含み、前記紫外線吸収剤、前記光安定剤および前記耐熱安定剤からなる群より選択される少なくとも一種の含有量が、前記架橋性樹脂100重量部に対して、0.005〜5重量部である、請求項1乃至13いずれか一項に記載の太陽電池封止材。
【発明を実施するための形態】
【0017】
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
【0018】
以下に、本発明の実施形態について説明する。なお、「〜」はとくに断りがなければ、以上から以下を表す。
【0019】
1.太陽電池封止材について
本発明の太陽電池封止材は、架橋性樹脂を含む樹脂組成物からなり、以下に示す1)および2)を満たす。
1)150℃、250Paで3分間加熱減圧した後、150℃、100kPaで15分間加熱加圧することにより架橋処理された該太陽電池封止材を23℃で1時間アセトンに浸漬したときのアセトンの吸収率が、アセトンを浸積する前の架橋処理された太陽電池封止材の重量に対して3.5〜12.0重量%である。
2)JIS K6911に準拠し、温度100℃、印加電圧500Vで測定される、150℃、250Paで3分間加熱減圧した後、150℃、100kPaで15分間加熱加圧することにより架橋処理された太陽電池封止材の体積固有抵抗が1.0×10
13〜1.0×10
18Ω・cmである。
【0020】
また、本発明の太陽電池封止材は、更に、以下に示す3)を満たすことが好ましい。
3)ASTM D2240に準拠して測定される、150℃、250Paで3分間加熱減圧した後、150℃、100kPaで15分間加熱加圧することにより架橋処理された太陽電池封止材のショアA硬度が50〜85である。
【0021】
また、本発明の太陽電池封止材は、更に、以下に示す4)を満たすことが好ましい。
4)150℃、250Paで3分間加熱減圧した後、150℃、100kPaで15分間加熱加圧することにより架橋処理された太陽電池封止材を30℃で1時間t−ブチルアルコールに浸漬したときのt−ブチルアルコールの吸収率が、t−ブチルアルコールに浸積する前の架橋処理された太陽電池封止材の重量に対して2.5〜6.0重量%である。
【0022】
以下、1)〜4)について説明する。1)〜4)の特性測定は、本発明の太陽電池封止材を特定条件下で架橋処理した後、行われる。架橋処理は、150℃、250Paで3分間加熱減圧した後、150℃、100kPaで15分間加熱加圧することで行われる。このような条件下で架橋処理することができれば、手段は特に限定されず、本発明の太陽電池封止材をシート状に成形した後、真空ラミネーター、熱プレス、架橋炉などを用いて上記の温度、圧力下で架橋処理をし、平坦なシートに加工したものを用いて、1)〜4)で示す特性を測定してもよい。
【0023】
(アセトン吸収率)
本発明の太陽電池封止材は、架橋処理した後に23℃、1時間アセトンに浸漬したときのアセトンの吸収率(以下、単に「アセトン吸収率」ともいう。)が、アセトンに浸漬する前の架橋処理した太陽電池封止材の重量に対して3.5〜12.0重量%であり、好ましくは3.8〜12.0重量%、さらに好ましくは4.0〜11.0重量%である。アセトン吸収率とは、太陽電池封止材をラミネート加工した際に生じる有機過酸化物の分解物を、どの程度太陽電池封止材中に吸収(溶解)できるかを表す指標である。アセトン吸収率を3.5重量%以上にすることで、有機過酸化物の分解物を十分に吸収することができ、太陽電池モジュールに気泡が発生しにくい傾向にある。アセトン吸収率を12.0重量%以下にすることで、100℃での体積固有抵抗が向上し、PID現象の発生を抑制することができる。
【0024】
本発明の太陽電池封止材の架橋処理後のアセトン吸収率を求めるには、例えば、100mlの密閉容器にアセトンを10ml入れ、精密天秤で秤量した架橋処理後の太陽電池封止材約1gをアセトンに十分浸漬するように切断して入れて試験準備を行う。試験片は厚みが0.3〜1.2mmにある架橋後のシートを用いる。その密閉容器を、インキュベーターなどの23℃で保温できる恒温槽に1時間入れる。1時間後、キムワイプなどでシート表面に付着しているアセトンをふき取り、ふき取り後5分以内に精密天秤で試験後のシートを秤量する。この試験前後の重量差より、アセトン吸収率を算出する。
【0025】
(体積固有抵抗)
本発明の太陽電池封止材は、架橋処理した後に、JIS K6911に準拠し、温度100℃、印加電圧500Vで測定される体積固有抵抗が1.0×10
13〜1.0×10
18Ω・cmである。体積固有抵抗が大きい太陽電池封止材は、PID現象の発生を抑制する特性を有する傾向にある。さらに、太陽光が照射される時間帯には、従来の太陽電池モジュールではモジュール温度が例えば70℃以上になることがあるので、長期信頼性の観点から、従来報告されている常温(23℃)での体積固有抵抗より高温条件下での体積固有抵抗が求められており、温度100℃での体積固有抵抗が重要となる。
【0026】
JIS K6911に準拠し、温度100℃、印加電圧500Vで測定される体積固有抵抗(以下、単に「体積固有抵抗」ともいう。)は、好ましくは1.0×10
13〜1.0×10
17Ω・cm、より好ましくは1.0×10
13〜1.0×10
16Ω・cm、さらに好ましくは1.0×10
14〜1.0×10
16Ω・cm、最も好ましくは5.0×10
14〜1.0×10
16Ω・cmである。体積固有抵抗が1.0×10
13Ω・cm以上であると、85℃,85%rhでの恒温恒湿試験において1日程度の短期間におけるPID現象の発生も抑制することができる。体積固有抵抗が、1.0×10
18Ω・cm以下であると、シートに静電気が発生しにくくなるので、ゴミの吸着を防ぐことができ、太陽電池モジュール内にゴミが混入して、発電効率や長期信頼性の低下を招くことを抑制することができる。
【0027】
なお、体積固有抵抗が、5.0×10
14Ω・cm以上であると、85℃,85%rhでの恒温恒湿試験においてPID現象の発生がさらに長期化できる傾向にあり、望ましい。
【0028】
(ショア硬度)
本発明の太陽電池封止材は、架橋処理した後に、ASTM D2240に準拠して測定される、ショアA硬度(以下、単に「ショア硬度」ともいう。)が、50〜85であることが好ましく、より好ましくは55〜85、更に好ましくは55〜84である。架橋性樹脂として、エチレン系共重合体を用いる場合、架橋処理後の太陽電池封止材のショアA硬度は、エチレン系共重合体のエチレン単位の含有割合や密度や組成比および架橋処理条件を制御することにより、調整することができる。例えば、エチレン系共重合体のエチレン単位を多くすれば硬度は高くなり、少なくすれば硬度は低くなる。また、架橋処理条件によっても、架橋度を高めることにより、エチレン系共重合体の結晶性を低下させ、硬度を低下できる傾向にある。なおショアA硬度は、試験片シートに荷重後、15秒以上経過してから測定する。
【0029】
架橋処理後の太陽電池封止材のショアA硬度を50以上とすることで、太陽電池封止材がベタつきにくくなりブロッキングを抑制することができる。また、太陽電池封止材をシート状に加工する際は、シートの繰り出し性を向上させることもでき、耐熱性の低下も抑制できる。
【0030】
一方、架橋処理後の太陽電池封止材のショアA硬度が85以下であると、透明性を向上させることができる。また、柔軟性が高く、太陽電池モジュールのラミネート成形時に太陽電池素子の割れや、薄膜電極のカケなどの発生を抑制することができる。
【0031】
(t−ブチルアルコール吸収率)
本発明の太陽電池封止材は、架橋処理した後に30℃、1時間t−ブチルアルコールに浸漬したときのt−ブチルアルコールの吸収率(以下、単に「t−ブチルアルコール吸収率」ともいう。)が、t−ブチルアルコールに浸積させる前の架橋処理した太陽電池封止材の重量に対して2.5〜6.0重量%であることが好ましく、より好ましくは2.8〜6.0重量%、更に好ましくは3.0〜5.0重量%である。t−ブチルアルコールの吸収率とは、太陽電池封止材をラミネート加工した際に発生される有機過酸化物の分解物を、どの程度太陽電池封止材中に吸収(溶解)できるかを表す指標である。t−ブチルアルコールの吸収率が2.5重量%以上であると、有機過酸化物の分解物を十分に吸収することができ、太陽電池モジュール中に気泡が発生するのを抑制することができる。t−ブチルアルコールの吸収率が6.0重量%以下であると、100℃での体積固有抵抗を高くできるので、PID現象の発生を抑制することができる。
【0032】
本発明の太陽電池封止材の架橋処理後の30℃、1時間でのt−ブチルアルコールの吸収率を求めるには、前述のアセトンの吸収率と同様に、溶媒種と試験温度を変更することにより算出することができる。t−ブチルアルコールを30℃で試験する理由は、t−ブチルアルコールの融点が25.5℃近辺であり、溶液状で浸漬試験を実施するためである。
【0033】
なお、有機過酸化物の分解物は、有機過酸化物の構造式に由来しており、アセトン(bp:57℃)、t−ブチルアルコール(bp:82℃)に限らず、メタン、炭酸ガス、エステル化合物、t−アミルアルコール(bp:102℃)、t−ヘキシルアルコール(bp:122℃)、2−エチル−ヘキシルアルコール等、前述以外のアルコール化合物などが存在する。メタン、炭酸ガスは、太陽電池モジュールをラミネーターを用いてラミネートする際に、真空状態で加熱および加圧されるため、その際に封止材中を拡散し太陽電池封止材から吸引され太陽電池封止材中には残留せず気泡の発生もなく、太陽電池モジュールの外観を損なわないと推定される。ただし、アセトンやt−ブチルアルコールを始めとする極性化合物類は、一部は吸引されるが全量の吸引までは至らず太陽電池封止材中に残留し、太陽電池封止材中に吸収されないと気泡として見られる傾向にある。そのため、太陽電池モジュールの外観を損なう傾向にある。こうした極性化合物の吸収指標として太陽電池封止材のアセトン、t−ブチルアルコールの吸収能力が重要と考えている。
【0034】
また、低分子量成分として、シランカップリング剤からもシランと結合しているメトキシ基、エトキシ基などが、加水分解によりメタノール(bp:64℃)、エタノール(bp:78℃)に変換される。これらの化合物も気泡発生に影響があり、t−ブチルアルコールの吸収能力が高いとこれらの化合物による気泡発生の抑制に寄与すると考えられる。
【0035】
(架橋性樹脂)
本発明の太陽電池封止材を構成する樹脂組成物は、架橋性樹脂としてエチレン系共重合体を含むことが好ましい。
【0036】
架橋性樹脂としては、エチレンとα−オレフィンとの共重合体およびエチレンとα−オレフィンと非共役ポリエンからなる共重合体から選ばれる一種または二種以上と、エチレンと極性モノマーとの共重合体とを含むものが好ましく、エチレンと極性モノマーの共重合体とエチレンとα−オレフィンの共重合体とを含むものがより好ましい。
【0037】
本発明の太陽電池封止材に用いられる架橋性樹脂の、ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるメルトフローレ−ト(MFR)は10〜50g/10分であることが好ましく、より好ましくは10〜40g/10分、更に好ましくは10〜35g/10分、特に好ましくは12〜27g/10分、最も好ましくは15〜25g/10分である。架橋性樹脂のMFRは、後述するエチレン・α−オレフィン共重合体とエチレン・極性モノマー共重合体のブレンド比によって調整することができる。MFRが10g/10分以上であると、太陽電池封止材の流動性が向上し、シート押出成形時の生産性を向上させることができる。また、太陽電池封止材のスコーチ性が低下するので、ゲル化を抑制することができる。このため、押出機のトルクが低下するため、シート成形を容易にすることができる。また、シートが得られた後、押出機内でゲル物の発生が抑制できるため、シートの表面における凹凸の発生を抑制でき、外観の低下を抑制することできる。
【0038】
なお、シート内部にゲル物があると、電圧をかけたときゲル物周辺にクラックが生じ、絶縁破壊電圧が低下するが、MFRを10g/10分以上にすることで、絶縁破壊電圧の低下を抑制することができる。また、シート内部にゲル物があるとゲル物界面において透湿し易くなるが、MFRを10g/10分以上にすることで、透湿性の低下を抑制することもできる。
【0039】
また、シート表面に凹凸が発生すると、太陽電池モジュールのラミネート加工時にガラス等の表面側透明保護部材、セル、電極、裏面側保護部材との密着性が悪化し、接着が不十分となるが、MFRが50g/10分以下にすると、分子量が大きくなるため、チルロールなどのロール面への付着を抑制できるため、剥離を不要とし、均一な厚みのシートに成形することができる。さらに、「コシ」がある樹脂組成物となるため、0.3mm以上の厚いシートを容易に成形することができる。また、太陽電池モジュールのラミネート成形時の架橋特性(とくに架橋速度)が向上するため、十分に架橋させて、耐熱性の低下を抑制することができる。MFRが27g/10分以下であると、さらに、シート成形時のドローダウンを抑制でき幅の広いシートを成形でき、また架橋特性および耐熱性がさらに向上し、最も良好な太陽電池封止材のシートを得ることができる。
【0040】
本発明の太陽電池封止材に含まれる架橋性樹脂は、架橋性樹脂中のエチレン・α−オレフィン共重合体と、エチレン−極性モノマー共重合体との配合比は、エチレン・α−オレフィン共重合体とエチレン・極性モノマー共重合体との合計100重量部に対して、エチレン・α−オレフィン共重合体が50〜99重量部、エチレン・極性モノマー共重合体が1〜50重量部であることが好ましく、より好ましくはエチレン・α−オレフィン共重合体が50〜98重量部、エチレン・極性モノマー共重合体が2〜50重量部であり、更に好ましくはエチレン・α−オレフィン共重合体が50〜95重量部、エチレン・極性モノマー共重合体が5〜50重量部であり、特に好ましくはエチレン・α−オレフィン共重合体が75〜95重量部、エチレン・極性モノマー共重合体が5〜25重量部である。エチレン・α−オレフィン共重合体の配合比が50重量部以上であると、太陽電池封止材の体積固有抵抗が高くなるので、85℃,85%rhでの恒温恒湿試験において1日程度の短期間でもPID現象の発生を抑制することができる。また、エチレン・α−オレフィン共重合体の配合比が99重量部以下であると、太陽電池封止材の架橋処理後のアセトン、t−ブチルアルコールの吸収率が高くなり、有機過酸化物の分解物を十分に吸収して、太陽電池モジュールにおける気泡の発生を抑制することができる。
【0041】
(エチレン・α−オレフィン共重合体)
本発明の太陽電池封止材に用いられるエチレン・α−オレフィン共重合体は、エチレンと、炭素数3〜20のα−オレフィンとを共重合することによって得られる。α−オレフィンとしては、通常、炭素数3〜20のα−オレフィンを1種類単独でまたは2種類以上を組み合わせて用いることができる。炭素数3〜20のα−オレフィンとしては、直鎖状または分岐状のα−オレフィン、例えばプロピレン、1−ブテン、2−ブテン、1−ペンテン、3−メチル−1−ブテン、3,3−ジメチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセンなどを挙げることができる。中でも好ましいのは、炭素数が10以下であるα−オレフィンであり、とくに好ましいのは炭素数が3〜8のα−オレフィンである。入手の容易さからプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテンおよび1−オクテンが好ましい。なお、エチレン・α−オレフィン共重合体はランダム共重合体であっても、ブロック共重合体であってもよいが、柔軟性の観点からランダム共重合体が好ましい。
【0042】
さらに、本発明の太陽電池封止材に用いられるエチレン・α−オレフィン共重合体は、エチレンと、炭素数3〜20のα−オレフィンと非共役ポリエンからなる共重合体であってもよい。α−オレフィンは前述と同様であって、非共役ポリエンとしては、5−エチリデン−2−ノルボルネン(ENB)、5−ビニル−2−ノルボルネン(VNB)、ジシクロペンタジエン(DCPD)などが挙げられる。これら非共役ポリエンを1種単独、または2種以上を組み合わせて用いることができる。
本発明の太陽電池封止材に用いられるエチレン・α−オレフィン共重合体は、芳香族ビニル化合物、例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、o,p−ジメチルスチレン、メトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、p−クロロスチレン、ジビニルベンゼンなどのスチレン類;3−フェニルプロピレン、4−フェニルプロピレン、α−メチルスチレン、炭素数が3〜20の環状オレフィン類、例えば、シクロペンテン、シクロヘプテン、ノルボルネン、5−メチル−2−ノルボルネン、などを併用してもよい。
【0043】
以下、本発明の太陽電池封止材に用いられるエチレン・α−オレフィン共重合体について説明する。
【0044】
(α−オレフィン単位)
エチレン・α−オレフィン共重合体に含まれる、エチレンに由来する構成単位の含有割合が80〜90mol%であり、好ましくは80〜88mol%、より好ましくは82〜88mol%、さらに好ましくは82〜87mol%である。エチレン・α−オレフィン共重合体に含まれる、炭素数3〜20のα−オレフィンに由来する構成単位(以下、「α−オレフィン単位」とも記す)の割合は10〜20mol%であり、好ましくは12〜20mol%、より好ましくは12〜18mol%、さらに好ましくは13〜18mol%である。
【0045】
エチレン・α−オレフィン共重合体に含まれるα−オレフィン単位の含有割合が10mol%以上であると、高い透明性が得られる。また、低温での押出成形を容易に行うことができ、例えば130℃以下での押出成形が可能である。このため、エチレン・α−オレフィン共重合体に有機過酸化物を練り込む場合においても、押出機内での架橋反応が進行することが抑制でき、太陽電池封止材のシートにゲル状の異物が発生して、シートの外観が悪化するのを防ぐことができる。また、適度な柔軟性が得られるため、太陽電池モジュールのラミネート成形時に太陽電池素子の割れや、薄膜電極のカケなどの発生を防ぐことができる。
【0046】
エチレン・α−オレフィン共重合体に含まれるα−オレフィン単位の含有割合が20mol%以下であると、エチレン・α−オレフィン共重合体の結晶化速度が適度になるため、押出機より押し出されたシートがベタつかず、冷却ロールでの剥離が容易であり、シート状の太陽電池封止材のシートを効率的に得ることができる。また、シートにベタツキが発生しないのでブロッキングを防止でき、シートの繰り出し性が良好にある。また、耐熱性の低下を防ぐこともできる。
【0047】
(MFR)
ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるエチレン・α−オレフィン共重合体のメルトフローレ−ト(MFR)は5〜50g/10分であり、好ましくは10〜40g/10分、より好ましくは10〜35g/10分、さらに好ましくは10〜27g/10分、最も好ましくは15〜25g/10分である。エチレン・α−オレフィン共重合体のMFRが上記範囲であると、後述のエチレン・極性モノマー共重合体とよく混合できる。また、エチレン系共重合体のMFRの範囲を満足することができ、押出成形性が優れる。なお、エチレン・α−オレフィン共重合体のMFRは、後述する重合反応の際の重合温度、重合圧力、並びに重合系内のエチレンおよびα−オレフィンのモノマー濃度と水素濃度のモル比率などを調整することにより、調整することができる。
【0048】
(Alの含有量)
エチレン・α−オレフィン共重合体に含まれる、アルミニウム元素(以下、「Al」とも記す)の含有量(残渣量)が好ましくは10〜500ppmであり、より好ましくは20〜400ppm、さらに好ましくは20〜300ppmである。Al含有量は、エチレン・α−オレフィン共重合体の重合過程において添加する有機アルミニウムオキシ化合物や有機アルミニウム化合物の濃度に依存する。
【0049】
Al含有量が10ppm以上の場合は、エチレン・α−オレフィン共重合体の重合過程において有機アルミニウムオキシ化合物や有機アルミニウム化合物が、メタロセン化合物の活性が十分発現させられる程度の濃度で添加できるので、メタロセン化合物と反応してイオン対を形成する化合物の添加が不要となる。該イオン対を形成する化合物が添加される場合、該イオン対を形成する化合物がエチレン・α−オレフィン共重合体中に残留することにより、電気特性の低下を起こすことがある(例えば100℃などの高温での電気特性が低下する傾向にある)が、こうした現象を防ぐことが可能である。また、Al含有量を少なくするためには、酸やアルカリでの脱灰処理が必要となり、得られるエチレン・α−オレフィン共重合体中に残留する酸やアルカリが電極の腐食を起こす傾向にあり、脱灰処理を施すために、エチレン・α−オレフィン共重合体のコストも高くなるが、こうした脱灰処理が不要となる。
【0050】
また、Al含有量が500ppm以下であると、押出機内での架橋反応の進行を防止できるため、太陽電池封止材のシートにゲル状の異物が発生し、シートの外観が悪化するのを防ぐことができる。
【0051】
上記のような、エチレン・α−オレフィン共重合体に含まれるアルミニウム元素をコントロールする手法としては、例えば、後述のエチレン・α−オレフィン共重合体の製造方法に記載の(II−1)有機アルミニウムオキシ化合物および(II−2)有機アルミニウム化合物の製造工程における濃度、または、エチレン・α−オレフィン共重合体の製造条件のメタロセン化合物の重合活性を調整することによって、エチレン・α−オレフィン共重合体に含まれるアルミニウム元素をコントロールすることができる。
【0052】
(ショアA硬度)
ASTM D2240に準拠して測定される、エチレン・α−オレフィン共重合体のショアA硬度は60〜85であり、好ましくは62〜83、より好ましくは62〜80、さらに好ましくは65〜80である。エチレン・α−オレフィン共重合体のショアA硬度は、エチレン・α−オレフィン共重合体のエチレン単位の含有割合や密度を後述の数値範囲に制御することにより、調整することができる。すなわち、エチレン単位の含有割合が高く、密度が高いエチレン・α−オレフィン共重合体は、ショアA硬度が高くなる。一方、エチレン単位の含有割合が低く、密度が低いエチレン・α−オレフィン共重合体は、ショアA硬度が低くなる。
【0053】
ショアA硬度が60以上であると、エチレン・α−オレフィン共重合体の結晶化速度が適度になるため、押出機より押し出されたシートがベタつかず、冷却ロールでの剥離が容易であり、シート状の太陽電池封止材のシートを効率的に得ることができる。また、シートにベタツキが発生しないのでブロッキングを防止でき、シートの繰り出し性が良好にある。また、耐熱性の低下を防ぐこともできる。
【0054】
一方、ショアA硬度が85以下であると、高い透明性が得られる。また、低温での押出成形を容易に行うことができ、例えば130℃以下での押出成形が可能である。このため、エチレン・α−オレフィン共重合体に有機過酸化物を練り込む場合においても、押出機内での架橋反応が進行することが抑制でき、太陽電池封止材のシートにゲル状の異物が発生して、シートの外観が悪化するのを防ぐことができる。また、適度な柔軟性が得られるため、太陽電池モジュールのラミネート成形時に太陽電池素子の割れや、薄膜電極のカケなどの発生を防ぐことができる。
【0055】
(密度)
ASTM D1505に準拠して測定されるエチレン・α−オレフィン共重合体の密度は好ましくは0.865〜0.884g/cm
3であり、より好ましくは0.866〜0.883g/cm
3、さらに好ましくは0.866〜0.880g/cm
3、特に好ましくは0.867〜0.880g/cm
3である。エチレン・α−オレフィン共重合体の密度は、エチレン単位の含有割合とα−オレフィン単位の含有割合とのバランスにより調整することができる。すなわち、エチレン単位の含有割合を高くすると結晶性が高くなり、密度の高いエチレン・α−オレフィン共重合体を得ることができる。一方、エチレン単位の含有割合を低くすると結晶性が低くなり、密度の低いエチレン・α−オレフィン共重合体を得ることができる。
【0056】
エチレン・α−オレフィン共重合体の密度が0.884g/cm
3以下であると、結晶性が低くなり、透明性を高くすることができる。さらに、低温での押出成形が容易となり、例えば130℃以下で押出成形を行うことができる。このため、エチレン・α−オレフィン共重合体に有機過酸化物を練り込んでも、押出機内での架橋反応が進行するのを防ぎ、太陽電池封止材のシートにゲル状の異物の発生を抑制し、シートの外観の悪化を抑制することもできる。また、柔軟性が高いため、太陽電池モジュールのラミネート成形時に太陽電池素子であるセルの割れや薄膜電極のカケなどの発生を防ぐことができる。
【0057】
一方、エチレン・α−オレフィン共重合体の密度が0.865g/cm
3以上であると、エチレン・α−オレフィン共重合体の結晶化速度を速くできるため、押出機より押し出されたシートがベタつきにくく、冷却ロールでの剥離が容易になり、太陽電池封止材のシートを容易に得ることができる。また、シートにベタツキが発生しにくくなるのでブロッキングの発生を抑制し、シートの繰り出し性を向上させることができる。また、十分に架橋させられるため、耐熱性の低下を抑制することができる。
【0058】
(B値)
エチレン・α−オレフィン共重合体の、
13C−NMRスペクトルおよび下記式(1)から求められるB値は0.9〜1.5であることが好ましく、0.9〜1.3であることがさらに好ましく、0.95〜1.3であることがより好ましく、0.95〜1.2であることがとくに好ましく、1.0〜1.2であることが最も好ましい。B値は、エチレン・α−オレフィン共重合体を重合する際の重合触媒を変更することにより調整可能である。より具体的には、後述するメタロセン化合物を用いることで、B値が上記の数値範囲にあるエチレン・α−オレフィン共重合体を得ることができる。
B値=[P
OE]/(2×[P
O]×[P
E]) (1)
(式(1)中、[P
E]はエチレン・α−オレフィン共重合体に含まれるエチレンに由来する構成単位の割合(モル分率)を示し、[P
O]はエチレン・α−オレフィン共重合体に含まれる炭素数3〜20のα−オレフィンに由来する構成単位の割合(モル分率)を示し、[P
OE]は全dyad連鎖に含まれるα−オレフィン・エチレン連鎖の割合(モル分率)を示す)
【0059】
このB値は、エチレン・α−オレフィン共重合体中における、エチレン単位とα−オレフィン単位の分布状態を表す指標であり、J.C.Randall(Macromolecules,15,353(1982))、J.Ray(Macromolecules,10,773(1977))らの報告に基づいて求めることができる。
【0060】
B値が大きいほど、エチレン単位またはα−オレフィン共重合体のブロック的連鎖が短くなり、エチレン単位とα−オレフィン単位の分布が一様であり、共重合ゴムの組成分布が狭いことを示している。なお、B値が0.9以上であると、エチレン・α−オレフィン共重合体の組成分布を小さくすることができる。とくに、エチレン単位のブロック的連鎖が小さくなり、低温での押出成形が容易となるので、例えば130℃以下で押出成形を行うことができる。このため、エチレン・α−オレフィン共重合体に有機過酸化物を練り込む場合においても押出機内での架橋反応が進行するのを抑制し、太陽電池封止材のシートにゲル状の異物が発生して、シートの外観が悪化するのを防ぐことができる。
【0061】
(Tαβ/Tαα)
エチレン・α−オレフィン共重合体の、
13C−NMRスペクトルにおける、Tααに対するTαβの強度比(Tαβ/Tαα)は1.5以下であることが好ましく、1.2以下であることがさらに好ましく、1.0以下であることがとくに好ましく、0.7以下であることが最も好ましい。Tαβ/Tααは、エチレン・α−オレフィン共重合体を重合する際の重合触媒を変更することにより調整可能である。より具体的には、後述するメタロセン化合物を用いることで、Tαβ/Tααが上記の数値範囲にあるエチレン・α−オレフィン共重合体を得ることができる。
【0062】
13C−NMRスペクトルにおけるTααとTαβは、炭素数3以上のα−オレフィンに由来する構成単位中の「CH
2」のピーク強度に対応する。より具体的には、下記の一般式(2)に示すように、第3級炭素に対する位置が異なる2種類の「CH
2」のピーク強度をそれぞれ意味している。
【0064】
Tαβ/Tααは以下のようにして求めることができる。エチレン・α−オレフィン共重合体の
13C−NMRスペクトルをNMR測定装置(例えば、日本電子社製の商品名「JEOL−GX270」)を使用して測定する。測定は、試料濃度が5重量%になるように調製されたヘキサクロロブタジエン/d6−ベンゼン=2/1(体積比)の混合溶液を用いて、67.8MHz、25℃、d6−ベンゼン(128ppm)基準で行う。測定された
13C−NMRスペクトルを、リンデマンアダムスの提案(Analysis Chemistry,43,p1245(1971))、J.C.Randall(Review Macromolecular Chemistry Physics,C29,201(1989))に従って解析し、Tαβ/Tααを求める。
【0065】
エチレン・α−オレフィン共重合体の
13C−NMRにおける、Tααに対するTαβの強度比(Tαβ/Tαα)は、重合反応中における、α−オレフィンの重合触媒への配位状態を示している。Tαβ型でα−オレフィンが重合触媒に配位した場合、α−オレフィンの置換基がポリマー鎖の重合成長反応の妨げとなり、低分子量成分の生成を助長する傾向にある。このため、シートにベタツキが発生してブロッキングしてしまい、シートの繰り出し性が悪化する傾向にある。さらに、低分子量成分がシート表面にブリードしてくるために接着の阻害となり、接着性が低下する。
【0066】
(分子量分布Mw/Mn)
エチレン・α−オレフィン共重合体の、ゲル浸透クロマトグラフィー(GPC)で測定した重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布Mw/Mnは、1.2〜3.5の範囲にあることが好ましく、1.7〜3.0の範囲にあることがさらに好ましく、1.7〜2.7の範囲にあることがより好ましく、1.9〜2.4の範囲にあることがとくに好ましい。エチレン・α−オレフィン共重合体の分子量分布Mw/Mnは、重合に際し、後述のメタロセン化合物を用いることにより調整することができる。
【0067】
Mw/Mnを1.2以上にすると、リビング重合的にエチレン・α−オレフィン共重合体を重合するため触媒活性を得ることができる。あるいは、従来公知の重合方法で得られたエチレン・α−オレフィン共重合体の低分子量成分、高分子量成分の分離が不要となるため、製造コストが低くすることができる。また、成形できる温度幅も狭く、さらに押出機での吐出量も均一になるため、均一な厚みのシートを得ることができ、シート成形が容易になる。
【0068】
一般に、分子量分布Mw/Mnが広くなると組成分布も広くなることが知られているが、Mw/Mnが3.5以下であると、低分子量成分が少なくなるのでシートがベタつかずブロッキングしにくくなるため、シートの繰り出し性を向上させることができる。また、低分子量成分がシート表面にブリードしてくるのを防げるため、接着性の低下を抑制することができる。
【0069】
本明細書において、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、Waters社製のゲル浸透クロマトグラフ(商品名「Alliance GPC−2000型」)を使用し、以下のようにして測定したものである。分離カラムには、商品名「TSKgel GMH6−HT」を2本、および商品名「TSKgel GMH6−HTL」を2本使用する。カラムサイズは、いずれも内径7.5mm、長さ300mmとし、カラム温度は140℃とし、移動相にはo−ジクロロベンゼン(和光純薬工業社製)および酸化防止剤としてBHT(武田薬品社製)0.025重量%を用いる。移動相を1.0ml/分の速度で移動させ、試料濃度は15mg/10mlとし、試料注入量は500μlとし、検出器として示差屈折計を用いる。標準ポリスチレンは、分子量がMw≦1000およびMw≧4×10
6については東ソー社製のものを用いる。また、分子量が1000≦Mw≦4×10
6についてはプレッシャーケミカル社製のものを用いる。分子量は、ユニバーサル校正して、用いた各α−オレフィンに合わせエチレン・α−オレフィン共重合体に換算した値である。
【0070】
(塩素イオンの含有割合)
エチレン・α−オレフィン共重合体の、固相抽出処理後の抽出液からイオンクロマトグラフィーにより検出される塩素イオンの含有割合は、2ppm以下であることが好ましく、1.5ppm以下であることがさらに好ましく、1.2ppm以下であることがとくに好ましい。塩素イオンの含有割合は、後述するメタロセン化合物の構造および重合条件を調整することにより調整することができる。すなわち、触媒の重合活性を高くすることにより、エチレン・α−オレフィン共重合体中の触媒残渣量を少なくし、塩素イオンの含有割合が上記の数値範囲にあるエチレン・α−オレフィン共重合体を得ることができる。
【0071】
エチレン・α−オレフィン共重合体中の塩素イオンの含有割合が2ppm以下にすることで、銀などで構成される電極の腐食により、太陽電池モジュールの長期信頼性を低下する問題を防ぐことができる。なお、塩素原子を含まないメタロセン化合物を用いることで、実質的に塩素イオンを含まないエチレン・α−オレフィン共重合体を得ることができる。
【0072】
エチレン・α−オレフィン共重合体中の塩素イオンの含有割合は、例えば、オートクレーブなどを用いて滅菌洗浄されたガラス容器にエチレン・α−オレフィン共重合体を約10g精秤し、超純水を100ml加えて密閉した後、常温で30分間超音波(38kHz)抽出を行って得られる抽出液を使用し、ダイオネクス社製のイオンクロマトグラフ装置(商品名「ICS−2000」)を用いて測定することができる。
【0073】
(酢酸メチルへの抽出量)
エチレン・α−オレフィン共重合体の、酢酸メチルへの抽出量は5.0重量%以下であることが好ましく、4.0重量%以下であることがさらに好ましく、3.5重量%以下であることがより好ましく、2.0重量%以下であることがとくに好ましい。酢酸メチルへの抽出量が多いことは、エチレン・α−オレフィン共重合体に低分子量成分が多く含まれており、分子量分布または組成分布が広がっていることを示している。そのため、後述のメタロセン化合物を使用し、重合条件を調整することにより、酢酸メチルへの抽出量が少ないエチレン・α−オレフィン共重合体を得ることができる。
【0074】
例えば、重合器内での重合滞留時間を短くすることにより、重合活性が低下したメタロセン化合物を重合系外に出せば、低分子量成分の生成を抑制できる。ソックスレー抽出法での酢酸メチルへの抽出量が5.0重量%以下であると、シートがベタつかないため、ブロッキングを抑制でき、シートの繰り出し性を向上させることができる。
【0075】
酢酸メチルへの抽出量は、例えばエチレン・α−オレフィン共重合体を約10g程度精秤し、酢酸メチルを用いて、酢酸メチルの沸点以上の温度でソックスレー抽出を行い、抽出前後のエチレン・α−オレフィン共重合体の重量差または抽出溶媒を揮発させた残渣量より算出される。
【0076】
(融解ピーク)
エチレン・α−オレフィン共重合体の、示差走査熱量測定(DSC)に基づく融解ピークは30〜90℃の範囲に存在することが好ましく、33〜90℃の範囲に存在することがさらに好ましく、33〜88℃の範囲に存在することがとくに好ましい。融解ピークが90℃以下であると、結晶化度が低くなり、得られる太陽電池封止材の柔軟性が高まるため、太陽電池モジュールをラミネート成形する際にセルの割れや、薄膜電極のカケの発生を防止することができる。一方、融解ピークが30℃以上であると、樹脂組成物の柔軟性を適度に高くできるため、押出成形にて太陽電池封止材シートを容易に得ることができる。また、シートがベタついてブロッキングするのを防止して、シートの繰り出し性の悪化を抑制することができる。
【0077】
(エチレン・α−オレフィン共重合体の製造方法)
エチレン・α−オレフィン共重合体は、チーグラー化合物、バナジウム化合物、メタロセン化合物などを触媒として用いて製造することができる。中でも以下に示す種々のメタロセン化合物を触媒として用いて製造することが好ましい。メタロセン化合物としては、例えば、特開2006−077261号公報、特開2008−231265号公報、特開2005−314680号公報などに記載のメタロセン化合物を用いることができる。ただし、これらの特許文献に記載のメタロセン化合物とは異なる構造のメタロセン化合物を使用してもよいし、二種以上のメタロセン化合物を組み合わせて使用してもよい。
【0078】
メタロセン化合物を用いる重合反応としては、例えば以下に示す態様を好適例として挙げることができる。
【0079】
従来公知のメタロセン化合物と、(II)(II−1)有機アルミニウムオキシ化合物、(II−2)上記メタロセン化合物(I)と反応してイオン対を形成する化合物、および(II−3)有機アルミニウム化合物からなる群より選択される少なくとも一種の化合物(助触媒ともいう)と、からなるオレフィン重合用触媒の存在下に、エチレンとα−オレフィンなどから選ばれる一種以上のモノマーを供給する。
【0080】
(II−1)有機アルミニウムオキシ化合物、(II−2)上記メタロセン化合物(I)と反応してイオン対を形成する化合物、および(II−3)有機アルミニウム化合物としても、例えば、特開2006−077261号公報、特開2008−231265号公報、および特開2005−314680号公報などに記載のメタロセン化合物を用いることができる。ただし、これらの特許文献に記載のメタロセン化合物とは異なる構造のメタロセン化合物を使用してもよい。これら化合物は、個別に、あるいは予め接触させて重合雰囲気に投入してもよい。さらに、例えば特開2005−314680号公報などに記載の微粒子状無機酸化物担体に担持して用いてもよい。
なお、好ましくは、前述の(II−2)上記メタロセン化合物(I)と反応してイオン対を形成する化合物を実質的に使用せずに製造することで、電気特性の優れるエチレン・α−オレフィン共重合体を得ることができる。
【0081】
エチレン・α−オレフィン共重合体の重合は、従来公知の気相重合法、およびスラリー重合法、溶液重合法などの液相重合法のいずれでも行うことができる。好ましくは溶液重合法などの液相重合法により行われる。上記のようなメタロセン化合物を用いて、エチレンと炭素数3〜20のα−オレフィンとの共重合を行ってエチレン・α−オレフィン共重合体を製造する場合、(I)のメタロセン化合物は、反応容積1リットル当り、通常10
−9〜10
−1モル、好ましくは10
−8〜10
−2モルになるような量で用いられる。
【0082】
化合物(II−1)は、化合物(II−1)と、化合物(I)中の全遷移金属原子(M)とのモル比[(II−1)/M]が通常1〜10000、好ましくは10〜5000となるような量で用いられる。化合物(II−2)は、化合物(I)中の全遷移金属(M)とのモル比[(II−2)/M]が、通常0.5〜50、好ましくは1〜20となるような量で用いられる。化合物(II−3)は、重合容積1リットル当り、通常0〜5ミリモル、好ましくは約0〜2ミリモルとなるような量で用いられる。
【0083】
溶液重合法では、上述のようなメタロセン化合物の存在下に、エチレンと炭素数3〜20のα−オレフィンとの共重合を行うことによって、コモノマー含量が高く、組成分布が狭く、分子量分布が狭いエチレン・α−オレフィン共重合体を効率よく製造できる。ここで、エチレンと、炭素数3〜20のα−オレフィンとの仕込みモル比は、通常、エチレン:α−オレフィン=10:90〜99.9:0.1、好ましくはエチレン:α−オレフィン=30:70〜99.9:0.1、さらに好ましくはエチレン:α−オレフィン=50:50〜99.9:0.1である。
【0084】
「溶液重合法」とは、後述の不活性炭化水素溶媒中にポリマーが溶解した状態で重合を行う方法の総称である。溶液重合法における重合温度は、通常0〜200℃、好ましくは20〜190℃、さらに好ましくは40〜180℃である。溶液重合法においては、重合温度が0℃に満たない場合、その重合活性は極端に低下し、重合熱の除熱も困難となり生産性の点で実用的でない。また、重合温度が200℃を超えると、重合活性が極端に低下するので生産性の点で実用的でない。
【0085】
重合圧力は、通常、常圧〜10MPaゲージ圧、好ましくは常圧〜8MPaゲージ圧の条件下である。共重合は、回分式、半連続式、連続式のいずれの方法においても行うことができる。反応時間(共重合反応が連続法で実施される場合には、平均滞留時間)は、触媒濃度、重合温度などの条件によっても異なり、適宜選択することができるが、通常1分間〜3時間、好ましくは10分間〜2.5時間である。さらに、重合を反応条件の異なる2段以上に分けて行うことも可能である。得られるエチレン・α−オレフィン共重合体の分子量は、重合系中の水素濃度や重合温度を変化させることによっても調節することができる。さらに、使用する化合物(II)の量により調節することもできる。水素を添加する場合、その量は、生成するエチレン・α−オレフィン共重合体1kgあたり0.001〜5,000NL程度が適当である。また、得られるエチレン・α−オレフィン共重合体の分子末端に存在するビニル基およびビニリデン基は、重合温度を高くすること、水素添加量を極力少なくすることで調整できる。
【0086】
溶液重合法において用いられる溶媒は、通常、不活性炭化水素溶媒であり、好ましくは常圧下における沸点が50℃〜200℃の飽和炭化水素である。具体的には、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素が挙げられる。なお、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類や、エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素も「不活性炭化水素溶媒」の範疇に入り、その使用を制限するものではない。
【0087】
上記したように、溶液重合法においては、従来繁用されてきた芳香族炭化水素に溶解する有機アルミニウムオキシ化合物のみならず、脂肪族炭化水素や脂環族炭化水素に溶解するMMAOのような修飾メチルアルミノキサンを使用できる。この結果、溶液重合用の溶媒として脂肪族炭化水素や脂環族炭化水素を採用すれば、重合系内や生成するエチレン・α−オレフィン共重合体中に芳香族炭化水素が混入する可能性をほぼ完全に排除することが可能となる。すなわち、溶液重合法は、環境負荷を軽減化でき、人体健康への影響を最小化できるという特徴も有する。なお、物性値のばらつきを抑制するため、重合反応により得られたエチレン・α−オレフィン共重合体、および所望により添加される他の成分は、任意の方法で溶融され、混練、造粒などを施されるのが好ましい。
【0088】
(エチレン・極性モノマー共重合体)
本発明の太陽電池封止材に用いられるエチレン・極性モノマー共重合体は、エチレンと極性モノマーとのランダム共重合体である。極性モノマーとしては、アクリル酸、メタクリル酸、フマル酸、イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸、無水イタコン酸などの不飽和カルボン酸、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸nブチル、アクリル酸イソオクチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソブチル、マレイン酸ジメチルなどの不飽和カルボン酸エステル、アクリル酸グリシジルエステル、メタアクリル酸グリシジルエステルなどの不飽和カルボン酸グリシジルエステル、アクリル酸グリシジルエーテル、メタアクリル酸グリシジルエーテルなどの不飽和カルボン酸グリシジルエーテル、酢酸ビニル、プロピオン酸ビニルのようなビニルエステルなどの一種または二種以上などを例示することができる。
【0089】
上記エチレン・極性モノマー共重合体の具体例としては、エチレン・アクリル酸共重合体、エチレン・メタクリル酸共重合体のようなエチレン・不飽和カルボン酸共重合体、エチレン・無水マレイン酸共重合体、エチレン・無水イタコン酸共重合体のようなエチレン・不飽和カルボン酸無水物共重合体、エチレン・アクリル酸メチル共重合体、エチレン・アクリル酸エチル共重合体、エチレン・メタクリル酸メチル共重合体、エチレン・アクリル酸イソブチル共重合体、エチレン・アクリル酸nブチル共重合体のようなエチレン・不飽和カルボン酸エステル共重合体、エチレン・アクリル酸イソブチル・メタクリル酸共重合体、エチレン・アクリル酸nブチル・メタクリル酸共重合体のようなエチレン・不飽和カルボン酸エステル・不飽和カルボン酸共重合体、エチレン・アクリル酸グリシジルエステル共重合体のようなエチレン・不飽和グリシジルエステル共重合体、エチレン・アクリル酸グリシジルエーテル共重合体のようなエチレン・不飽和グリシジルエーテル共重合体、エチレン・アクリル酸グリシジルエステル・アクリル酸メチル共重合体のようなエチレン・不飽和グリシジルエステル・不飽和カルボン酸エステル共重合体、エチレン・アクリル酸グリシジルエーテル・アクリル酸メチル共重合体のようなエチレン・不飽和グリシジルエーテル・不飽和カルボン酸エステル共重合体、エチレン・酢酸ビニル共重合体のようなエチレン・ビニルエステル共重合体などが挙げられ、一種または2種以上を混合して用いることができる。なかでも、エチレン・不飽和グリシジルエステル共重合体、エチレン・不飽和グリシジルエーテル共重合体、エチレン・不飽和グリシジルエステル・不飽和カルボン酸エステル共重合体、エチレン・不飽和グリシジルエーテル・不飽和カルボン酸エステル共重合体、エチレン・ビニルエステル共重合体などが好ましい。
【0090】
エチレン・極性モノマー共重合体の極性モノマーの含有量は、15〜50重量%であり、好ましくは15〜40重量%、さらに好ましくは20〜40重量%である。極性モノマーの含有量がこの範囲にあれば、エチレン系共重合体のアセトンおよびt−ブチルアルコールの吸収率とショアA硬度とのバランスを向上し、押出成形が可能である。
【0091】
なかでも、エチレン・酢酸ビニル共重合体が最も好ましく、エチレン・酢酸ビニル共重合体の酢酸ビニル含有量は15〜47重量%であり、好ましくは20〜40重量%である。エチレン・酢酸ビニル共重合体の酢酸ビニル含有量がこの範囲であれば、エチレン系共重合体のアセトンおよびt−ブチルアルコールの吸収率とショアA硬度とのバランスを向上し、押出成形が可能である。
【0092】
ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるエチレン・酢酸ビニル共重合体のメルトフローレ−ト(MFR)は5〜50g/10分であり、好ましくは5〜30g/10分、さらに好ましくは5〜25g/10分である。エチレン・極性モノマー共重合体のMFRが上記範囲であると、前述のエチレン・α−オレフィン共重合体とよく混合できる。また、エチレン系共重合体のMFRの範囲を満足することができ、押出成形性が優れる。また、エチレン・極性モノマー共重合体のMFRは、後述する重合反応の際の重合温度、重合圧力、並びに重合系内の極性モノマーのモノマー濃度と水素濃度のモル比率などを調整することにより、調整することができる。
【0093】
(エチレン・極性モノマー共重合体の製造方法)
本発明の太陽電池封止材に用いられるエチレン・極性モノマー共重合体は、上記のようなモノマー単位を含有するものであるが該共重合体は、例えば、ラジカル発生剤の存在下、500〜4000気圧、100 〜300 ℃で溶媒や連鎖移動剤の存在下または不存在下に共重合させることにより製造し得る。またポリエチレンとグリシジル基を有する不飽和化合物とラジカル発生剤等からなる混合物を、押出機等を用いることにより溶融グラフト重合することにより製造することもできる。
【0094】
(シランカップリング剤)
本発明の太陽電池封止材を構成する樹脂組成物は、シランカップリング剤を含有させることもできる。シランカップリング剤は、架橋性樹脂100重量部に対して0.1〜2重量部を含有するが、好ましい態様である。シランカップリング剤が0.1〜1.8重量部含有されることがより好ましく、シランカップリング剤が0.1〜1.5重量部含有されることがとくに好ましい。
【0095】
シランカップリング剤が0.1重量部以上であると、接着性が向上する。一方、シランカップリング剤が2重量部以下であると、シランカップリング剤のメトキシ基、エトキシ基由来の加水分解により発生するメタノール、エタノールが少なくなり、より確実に気泡の発生を抑制することができる。また、シランカップリング剤を太陽電池モジュールのラミネート時にエチレン系共重合体にグラフト反応させるための有機過酸化物の添加量が少なくなるので、アセトン、t−ブチルアルコール等の分解物も少なくでき、気泡の発生をいっそう確実に抑制することができる。
【0096】
シランカップリング剤は、従来公知のものが使用でき、とくに制限はない。具体的には、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β−メトキシエトキシシラン)、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジトリエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクロキシプロピルメチルジメトキシシラン、3−メタクロキシプロピルメチルジメトキシシラン、3−メタクロキシプロピルトリエトキシシラン、3−メタクロキシプロピルメチルジエトキシシラン、3−アクロキシプロピルトリメトキシシランなどが使用できる。好ましくは、接着性が良好な3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−アミノプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクロキシプロピルトリエトキシシラン、3−アクロキシプロピルトリメトキシシラン、ビニルトリエトキシシランが挙げられる。
【0097】
(有機過酸化物)
本発明の太陽電池封止材を構成する樹脂組成物は、有機過酸化物を含有させることもできる。有機過酸化物は、シランカップリング剤と、エチレン系共重合体とのグラフト変性の際のラジカル開始剤として、さらに、エチレン系共重合体の太陽電池モジュールのラミネート成形時の架橋反応の際のラジカル開始剤として用いられる。エチレン系共重合体に、シランカップリング剤をグラフト変性することにより、ガラス、バックシート、セル、電極との接着性が良好な太陽電池モジュールが得られる。さらに、エチレン系共重合体を架橋することにより、耐熱性、接着性に優れた太陽電池モジュールを得ることができる。
【0098】
本発明の太陽電池封止材に好ましく用いられる有機過酸化物は、エチレン系共重合体にシランカップリング剤をグラフト変性したり、エチレン系共重合体を架橋したりすることが可能なものであればよいが、押出シート成形での生産性と太陽電池モジュールのラミネート成形時の架橋速度のバランスから、有機過酸化物の1分間半減期温度が100〜170℃である。有機過酸化物の1分間半減期温度が100℃以上であると、押出シート成形時に樹脂組成物から得られる太陽電池封止シートにゲルが発生しにくくなるので、押出機のトルクの上昇を抑制しシート成形を容易にすることができる。また、押出機内で発生したゲル物によりシートの表面に凹凸が発生するのを抑制できるため、外観の低下を防止することができる。また、電圧をかけたとき、シート内部におけるクラックの発生を防止できるため、絶縁破壊電圧の低下を防ぐことができる。さらに、透湿性の低下も防止できる。また、シート表面に凹凸が発生するのを抑制できるため、太陽電池モジュールのラミネート加工時にガラス、セル、電極、バックシートとの密着性が良好となり、接着性も向上する。押出シート成形の押出温度を90℃以下に下げると成形は可能であるが、生産性が大幅に低下する。有機過酸化物の1分間半減期温度が170℃以下であると、太陽電池モジュールのラミネート成形時の架橋速度の低下を抑制できるため、太陽電池モジュールの生産性の低下を防ぐことができる。また、太陽電池封止材の耐熱性、接着性の低下を防ぐこともできる。
【0099】
有機過酸化物としては公知のものが使用できる。1分間半減期温度が100〜170℃の範囲にある有機過酸化物の好ましい具体例としては、ジラウロイルパーオキサイド、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、ジベンゾイルパーオキサイド、t−アミルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシマレイン酸、1,1−ジ(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−アミルパーオキシ)シクロヘキサン、t−アミルパーオキシイソノナノエート、t−アミルパーオキシノルマルオクトエート、1,1−ジ(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−アミル−パーオキシベンゾエート、t−ブチルパーオキシアセテート、t−ブチルパーオキシイソノナノエート、2,2−ジ(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシベンゾエート、などが挙げられる。好ましくは、ジラウロイルパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシイソノナノエート、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、t−ブチルパーオキシベンゾエートなどが挙げられる。
【0100】
本発明の太陽電池封止材は、有機過酸化物を含有することで優れた架橋特性を有しているため、真空ラミネーターと架橋炉の二段階の接着工程を経る必要はなく、高温度で短時間に完結することができる。
【0101】
本発明の太陽電池封止材は、架橋性樹脂100重量部に対し、有機過酸化物を0.1〜1.2重量部を含有する。好ましくは有機過酸化物が0.2〜1.0重量部、さらに好ましくは有機過酸化物が0.2〜0.8重量部含有される。
【0102】
有機過酸化物の含有量が0.1重量部以上であると、太陽電池封止材の架橋度合いや架橋速度などの架橋特性の低下を抑制し、シランカップリング剤のエチレン系共重合体の主鎖へのグラフト反応を良好にして、耐熱性、接着性の低下を抑制することができる。
【0103】
有機過酸化物が1.2重量部以下であると、アセトン、t−ブチルアルコールその他有機過酸化物の分解生成物などの発生量がいっそう低下し、気泡の発生を確実に防止することができる。
【0104】
(紫外線吸収剤、光安定化剤、耐熱安定剤)
本発明の太陽電池封止材を構成する樹脂組成物には、紫外線吸収剤、光安定化剤、および耐熱安定剤からなる群より選択される少なくとも一種の添加剤が含有されることが好ましい。これらの添加剤の配合量は、架橋性樹脂100重量部に対して、0.005〜5重量部であることが好ましい。さらに、上記三種から選ばれる少なくとも二種の添加剤を含有することが好ましく、とくに、上記三種の全てが含有されていることが好ましい。上記添加剤の配合量が上記範囲にあると、恒温恒湿への耐性、ヒートサイクルの耐性、耐候安定性、および耐熱安定性を向上する効果を十分に確保し、かつ、太陽電池封止材の透明性やガラス、バックシート、セル、電極、アルミニウムとの接着性の低下を防ぐことができるので好ましい。
【0105】
紫外線吸収剤としては、具体的には、2−ヒドロキシ−4−ノルマル−オクチルオキシベンゾフェノン、2−ヒドロキシ−4メトキシベンゾフェノン、2,2−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−4−カルボキシベンゾフェノン、2−ヒドロキシ−4−N−オクトキシベンゾフェノンなどのベンゾフェノン系;2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾールなどのベンゾトリアゾール系;フェニルサルチレート、p−オクチルフェニルサルチレートなどのサリチル酸エステル系のものが用いられる。
【0106】
光安定化剤としては、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]などのヒンダードアミン系、ヒンダードピペリジン系化合物などのものが好ましく使用される。
【0107】
耐熱安定剤としては、具体的には、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ビス[2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル]エチルエステル亜リン酸、テトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4'−ジイルビスホスフォナイト、およびビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイトなどのホスファイト系耐熱安定剤;3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物などのラクトン系耐熱安定剤;3,3',3",5,5',5"−ヘキサ−tert−ブチル−a,a',a"−(メチレン−2,4,6−トリイル)トリ−p−クレゾール、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)ベンジルベンゼン、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]などのヒンダードフェノール系耐熱安定剤;硫黄系耐熱安定剤;アミン系耐熱安定剤などを挙げることができる。また、これらを一種単独でまたは二種以上を組み合わせて用いることもできる。中でも、ホスファイト系耐熱安定剤、およびヒンダードフェノール系耐熱安定剤が好ましい。
【0108】
(その他の添加剤)
太陽電池封止材を構成する樹脂組成物には、以上詳述した諸成分以外の各種成分を、本発明の目的を損なわない範囲において、適宜含有させることができる。例えば、エチレン系共重合体以外の各種ポリオレフィン、スチレン系やエチレン系ブロック共重合体、プロピレン系重合体などが挙げられる。これらは、架橋性樹脂100重量部に対して、0.0001〜50重量部、好ましくは0.001〜40重量部含有されていてもよい。また、ポリオレフィン以外の各種樹脂、および/または各種ゴム、可塑剤、充填剤、顔料、染料、帯電防止剤、抗菌剤、防黴剤、難燃剤、架橋助剤、および分散剤などから選ばれる一種以上の添加剤を適宜含有することができる。
【0109】
とくに、架橋助剤を含有させる場合において、架橋助剤の配合量は、架橋性樹脂100重量部に対して、0.05〜5重量部であると、適度な架橋構造を有することができ、耐熱性、機械物性、接着性を向上できるため好ましい。
【0110】
架橋助剤としては、オレフィン系樹脂に対して一般に使用される従来公知のものが使用できる。このような架橋助剤は、分子内に二重結合を二個以上有する化合物である。具体的には、t−ブチルアクリレート、ラウリルアクリレート、セチルアクリレート、ステアリルアクリレート、2−メトキシエチルアクリレート、エチルカルビトールアクリレート、メトキシトリプロピレングリコールアクリレートなどのモノアクリレート;t−ブチルメタクリレート、ラウリルメタクリレート、セチルメタクリレート、ステアリルメタクリレート、メトキシエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレートなどのモノメタクリレート;1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、1,9−ノナンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレートなどのジアクリレート;1,3−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、1,9−ノナンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレートなどのジメタクリレート;トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、ペンタエリスリトールトリアクリレートなどのトリアクリレート;トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレートなどのトリメタクリレート;ペンタエリスリトールテトラアクリレート、テトラメチロールメタンテトラアクリレートなどのテトラアクリレート;ジビニルベンゼン、ジ−i−プロペニルベンゼンなどのジビニル芳香族化合物;トリアリルシアヌレート、トリアリルイソシアヌレートなどのシアヌレート;ジアリルフタレートなどのジアリル化合物;トリアリル化合物:p−キノンジオキシム、p−p'−ジベンゾイルキノンジオキシムなどのオキシム:フェニルマレイミドなどのマレイミドが挙げられる。これらの架橋助剤の中でより好ましいのは、ジアクリレート、ジメタクリレート、ジビニル芳香族化合物、トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、ペンタエリスリトールトリアクリレートなどのトリアクリレート;トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレートなどのトリメタクリレート;ペンタエリスリトールテトラアクリレート、テトラメチロールメタンテトラアクリレートなどのテトラアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレートなどのシアヌレート、ジアリルフタレートなどのジアリル化合物;トリアリル化合物:p−キノンジオキシム、p−p'−ジベンゾイルキノンジオキシムなどのオキシム:フェニルマレイミドなどのマレイミドである。さらにこれらの中でとくに好ましいのは、トリアリルイソシアヌレートであり、ラミネート後の太陽電池封止材の気泡発生や架橋特性のバランスが最も優れる。
【0111】
(太陽電池封止材)
本発明の太陽電池封止材は、気泡の発生の抑制、太陽電池素子の割れ防止に優れ、さらに、ガラス、バックシート、薄膜電極、アルミニウム、太陽電池素子などの各種太陽電池部材との接着性、耐熱性、透明性、外観、耐候性、体積固有抵抗、電気絶縁性、透湿性、電極腐食性、押出成形性および架橋特性のバランスにも優れている。このため、従来公知の太陽電池モジュールの太陽電池封止材として好適に用いられる。
【0112】
太陽電池封止材は、その全体形状がシート状であることも好ましい実施形態の一つである。また、前述の樹脂組成物からなるシートを少なくとも一層有する、他の層と複合化された太陽電池封止材も好適に用いることができる。太陽電池封止材の層の厚みは、通常0.01〜2mm、好ましくは、0.05〜1.5mm、さらに好ましくは0.1〜1.2mm、とくに好ましくは0.2〜1mm、より好ましくは0.3〜0.9mm、最も好ましくは0.3〜0.8mmである。厚みがこの範囲内であると、ラミネート工程における、ガラス、太陽電池素子、薄膜電極などの破損が抑制でき、かつ、十分な光線透過率を確保することにより高い光発電量を得ることができる。さらには、低温での太陽電池モジュールのラミネート成形ができるので好ましい。
【0113】
本発明の太陽電池封止材の製造方法としては通常用いられている方法が利用できるが、カレンダーロール、ニーダー、バンバリミキサー、押出機などにより溶融ブレンドすることにより製造することが好ましい。とくに、連続生産が可能な押出機での製造が好ましい。
【0114】
太陽電池封止材のシートの成形方法にはとくに制限は無いが、公知の各種の成形方法(キャスト成形、押出シート成形、インフレーション成形、射出成形、圧縮成形など)を採用することが可能である。とくに、エチレン系共重合体と、シランカップリング剤、有機過酸化物、紫外線吸収剤、光安定化剤、耐熱安定剤、および必要に応じてその他添加剤を、例えば、ポリ袋などの袋の中で人力によりブレンドする、あるいは、ヘンシェルミキサー、タンブラー、スーパーミキサーなどの攪拌混合機を用いてブレンドすることにより得られた樹脂組成物を、押出シート成形のホッパーに投入し、溶融混練を行いつつ押出シート成形を行い、シート状の太陽電池封止材を成形する方法が好ましい。この方法によれば、接着性を向上させることができ、かつ、光安定剤の劣化を防いで耐候性や耐熱性などの長期信頼性を向上できる。
【0115】
押出温度範囲としては、100〜130℃が好ましい。押出温度を100℃以上にすると、太陽電池封止材の生産性を向上させることができる。押出温度を130℃以下にすると、架橋性樹脂組成物を押出機でシート化して太陽電池封止材を得る際にゲル化を起こしにくくなる。そのため、押出機のトルクの上昇を防ぎ、シート成形を容易にできる。また、シートの表面に凹凸が発生しにくくなるため、外観の低下を防ぐことができる。また、電圧をかけたときシート内部におけるクラックの発生を抑制できるため、絶縁破壊電圧の低下を防止することができる。さらに、透湿性の低下も抑制できる。また、シート表面に凹凸が発生しにくくなるため、太陽電池モジュールのラミネート加工時にガラス、セル、電極、バックシートとの密着性が良好になり、接着性に優れる。
【0116】
本発明の太陽電池封止材の製造方法の一例として、エチレン系重合体がエチレン・α−オレフィン共重合体およびエチレン・極性モノマー共重合体を含む場合を例に挙げて説明する。エチレン・α−オレフィン共重合体およびエチレン・極性モノマー共重合体を、ヘンシェルミキサーやタンブラーミキサーで、有機過酸化物を含む添加剤と共に混合して押出機に供給し、シート状に成形することができる。エチレン・α−オレフィン共重合体とエチレン・極性モノマー共重合体および添加剤を、別々に押出成形機に供給し、成形機中で溶融混合しても良い。さらには、エチレン・α−オレフィン共重合体とエチレン・極性モノマー共重合体を、一度溶融混錬して混合ペレットを作成し、このペレットを再度押出機に供給してシート成形しても良い。
【0117】
また、太陽電池封止材のシート(または層)の表面には、エンボス加工が施されてもよい。太陽電池封止材のシート表面を、エンボス加工によって装飾することで、封止シート同士、または封止シートと他のシートなどとのブロッキングを防止しうる。さらに、エンボスが、太陽電池封止材の貯蔵弾性率を低下させるため、太陽電池封止材と太陽電池素子とをラミネートする時に太陽電池素子などに対するクッションとなって、太陽電池素子の破損を防止することができる。
【0118】
太陽電池封止材のシートの単位面積当りの凹部の合計体積V
Hと、太陽電池封止材のシートの見掛けの体積V
Aとの百分比V
H/V
A×100で表される空隙率P(%)が、10〜50%であることが好ましく、10〜40%であることがより好ましく、15〜40%であることがさらに好ましい。なお、太陽電池封止材のシートの見掛けの体積V
Aは、単位面積に太陽電池封止材の最大厚みを乗じることにより得られる。
【0119】
空隙率Pが10%以上であると、太陽電池封止材の弾性率を十分低下させることができるため、十分なクッション性を得ることができる。したがって、モジュールの製造工程にて、二段階でラミネート加工(加圧工程)する際に、結晶系太陽電池では、シリコンセルやシリコンセルと電極とを固定する半田の割れを防ぎ、薄膜系太陽電池では、銀電極の割れを防ぐことができる。すなわち、架橋性樹脂組成物からなるシートを含む太陽電池封止材の空隙率が10%以上であると、太陽電池封止材に局所的に圧力が加えられた場合であっても、圧力が加えられた凸部が潰れるように変形する。このため、ラミネート加工時に、例えばシリコンセルなどに対して局所的に大きな圧力が加わったとしてもシリコンセルが割れてしまうのを防止することができる。また、太陽電池封止材の空隙率が10%以上であると、空気の通り道が確保できるため、ラミネート加工時に良好に脱気できる。このため、太陽電池モジュールに空気が残留して外観が悪化したり、長期使用時には、残留した空気中の水分により電極の腐食が生じたりすることを防止することができる。さらに、ラミネート時に、流動した架橋性樹脂組成物に生じる空隙が少なくなるため、太陽電池モジュールの各被着体の外部にはみ出して、ラミネーターを汚染することを防げる。
【0120】
一方、空隙率Pが80%以下であると、ラミネート加工の加圧時に空気を良好に脱気できるため、太陽電池モジュール内に空気が残留するのを防ぐことができる。このため、太陽電池モジュールの外観の悪化を防ぎ、長期使用時には、残留した空気中の水分により電極の腐食が起きることもない。また、ラミネート加工の加圧時に空気を良好に脱気できるため、太陽電池封止材と被着体との接着面積が増えて、十分な接着強度を得ることができる。
【0121】
空隙率Pは、次のような計算により求めることができる。エンボス加工が施された太陽電池封止材の、見掛けの体積V
A(mm
3)は、太陽電池封止材の最大厚みt
max(mm)と単位面積(例えば1m
2=1000×1000=10
6mm
2)との積によって、下記式(3)のようにして算出される。
V
A(mm
3)=t
max(mm)×10
6(mm
2) (3)
一方、この単位面積の太陽電池封止材の実際の体積V
0(mm
3)は、太陽電池封止材を構成する樹脂の比重ρ(g/mm
3)と単位面積(1m
2)当りの太陽電池封止材の実際の重さW(g)と、を下記式(4)に当てはめることにより算出される。
V
0(mm
3)=W/ρ (4)
太陽電池封止材の単位面積当りの凹部の合計体積V
H(mm
3)は、下記式(5)に示されるように、「太陽電池封止材の見掛けの体積V
A」から「実際の体積V
0」を差し引くことによって算出される。
V
H(mm
3)=V
A−V
0=V
A−(W/ρ) (5)
したがって、空隙率(%)は次のようにして求めることができる。
空隙率P(%)=V
H/V
A×100
=(V
A−(W/ρ))/V
A×100
=1−W/(ρ・V
A)×100
=1−W/(ρ・t
max・10
6)×100
【0122】
空隙率(%)は、上記の計算式によって求めることができるが、実際の太陽電池封止材の断面やエンボス加工が施された面を顕微鏡撮影し、画像処理などをすることによって求めることもできる。
【0123】
エンボス加工により形成される凹部の深さは、太陽電池封止材の最大厚みの20〜95%であることが好ましく、50〜95%であることがより好ましく、65〜95%であることがさらに好ましい。シートの最大厚みt
maxに対する凹部の深さDの百分比を、凹部の「深さ率」と称する場合がある。
【0124】
エンボス加工の凹部の深さとは、エンボス加工による太陽電池封止材の凹凸面の凸部の最頂部と凹部の最深部との高低差Dを示す。また、太陽電池封止材の最大厚みt
maxとは、太陽電池封止材の一方の面にエンボス加工してある場合、一方の面の凸部の最頂部から他方の面までの(太陽電池封止材厚さ方向の)距離を示し、太陽電池封止材の両方の面にエンボス加工が施されている場合は、一方の面の凸部の最頂部から他方の面の凸部の最頂部までの(太陽電池封止材厚さ方向の)距離を示す。
【0125】
エンボス加工は、太陽電池封止材の片面に施されていても、両面に施されていてもよい。エンボス加工の凹部の深さを大きくする場合は、太陽電池封止材の片面にのみ形成するのが好ましい。エンボス加工が太陽電池封止材の片面にのみ施されている場合、太陽電池封止材の最大厚みt
maxは0.01mm〜2mmであり、好ましくは0.05〜1mmであり、さらに好ましくは0.1〜1mmであり、さらに好ましくは0.15〜1mmであり、さらに好ましくは0.2〜1mmであり、さらに好ましくは0.2〜0.9mmであり、さらに好ましくは0.3〜0.9mmであり、最も好ましくは0.3〜0.8mmである。太陽電池封止材の最大厚みt
maxがこの範囲内であると、ラミネート工程における、ガラス、太陽電池素子、薄膜電極などの破損を抑制でき、比較的低温でも太陽電池モジュールのラミネート成形ができるので好ましい。また、太陽電池封止材は、十分な光線透過率を確保でき、それを用いた太陽電池モジュールは高い光発電量を有する。
【0126】
さらに、そのシートは、太陽電池モジュールサイズに合わせて裁断された枚葉形式、または太陽電池モジュールを作製する直前にサイズに合わせて裁断可能なロール形式にて太陽電池封止材として用いることができる。本発明の好ましい実施形態であるシート状の太陽電池封止材は、太陽電池封止材からなる層を少なくとも一層有していればよい。したがって、本発明の太陽電池封止材からなる層の数は、一層であってもよいし、二層以上であってもよい。構造を単純にしてコストを下げる観点、および層間での界面反射を極力小さくし、光を有効に活用する観点などからは、一層であることが好ましい。
【0127】
太陽電池封止材は、本発明の太陽電池封止材からなる層のみで構成されていてもよいし、太陽電池封止材を含有する層以外の層(以下、「その他の層」とも記す)を有していてもよい。その他の層の例としては、目的で分類するならば、表面または裏面保護のためのハードコート層、接着層、反射防止層、ガスバリア層、防汚層などを挙げることができる。材質で分類するならば、紫外線硬化性樹脂からなる層、熱硬化性樹脂からなる層、ポリオレフィン樹脂からなる層、カルボン酸変性ポリオレフィン樹脂からなる層、フッ素含有樹脂からなる層、環状オレフィン(共)重合体からなる層、無機化合物からなる層などを挙げることができる。
【0128】
本発明の太陽電池封止材からなる層と、その他の層との位置関係にはとくに制限はなく、本発明の目的との関係で好ましい層構成が適宜選択される。すなわち、その他の層は、2以上の太陽電池封止材からなる層の間に設けられてもよいし、太陽電池封止材の最外層に設けられてもよいし、それ以外の箇所に設けられてもよい。また、太陽電池封止材からなる層の片面にのみその他の層が設けられてもよいし、両面にその他の層が設けられてもよい。その他の層の層数にとくに制限はなく、任意の数のその他の層を設けることができるし、その他の層を設けなくともよい。
【0129】
構造を単純にしてコストを下げる観点、および界面反射を極力小さくし光を有効に活用する観点などからは、その他の層を設けず、本発明の太陽電池封止材からなる層のみで太陽電池封止材を作製すればよい。ただし、目的との関係で必要または有用なその他の層があれば、適宜そのようなその他の層を設ければよい。その他の層を設ける場合における、本発明の太陽電池封止材からなる層と他の層との積層方法についてはとくに制限はないが、キャスト成形機、押出シート成形機、インフレーション成形機、射出成形機などの公知の溶融押出機を用いて共押出して積層体を得る方法、あるいは予め成形された一方の層上に他方の層を溶融または加熱ラミネートして積層体を得る方法が好ましい。また、適当な接着剤(例えば、無水マレイン酸変性ポリオレフィン樹脂(三井化学社製の商品名「アドマー(登録商標)」、三菱化学社製の商品名「モディック(登録商標)」など)、不飽和ポリオレフィンなどの低(非)結晶性軟質重合体、エチレン/アクリル酸エステル/無水マレイン酸三元共重合体(住化シーディエフ化学社製の商品名「ボンダイン(登録商標)」など)をはじめとするアクリル系接着剤、エチレン/酢酸ビニル系共重合体、またはこれらを含む接着性樹脂組成物など)を用いたドライラミネート法、あるいはヒートラミネート法などにより積層してもよい。接着剤としては、120〜150℃程度の耐熱性があるものが好ましく使用され、ポリエステル系あるいはポリウレタン系接着剤などが好適なものとして例示される。また、両層の接着性を改良するために、例えば、シラン系カップリング処理、チタン系カップリング処理、コロナ処理、プラズマ処理などを用いてもよい。
【0130】
本発明によれば、気泡の抑制、PIDの抑制および太陽電池素子の割れ防止の諸特性に優れた太陽電池封止材を提供することができる。
【0131】
2.太陽電池モジュールについて
太陽電池モジュールは、例えば、通常、多結晶シリコンなどにより形成された太陽電池素子を太陽電池封止材で挟み積層し、さらに、表裏両面を保護シートでカバーした結晶型太陽電池モジュールが挙げられる。すなわち、典型的な太陽電池モジュールは、表面側透明保護部材/太陽電池封止材/太陽電池素子/太陽電池封止材/裏面側保護部材という構成になっている。ただし、本発明の好ましい実施形態の1つである太陽電池モジュールは、上記の構成には限定されず、本発明の目的を損なわない範囲で、上記の各層の一部を適宜省略し、または上記以外の層を適宜設けることができる。上記以外の層としては、例えば接着層、衝撃吸収層、コーティング層、反射防止層、裏面再反射層、および光拡散層などを挙げることができる。これらの層は、とくに限定はないが、各層を設ける目的や特性を考慮して、適切な位置に設けることができる。
【0132】
(結晶シリコン系の太陽電池モジュール)
図1は、本発明の太陽電池モジュールの一実施形態を模式的に示す断面図である。なお、
図1においては、結晶シリコン系の太陽電池モジュール20の構成の一例が示されている。
図1に示されるように、太陽電池モジュール20は、インターコネクタ29により電気的に接続された複数の結晶シリコン系の太陽電池素子22と、それを挟持する一対の表面側透明保護部材24と裏面側保護部材26とを有し、これらの保護部材と複数の太陽電池素子22との間に、封止層28が充填されている。封止層28は、本発明の太陽電池封止材を貼り合わせた後、加熱圧着されて得られ、太陽電池素子22の受光面および裏面に形成された電極と接している。電極とは、太陽電池素子22の受光面および裏面にそれぞれ形成された集電部材であり、後述する集電線、タブ付用母線、および裏面電極層などを含む。
【0133】
図2は、太陽電池素子の受光面と裏面の一構成例を模式的に示す平面図である。
図2においては、太陽電池素子22の受光面22Aと裏面22Bの構成の一例が示されている。
図2(A)に示されるように、太陽電池素子22の受光面22Aには、ライン状に多数形成された集電線32と、集電線32から電荷を収集するとともに、インターコネクタ29(
図1)と接続されるタブ付用母線(バスバー)34Aと、が形成されている。また、
図2(B)に示されるように、太陽電池素子22の裏面22Bには、全面に導電層(裏面電極)36が形成され、その上に導電層36から電荷を収集するとともに、インターコネクタ29(
図1)と接続されるタブ付用母線(バスバー)34Bが形成されている。集電線32の線幅は、例えば0.1mm程度であり;タブ付用母線34Aの線幅は、例えば2〜3mm程度であり;タブ付用母線34Bの線幅は、例えば5〜7mm程度である。集電線32、タブ付用母線34Aおよびタブ付用母線34Bの厚みは、例えば20〜50μm程度である。
【0134】
集電線32、タブ付用母線34A、およびタブ付用母線34Bは、導電性が高い金属を含むことが好ましい。このような導電性の高い金属の例には、金、銀、銅などが含まれるが、導電性や耐腐食性が高い点などから、銀や銀化合物、銀を含有する合金などが好ましい。導電層36は、導電性の高い金属だけでなく、受光面で受けた光を反射させて太陽電池素子の光電変換効率を向上させるという観点などから、光反射性の高い成分、例えばアルミニウムを含むことが好ましい。集電線32、タブ付用母線34A、タブ付用母線34B、および導電層36は、太陽電池素子22の受光面22Aまたは裏面22Bに、上記導電性の高い金属を含む導電材塗料を、例えばスクリーン印刷により50μmの塗膜厚さに塗布した後、乾燥し、必要に応じて例えば600〜700℃で焼き付けすることにより形成される。
【0135】
表面側透明保護部材24は、受光面側に配置されることから、透明である必要がある。表面側透明保護部材24の例には、透明ガラス板や透明樹脂フィルムなどが含まれる。一方、裏面側保護部材26は透明である必要はなく、その材質はとくに限定されない。裏面側保護部材26の例にはガラス基板やプラスチックフィルムなどが含まれるが、耐久性や透明性の観点からガラス基板が好適に用いられる。
【0136】
太陽電池モジュール20は、任意の製造方法で得ることができる。太陽電池モジュール20は、例えば、裏面側保護部材26、太陽電池封止材、複数の太陽電池素子22、太陽電池封止材、および表面側透明保護部材24をこの順に積層した積層体を得る工程;該積層体を、ラミネーターなどにより加圧し貼り合わせ、同時に必要に応じて加熱する工程;上記工程の後、さらに必要に応じて積層体を加熱処理し、上記封止材を硬化する工程により得ることができる。
【0137】
太陽電池素子には、通常、発生した電気を取り出すための集電電極が配置される。集電電極の例には、バスバー電極、フィンガー電極などが含まれる。集電電極は、太陽電池素子の表面と裏面の両面に配置した構造をとることができる。
【0138】
また、発電効率を向上させるために、受光面に集電電極を配置する必要のないバックコンタクト型太陽電池素子を用いることができる。バックコンタクト型太陽電池素子の一態様では、太陽電池素子の受光面の反対側に設けられた裏面側に、pドープ領域とnドープ領域とを交互に設ける。バックコンタクト型太陽電池素子の他の態様では、貫通孔(スルーホール)を設けた基板にp/n接合を形成し、スルーホール内壁および裏面側のスルーホール周辺部まで表面(受光面)側のドープ層を形成し、裏面側で受光面の電流を取り出す。
【0139】
一般に太陽電池システムにおいては、前述の太陽電池モジュールを直列数台から数十台につないでおり、住宅用の小規模のものでも50V〜500V、メガソーラーと呼ばれる大規模のものでは600〜1000Vでの運用がなされる。太陽電池モジュールの外枠には、強度保持などを目的にアルミフレームなどが使用され、安全上の観点からアルミフレームはアース(接地)される場合が多い。その結果太陽電池が発電することで、封止材に比較して電気抵抗の低いガラス面と太陽電池素子の間には、発電による電圧差が生じることになる。
その結果、発電セルとガラスまたはアルミフレームとの間に封止される、太陽電池封止材には、高い電気絶縁性、高抵抗などの良好な電気特性が求められる。
【0140】
(薄膜シリコン系(アモルファスシリコン系)の太陽電池モジュール)
薄膜シリコン系の太陽電池モジュールは、(1)表面側透明保護部材/薄膜太陽電池素子/封止層/裏面側保護部材をこの順に積層したもの;(2)表面側透明保護部材/封止層/薄膜太陽電池素子/封止層/裏面保護部材をこの順に積層したものなどでありうる。表面側透明保護部材、裏面側保護部材、および封止層は、前述の「結晶シリコン系の太陽電池モジュール」の場合と同様である。
【0141】
(1)の態様における薄膜太陽電池素子は、例えば、透明電極層/pin型シリコン層/裏面電極層をこの順に含む。透明電極層の例には、In
2O
3、SnO
2、ZnO、Cd
2SnO
4、ITO(In
2O
3にSnを添加したもの)などの半導体系酸化物が含まれる。裏面電極層は、例えば銀薄膜層を含む。各層は、プラズマCVD(ケミカル・ベ−パ・デポジション)法やスパッタ法により形成される。封止層は、裏面電極層(例えば銀薄膜層)と接するように配置される。透明電極層は、表面側透明保護部材上に形成されるので、表面側透明保護部材と透明電極層との間に封止層は配置しなくてもよい。
【0142】
(2)の態様における薄膜太陽電池素子は、例えば、透明電極層/pin型シリコン層/金属箔、または耐熱性高分子フィルム上に配置された金属薄膜層(例えば、銀薄膜層)、をこの順に含む。金属箔の例には、ステンレススチール箔などが含まれる。耐熱性高分子フィルムの例には、ポリイミドフィルムなどが含まれる。透明電極層およびpin型シリコン層は、前述と同様、CVD法やスパッタ法により形成される。つまり、pin型シリコン層は、金属箔、または耐熱性高分子フィルム上に配置された金属薄膜層に形成され;さらに透明電極層はpin型シリコン層に形成される。また、耐熱性高分子フィルム上に配置される金属薄膜層もCVD法やスパッタ法により形成されうる。
【0143】
この場合、封止層は、透明電極層と表面側透明保護部材との間;および金属箔または耐熱性高分子フィルムと裏面側保護部材との間にそれぞれ配置される。このように、太陽電池封止材から得られる封止層は、太陽電池素子の集電線、タブ付用母線、および導電層などの電極と接している。また(2)の態様における薄膜太陽電池素子は、シリコン層が、結晶シリコン系の太陽電池素子に比べて薄いため、太陽電池モジュール製造時の加圧や上記モジュール稼動時の外部からの衝撃により破損しにくい。このため、結晶シリコン系の太陽電池モジュールに用いられるものよりも薄膜太陽電池モジュールに用いる太陽電池封止材の柔軟性は低くてもよい。一方、上記薄膜太陽電池素子の電極は上述のように金属薄膜層であるため、腐食により劣化した場合、発電効率が著しく低下する恐れがある。
【0144】
また、その他の太陽電池モジュールとして、太陽電池素子にシリコンを用いた太陽電池モジュールがある。太陽電池素子にシリコンを用いた太陽電池モジュールには、結晶シリコンとアモルファスシリコンを積層したハイブリッド型(HIT型)太陽電池モジュール、吸収波長域の異なるシリコン層を積層した多接合型(タンデム型)太陽電池モジュール、太陽電池素子の受光面の反対側に設けられた裏面側にpドープ領域とnドープ領域とを交互に設けたバックコンタクト型太陽電池モジュール、無数の球状シリコン粒子(直径1mm程度)と集光能力を上げる直径2〜3mmの凹面鏡(電極を兼ねる)を組み合わせた球状シリコン型太陽電池モジュールなどが挙げられる。また、太陽電池素子にシリコンを用いた太陽電池モジュールには、従来のpin接合構造を持つアモルファスシリコン型のp型窓層の役割を、「絶縁された透明電極」から「電界効果によって誘起される反転層」に置き換えた構造を持つ電界効果型太陽電池モジュールなども挙げられる。また、太陽電池素子に単結晶のGaAsを用いたGaAs系太陽電池モジュール;太陽電池素子としてシリコンの代わりに、Cu、In、Ga、Al、Se、Sなどからなるカルコパイライト系と呼ばれるI−III−VI族化合物を用いたCISまたはCIGS系(カルコパイライト系)太陽電池モジュール;太陽電池素子としてCd化合物薄膜を用いたCdTe−CdS系太陽電池、Cu
2ZnSnS
4(CZTS)太陽電池モジュールなどが挙げられる。本発明の太陽電池封止材は、これら全ての太陽電池モジュールの太陽電池封止材として用いることができる。
【0145】
とくに、太陽電池モジュ−ルを構成する光起電力素子の下に積層する封止層は、光起電力素子の上部に積層される封止層・電極・裏面側保護部材との高い接着性を有することが好ましい。また、光起電力素子としての太陽電池素子の裏面の平滑性を保持するために、熱可塑性を有することが好ましい。さらに、光起電力素子としての太陽電池素子を保護するために、耐スクラッチ性、衝撃吸収性などに優れていることが好ましい。
【0146】
上記封止層としては、耐熱性を有することが望ましい。とくに、太陽電池モジュ−ル製造の際、真空吸引して加熱圧着するラミネーション法などにおける加熱作用や、太陽電池モジュ−ルなどの長期間の使用における太陽光などの熱の作用などにより、封止層を構成する樹脂が変質したり、劣化ないし分解したりしないことが望ましい。これにより、樹脂に含まれる添加剤などが溶出したり、分解物が生成したりして、太陽電池素子の起電力面(素子面)に作用し、その機能、性能などを劣化させてしまうことを防ぐことができる。さらに、上記封止層は、防湿性に優れていることが好ましい。この場合、太陽電池モジュールの裏面側からの水分の透過を防ぐことができ、太陽電池モジュールの光起電力素子の腐食、劣化を防ぐことができる。
【0147】
上記封止層は、光起電力素子の上に積層する封止層と異なり、必ずしも透明性を有することを必要としない。本発明の太陽電池封止材は、上記の特性を有しており、結晶型太陽電池モジュールの裏面側の太陽電池封止材、水分浸透に弱い薄膜型太陽電池モジュールの太陽電池封止材として好適に用いることができる。
【0148】
本発明の太陽電池モジュールは、本発明の目的を損なわない範囲で、任意の部材を適宜有してもよい。典型的には、接着層、衝撃吸収層、コーティング層、反射防止層、裏面再反射層、光拡散層などを設けることができるが、これらに限定されない。これらの層を設ける位置にはとくに限定はなく、そのような層を設ける目的、および、そのような層の特性を考慮し、適切な位置に設けることができる。
【0149】
(表面側透明保護部材)
太陽電池モジュールに用いられる表面側透明保護部材は、とくに制限はないが、太陽電池モジュールの最表層に位置するため、耐候性、撥水性、耐汚染性、機械強度をはじめとして、太陽電池モジュールの屋外暴露における長期信頼性を確保するための性能を有することが好ましい。また、太陽光を有効に活用するために、光学ロスの小さい、透明性の高いシートであることが好ましい。
【0150】
表面側透明保護部材の材料としては、ポリエステル樹脂、フッ素樹脂、アクリル樹脂、環状オレフィン(共)重合体、エチレン−酢酸ビニル共重合体などからなる樹脂フィルムやガラス基板などが挙げられる。樹脂フィルムは、好ましくは、透明性、強度、コストなどの点で優れたポリエステル樹脂、とくにポリエチレンテレフタレート樹脂や、耐侯性のよいフッ素樹脂などである。フッ素樹脂の例としては、四フッ化エチレン−エチレン共重合体(ETFE)、ポリフッ化ビニル樹脂(PVF)、ポリフッ化ビニリデン樹脂(PVDF)、ポリ四フッ化エチレン樹脂(TFE)、四フッ化エチレン−六フッ化プロピレン共重合体(FEP)、ポリ三フッ化塩化エチレン樹脂(CTFE)がある。耐候性の観点ではポリフッ化ビニリデン樹脂が優れているが、耐候性および機械的強度の両立では四フッ化エチレン−エチレン共重合体が優れている。また、封止材層などの他の層を構成する材料との接着性の改良のために、コロナ処理、プラズマ処理を表面側透明保護部材に行うことが望ましい。また、機械的強度向上のために延伸処理が施してあるシート、例えば2軸延伸のポリプロピレンシートを用いることも可能である。
【0151】
表面側透明保護部材としてガラス基板を用いる場合、ガラス基板は、波長350〜1400nmの光の全光線透過率が80%以上であることが好ましく、90%以上であることがより好ましい。かかるガラス基板としては、赤外部の吸収の少ない白板ガラスを使用するのが一般的であるが、青板ガラスであっても厚さが3mm以下であれば太陽電池モジュールの出力特性への影響は少ない。また、ガラス基板の機械的強度を高めるために熱処理により強化ガラスを得ることができるが、熱処理無しのフロート板ガラスを用いてもよい。また、ガラス基板の受光面側に反射を抑えるために反射防止のコーティングをしてもよい。
【0152】
(裏面側保護部材)
太陽電池モジュールに用いられる裏面側保護部材は、とくに制限はないが、太陽電池モジュールの最表層に位置するため、上述の表面側透明保護部材と同様に、耐候性、機械強度などの諸特性を求められる。したがって、表面側透明保護部材と同様の材質で裏面側保護部材を構成してもよい。すなわち、表面側透明保護部材として用いられる上述の各種材料を、裏面側保護部材としても用いることができる。とくに、ポリエステル樹脂、およびガラスを好ましく用いることができる。また、裏面側保護部材は、太陽光の通過を前提としないため、表面側透明保護部材で求められる透明性は必ずしも要求されない。そこで、太陽電池モジュールの機械的強度を増すために、あるいは温度変化による歪、反りを防止するために、補強板を張り付けてもよい。補強板は、例えば、鋼板、プラスチック板、FRP(ガラス繊維強化プラスチック)板などを好ましく使用することができる。
【0153】
さらに、本発明の太陽電池封止材が、裏面側保護部材と一体化していてもよい。太陽電池封止材と裏面側保護部材とを一体化させることにより、モジュール組み立て時に太陽電池封止材および裏面側保護部材をモジュールサイズに裁断する工程を短縮できる。また、太陽電池封止材と裏面側保護部材とをそれぞれレイアップする工程を、一体化したシートでレイアップする工程にすることで、レイアップ工程を短縮・省略することもできる。太陽電池封止材と裏面側保護部材とを一体化させる場合における、太陽電池封止材と裏面側保護部材の積層方法は、とくに制限されない。積層方法には、キャスト成形機、押出シート成形機、インフレーション成形機、射出成形機などの公知の溶融押出機を用いて共押出して積層体を得る方法や;予め成形された一方の層上に、他方の層を溶融あるいは加熱ラミネートして積層体を得る方法が好ましい。
【0154】
また、適当な接着剤(例えば、無水マレイン酸変性ポリオレフィン樹脂(三井化学社製の商品名「アドマー(登録商標)」、三菱化学社製の商品名「モディック(登録商標)」など)、不飽和ポリオレフィンなどの低(非)結晶性軟質重合体、エチレン/アクリル酸エステル/無水マレイン酸三元共重合体(住化シーディエフ化学社製の商品名「ボンダイン(登録商標)」など)をはじめとするアクリル系接着剤、エチレン/酢酸ビニル系共重合体、またはこれらを含む接着性樹脂組成物など)を用いたドライラミネート法、あるいはヒートラミネート法などにより積層してもよい。
【0155】
接着剤としては、120〜150℃程度の耐熱性があるものが好ましく、具体的にはポリエステル系またはポリウレタン系接着剤などが好ましい。また、二つの層の接着性を向上させるために、少なくとも一方の層に、例えばシラン系カップリング処理、チタン系カップリング処理、コロナ処理、プラズマ処理などを施してもよい。
【0156】
(太陽電池素子)
太陽電池モジュールに用いられる太陽電池素子は、半導体の光起電力効果を利用して発電できるものであれば、とくに制限はない。太陽電池素子は、例えば、シリコン(単結晶系、多結晶系、非結晶(アモルファス)系)太陽電池、化合物半導体(III−III族、II−VI族、その他)太陽電池、湿式太陽電池、有機半導体太陽電池などを用いることができる。これらの中では、発電性能とコストとのバランスなどの観点から、多結晶シリコン太陽電池が好ましい。
【0157】
シリコン太陽電池素子、化合物半導体太陽電池素子とも、太陽電池素子として優れた特性を有しているが、外部からの応力、衝撃などにより破損し易いことで知られている。本発明の太陽電池封止材は、柔軟性に優れているので、太陽電池素子への応力、衝撃などを吸収して、太陽電池素子の破損を防ぐ効果が大きい。したがって、本発明の太陽電池モジュールにおいては、本発明の太陽電池封止材からなる層が、太陽電池素子と直接的に接合されていることが望ましい。また、太陽電池封止材が熱可塑性を有していると、一旦、太陽電池モジュールを作製した後であっても、比較的容易に太陽電池素子を取り出すことができるため、リサイクル性に優れている。本発明の太陽電池封止材を構成する樹脂組成物は、熱可塑性を有するため、太陽電池封止材全体としても熱可塑性を有しており、リサイクル性の観点からも好ましい。
【0158】
(電極)
太陽電池モジュールに用いられる電極の構成および材料は、とくに限定されないが、具体的な例では、透明導電膜と金属膜の積層構造を有する。透明導電膜は、SnO
2、ITO、ZnOなどからなる。金属膜は、銀、金、銅、錫、アルミニウム、カドミウム、亜鉛、水銀、クロム、モリブデン、タングステン、ニッケル、バナジウムなどの金属からなる。これらの金属膜は、単独で用いられてもよいし、複合化された合金として用いられてもよい。透明導電膜と金属膜とは、CVD、スパッタ、蒸着などの方法により形成される。
【0159】
(太陽電池モジュールの製造方法)
本発明の太陽電池モジュールの製造方法は、(i)表面側透明保護部材と、本発明の太陽電池封止材と、太陽電池素子(セル)と、太陽電池封止材と、裏面側保護部材とをこの順に積層して積層体を形成する工程と、(ii)得られた積層体を加圧および加熱して一体化する工程と、を含むことを特徴とする。
【0160】
工程(i)において、太陽電池封止材の凹凸形状(エンボス形状)が形成された面を太陽電池素子側になるように配置することが好ましい。
【0161】
工程(ii)において、工程(i)で得られた積層体を、常法に従って真空ラミネーター、または熱プレスを用いて、加熱および加圧して一体化(封止)する。封止において、本発明の太陽電池封止材は、クッション性が高いため、太陽電池素子の損傷を防止することができる。また、脱気性が良好であるため空気の巻き込みもなく、高品質の製品を歩留り良く製造することができる。
【0162】
太陽電池モジュールの製造するときに、太陽電池封止材を構成するエチレン・α−オレフィン系樹脂組成物を架橋硬化させる。真空ラミネーターを用いて太陽電池封止材を架橋させる場合、例えば、温度125〜160℃、真空圧300Pa以下の条件で3〜6分間真空・加熱し、次いで、100kPaで加圧を1〜15分間程度行う。その後に、例えば、トンネル式の連続式架橋炉または棚段式のバッチ式架橋炉を用いて、通常、130〜155℃で20〜60分程度で架橋処理を行っても良い。または、真空ラミネーターにおける加熱温度を145〜170℃とし、大気圧による加圧時間を6〜30分として、真空ラミネーターで架橋処理も行うこともできる。さらに、この後に、上記と同様にして架橋処理を行っても良い。この架橋工程は、工程(ii)と同時に行ってもよいし、工程(ii)の後に行ってもよい。
【0163】
架橋工程を工程(ii)の後に行う場合、工程(ii)において温度125〜160℃、真空圧10Torr(1.33kPa)以下の条件で3〜6分間真空・加熱し;次いで、大気圧による加圧を1〜15分間程度行い、上記積層体を一体化する。工程(ii)の後に行う架橋工程は、一般的な方法により行うことができ、例えば、トンネル式の連続式架橋炉を用いてもよいし、棚段式のバッチ式架橋炉を用いてもよい。また、架橋条件は、通常、130〜155℃で20〜60分程度である。
【0164】
一方、架橋工程を工程(ii)と同時に行う場合、工程(ii)における加熱温度を145〜170℃とし、大気圧による加圧時間を6〜30分とすること以外は、架橋工程を工程(ii)の後に行う場合と同様にして行うことができる。本発明の太陽電池封止材は特定の有機過酸化物を含有することで優れた架橋特性を有しており、工程(ii)において二段階の接着工程を経る必要はなく、高温度で短時間に完結することができ、工程(ii)の後に行う架橋工程を省略してもよく、モジュールの生産性を格段に改良することができる。
【0165】
いずれにしても、本発明の太陽電池モジュールの製造は、架橋剤が実質的に分解せず、かつ本発明の太陽電池封止材が溶融するような温度で、太陽電池素子や保護材に太陽電池封止材を仮接着し、次いで昇温して十分な接着と封止材の架橋を行えばよい。諸条件を満足できるような添加剤処方を選べばよく、例えば、上記架橋剤および上記架橋助剤などの種類および含浸量を選択すればよい。
【0166】
また、上記架橋は、架橋後のエチレン・α−オレフィン共重合体のゲル分率が50〜95%となる程度にまで行うことが好ましい。ゲル分率は、より好ましくは50〜90%、さらに好ましくは60〜90%、最も好ましくは65〜90%である。ゲル分率の算出は下記の方法で行い得る。例えば、太陽電池モジュールより封止材シートのサンプルを1g採取し、沸騰トルエンでのソックスレー抽出を10時間行う。抽出液を、30メッシュでのステンレスメッシュでろ過し、メッシュを110℃にて8時間減圧乾燥を行う。メッシュ上に残存した残存物の重量を測定し、処理前のサンプル量(1g)に対する、メッシュ上に残存した残存物の重量の比(%)をゲル分率とする。
上記ゲル分率が上記下限値以上であると、太陽電池封止材の耐熱性が良好となり、例えば85℃×85%RHでの恒温恒湿試験、ブラックパネル温度83℃での高強度キセノン照射試験、−40℃〜90℃でのヒートサイクル試験、耐熱試験での接着性の低下を抑制することができる。一方、ゲル分率が上記上限値以下であると、高い柔軟性を有する太陽電池封止材となり、−40℃〜90℃でのヒートサイクル試験での温度追従性が向上するため、剥離の発生を防止することができる。
【0167】
このようにして製造された太陽電池モジュールから、封止層以外の他の部材を除去して得た封止膜は、以下のA)及びB)の特性を有する。
A)該封止膜を23℃で1時間アセトンに浸漬したときのアセトンの吸収率が、封止膜の重量に対して3.5〜12.0重量%である。
B)JIS K6911に準拠し、温度100℃、印加電圧500Vで測定される、上記封止膜の体積固有抵抗が1.0×10
13〜1.0×10
18Ω・cmである。
【0168】
また、この封止膜は、以下のC)、D)をさらに満たすことが好ましい。
C)ASTM D2240に準拠して測定される、封止膜のショアA硬度が50〜85である。
D)封止膜を30℃で1時間t−ブチルアルコールに浸漬したときのt−ブチルアルコールの吸収率が、封止膜の重量に対して2.5〜6.0重量%である。
【0169】
A)〜D)の特性測定は、1)〜4)で説明した方法のうち架橋処理を行わないことを除いて、1)〜4)で説明した方法と同様に行うことができる。
【0170】
(発電設備)
本発明の太陽電池モジュールは、生産性、発電効率、寿命などに優れている。このため、この様な太陽電池モジュールを用いた発電設備は、コスト、発電効率、寿命などに優れ、実用上高い価値を有する。上記の発電設備は、家屋の屋根に設置する、キャンプなどのアウトドア向けの移動電源として利用する、自動車バッテリーの補助電源として利用するなどの、屋外、屋内を問わず長期間の使用に好適である。
【0171】
この太陽電池モジュールによれば、本発明の太陽電池封止材を架橋させて形成される封止層を備えることで、使用時に温度上昇しても、封止層が変形したりするようなトラブルを回避することができ、太陽電池の外観を損なうこともなく、コストなどの経済性に優れる。また、この太陽電池モジュールによれば、本発明の太陽電池封止材を架橋させて形成される封止層を備えることで、太陽電池アレイとした際に、フレームと太陽電池素子間に高電圧を印加した状態を維持しても、PIDの発生を大幅に抑制することがきる。
【0172】
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
【実施例】
【0173】
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0174】
(1)測定方法
[エチレン単位およびα−オレフィン、酢酸ビニル単位の含有割合]
試料0.35gをヘキサクロロブタジエン2.0mlに加熱溶解させて得られた溶液をグラスフィルター(G2)濾過した後、重水素化ベンゼン0.5mlを加え、内径10mmのNMRチューブに装入した。日本電子製のJNM GX−400型NMR測定装置を使用し、120℃で
13C−NMR測定を行った。積算回数は8000回以上とした。得られた
13C−NMRスペクトルより、共重合体中のエチレン単位の含有割合、およびα−オレフィン、酢酸ビニル単位の含有割合を定量した。
【0175】
[MFR]
ASTM D1238に準拠し、190℃、2.16kg荷重の条件にて、エチレン・α−オレフィン共重合体、エチレン・酢酸ビニル共重合体のMFRを測定した。また、架橋性樹脂のMFRについては、エチレン・α−オレフィン共重合体とエチレン・酢酸ビニル共重合体とのブレンド物を単軸押出機にて、ダイス温度200℃にて溶融混練しペレット化し、これを用いて同様にMFR測定を行った。
【0176】
[アセトン、t−ブチルアルコールの吸収率]
得られた太陽電池封止材のシートを10cm×10cmのサイズに裁断した後、150℃、真空圧250Paで3分、加圧圧力100kPaで15分の条件下、ラミネート装置(NPC社製、LM−110X160S)でラミネートして測定用の厚さ0.5mmの架橋シートを作製した。得られた架橋処理後のシートを密閉容器に入るように切断し、精密天秤で約1gを秤量した。秤量後、アセトンを10ml入れた100mlの密閉容器にシートを入れ、23℃、1時間浸漬した。1時間後、キムワイプなどでシート表面に付着しているアセトンをふき取り、試験後のシートを精密天秤で秤量した。この試験前後の重量差より、アセトンの吸収率を算出した。t−ブチルアルコールについても、30℃に温度条件を変更した以外は同様にして、t−ブチルアルコールの吸収率を算出した。
【0177】
[ショアA硬度]
得られた太陽電池封止材のシートを10cm×10cmのサイズに裁断した後6枚重ねて、150℃、真空圧250Paで3分、加圧圧力100kPaで15分の条件下、ラミネート装置(NPC社製、LM−110X160S)でラミネートして測定用の厚さ3mmの架橋シートを作製した。得られたシートを用いて、ASTM D2240に準拠して架橋処理後の太陽電池封止材のショアA硬度を測定した。
【0178】
[アルミニウム元素の含有量]
エチレン・α−オレフィン共重合体を湿式分解した後、純水にて定容し、ICP発光分析装置(島津製作所社製、ICPS−8100)により、アルミニウムを定量し、アルミニウム元素の含有量を求めた。
【0179】
[エチレン・α−オレフィン共重合体のショアA硬度]
エチレン・α−オレフィン共重合体を190℃、加熱4分、10MPaで加圧した後、10MPaで常温まで5分間加圧冷却して3mm厚のシートを得た。得られたシートを用いて、ASTM D2240に準拠してエチレン・α−オレフィン共重合体のショアA硬度を測定した。
【0180】
[密度]
ASTM D1505に準拠して、エチレン・α−オレフィン共重合体の密度を測定した。
【0181】
[B値]
上述の
13C−NMRスペクトルより、下記式(1)に従ってエチレン・α−オレフィン共重合体の「B値」を算出した。
B値=[P
OE]/(2×[P
O]×[P
E]) ・・・(1)
(式(1)中、[P
E]はエチレン・α−オレフィン共重合体に含まれるエチレンに由来する構成単位の割合(モル分率)を示し、[P
O]はエチレン・α−オレフィン共重合体に含まれる炭素数3〜20のα−オレフィンに由来する構成単位の割合(モル分率)を示し、[P
OE]は全dyad連鎖に含まれるα−オレフィン・エチレン連鎖の割合(モル分率)を示す)
【0182】
[Tαβ/Tαα]
前述の文献の記載を参考にし、上述の
13C−NMRスペクトルよりエチレン・α−オレフィン共重合体の「Tαβ/Tαα」を算出した。
【0183】
[分子量分布Mw/Mn]
Waters社製のゲル浸透クロマトグラフ(商品名「Alliance GPC−2000型」)を使用し、以下のようにして測定した。分離カラムには、商品名「TSKgel GMH6−HT」を2本、および商品名「TSKgel GMH6−HTL」を2本使用した。カラムサイズは、いずれも内径7.5mm、長さ300mmとし、カラム温度は140℃とし、移動相にはo−ジクロロベンゼン(和光純薬工業社製)および酸化防止剤としてBHT(武田薬品社製)0.025重量%を用いた。移動相を1.0ml/分の速度で移動させ、試料濃度は15mg/10mlとし、試料注入量は500μlとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw≦1000およびMw≧4×10
6については東ソー社製のものを用いた。また、分子量が1000≦Mw≦4×10
6についてはプレッシャーケミカル社製のものを用いた。分子量は、ユニバーサル校正して、用いた各α−オレフィンに合わせエチレン・α−オレフィン共重合体に換算した。
【0184】
[塩素イオンの含有割合]
オートクレーブを用いて滅菌洗浄されたガラス容器にエチレン・α−オレフィン共重合体を約10g精秤し、超純水を100ml加えて密閉した後、常温で30分間超音波(38kHz)抽出を行って得られる抽出液を使用し、ダイオネクス社製のイオンクロマトグラフ装置(商品名「ICS−2000」)を用いて測定した。
【0185】
[酢酸メチルへの抽出量]
エチレン・α−オレフィン共重合体を約10g程度精秤し、酢酸メチルを用いて、温水バス温度90℃でソックスレー抽出を3時間行い、抽出前後のエチレン・α−オレフィン共重合体の重量差または抽出溶媒を揮発させた残渣量より算出した。
【0186】
[体積固有抵抗]
得られた太陽電池封止材のシートを10cm×10cmのサイズに裁断した後、150℃、真空圧250Paで3分、加圧圧力100kPaで15分の条件下、ラミネート装置(NPC社製、LM−110X160S)でラミネートして測定用の架橋シートを作製した。作製した架橋シートの体積固有抵抗(Ω・cm)を、JIS K6911に準拠し、印加電圧500Vで測定した。なお、測定時、高温測定チャンバー「12708」(アドバンスト社製)を用いて温度100±2℃とし、微小電流計「R8340A」(アドバンスト社製)を使用した。
【0187】
[気泡]
青色ガラス(3mm厚み×12cm×7.5cm)の上に、シートサンプルを置き、ついでその上に、3cm角に切った厚さ0.2mmのアルミ板を2cmの間隔をおいて2枚置き、1cm幅×3cm長さのポリテトラフルオロエチレン基材製の粘着テープで止めた。次いでその上に、シートサンプルをさらに置き、最後にPET系バックシートを重ねて、150℃、真空圧250Paで3分、加圧圧力100kPaで15分の条件下、ラミネート装置(NPC社製、LM−110X160S)で貼り合わせを行い架橋・接着をした後の外観を観察した(初期膨れ)。さらに、130℃のオーブンに入れ、1時間の耐熱試験を実施した後の外観を観察した(耐熱試験後膨れ)。以下の基準に従って気泡発生を評価した。
○:とくに外観変化無し
△:粘着テープを貼った箇所にわずかな形状変化が発生
×:粘着テープを貼った箇所に膨れが発生
【0188】
[太陽電池素子の割れ]
厚さ150μmのシリコン型太陽電池素子をインゴットより切削採取し、白板ガラス/シートサンプル/シリコン型太陽電池素子/シートサンプル/PET製バックシートの構成で、150℃、真空圧250Paで3分、加圧圧力100kPaで15分の条件下、ラミネート装置(NPC社製、LM−110X160S)で張り合わせを行い積層体を得た。得られた積層体内のシリコン型太陽電池素子を目視観察し、割れを評価した。
【0189】
[PID評価]
単結晶シリコン太陽電池素子を用い18セル直列接続した小モジュールを作製し、評価した。モジュールのガラスは、24×21cmにカットした旭硝子ファブリテック製の白板フロートガラス3.2mm厚みのエンボス付き熱処理ガラスとした。単結晶シリコン太陽電池素子(Shinsung製)は、受光面側のバスバー銀電極を中央にして5×3cmにカットしたものを用いた。銅箔に共晶ハンダを表面コートされた銅リボン電極を用いて、18個のセルを直列に接続した。バックシートとして、シリカ膜が蒸着されたPETシートを含むPET系バックシートを用いた。バックシートの一部に、カッタ−ナイフで約2cm切り込みを入れ、セルからの端子取り出し部位とした。直列接続した18個のセルのプラス端子とマイナス端子を取り出した。150℃、真空圧250Paで3分、加圧圧力100kPaで15分の条件下、ラミネート装置(NPC社製、LM−110X160S)にてラミネートした。その後、ガラスからはみ出した封止材、バックシートをカットし、ガラスエッジには端面封止材を付与して、アルミフレームを取り付けた。その後、バックシートの取り出し部位には、RTVシリコーンを付与して硬化させた。
このミニモジュールのプラス端子とマイナス端子を短絡し、電源の高圧側ケーブルを接続した。また電源の低圧側ケーブルをアルミフレームに接続し、アルミルレームを接地した。このモジュールを85℃、85%rhの恒温恒湿槽内にセットし、温度上昇をされた後、−600Vを印加したまま保持した。
高圧電源は、HARb−3R10−LF(松定プレシジョン製)とし;恒温恒湿槽は、FS−214C2(エタック製)とした。
恒温恒湿試験24時間後、このモジュールをAM(エアマス)1.5クラスAの光強度分布を有するキセノン光源を用いてIV特性を評価した。IV評価には日清紡メカトロニクス製のPVS−116i−Sを用いた。評価結果は、以下の通りに分類した。
試験後のIV特性の最大出力電力Pmaxが初期値と比べて
出力電力の低下が1%以下 :○
出力電力の低下が1〜5%未満 :△
出力電力の低下が5%超過 :×
【0190】
(2)エチレン・α−オレフィン共重合体の合成
(合成例1)
撹拌羽根を備えた内容積50Lの連続重合器の一つの供給口に、共触媒としてメチルアルミノキサンのトルエン溶液を8.0mmol/hr、主触媒としてビス(1,3−ジメチルシクロペンタジエニル)ジルコニウムジクロライドのヘキサンスラリーを0.025mmol/hr、トリイソブチルアルミニウムのヘキサン溶液を0.5mmol/hrの割合で供給し、触媒溶液と重合溶媒として用いる脱水精製したノルマルヘキサンの合計が20L/hrとなるように脱水精製したノルマルヘキサンを連続的に供給した。同時に重合器の別の供給口に、エチレンを3kg/hr、1−ブテンを15kg/hr、水素を5NL/hrの割合で連続供給し、重合温度90℃、全圧3MPaG、滞留時間1.0時間の条件下で連続溶液重合を行った。重合器で生成したエチレン・α−オレフィン共重合体のノルマルヘキサン/トルエン混合溶液は、重合器の底部に設けられた排出口を介して連続的に排出させ、エチレン・α−オレフィン共重合体のノルマルヘキサン/トルエン混合溶液が150〜190℃となるように、ジャケット部が3〜25kg/cm
2スチームで加熱された連結パイプに導いた。なお、連結パイプに至る直前には、触媒失活剤であるメタノールが注入される供給口が付設されており、約0.75L/hrの速度でメタノールを注入してエチレン・α−オレフィン共重合体のノルマルヘキサン/トルエン混合溶液に合流させた。スチームジャケット付き連結パイプ内で約190℃に保温されたエチレン・α−オレフィン共重合体のノルマルヘキサン/トルエン混合溶液は、約4.3MPaGを維持するように、連結パイプ終端部に設けられた圧力制御バルブの開度の調整によって連続的にフラッシュ槽に送液された。なお、フラッシュ槽内への移送においては、フラッシュ槽内の圧力が約0.1MPaG、フラッシュ槽内の蒸気部の温度が約180℃を維持するように溶液温度と圧力調整バルブ開度設定が行われた。その後、ダイス温度を180℃に設定した単軸押出機を通し、水槽にてストランドを冷却し、ペレットカッターにてストランドを切断し、ペレットとしてエチレン・α−オレフィン共重合体を得た。収量は2.2kg/hrであった。物性を表1に示す。
【0191】
(合成例2)
主触媒としての[ジメチル(t−ブチルアミド)(テトラメチル−η5−シクロペンタジエニル)シラン]チタンジクロライドのヘキサン溶液を0.012mmol/hr、共触媒としてのトリフェニルカルベニウム(テトラキスペンタフルオロフェニル)ボレートのトルエン溶液を0.05mmol/hr、トリイソブチルアルミニウムのヘキサン溶液を0.4mmol/hrの割合でそれぞれ供給するとともに、1−ブテンを5kg/hr、水素を100NL/hrの割合で供給した以外は、前述の合成例1と同様にしてエチレン・α−オレフィン共重合体を得た。収量は1.3kg/hrであった。物性を表1に示す。
【0192】
(合成例3)
主触媒としてビス(p−トリル)メチレン(シクロペンタジエニル)(1,1,4,4,7,7,10,10−オクタメチル−1,2,3,4,7,8,9,10−オクタヒドロジベンズ(b,h)−フルオレニル)ジルコニウムジクロリドのヘキサン溶液を0.003mmol/hr、共触媒としてのメチルアルミノキサンのトルエン溶液を3.0mmol/hr、トリイソブチルアルミニウムのヘキサン溶液を0.6mmol/hrの割合でそれぞれ供給したこと;エチレンを4.3kg/hrの割合で供給したこと;1−ブテンの代わりに1−オクテンを6.4kg/hrの割合で供給したこと;1−オクテンと触媒溶液と重合溶媒として用いる脱水精製したノルマルヘキサンの合計が20L/hrとなるように脱水精製したノルマルヘキサンを連続的に供給したこと;水素を60NL/hrの割合で供給したこと;および重合温度を130℃にしたこと以外は、合成例1と同様にしてエチレン・α−オレフィン共重合体を得た。収量は4.3kg/hrであった。物性を表1に示す。
【0193】
【表1】
【0194】
(エチレン・極性モノマー共重合体)
表2に示すエチレン・極性モノマー共重合体を用いた。表2中、Eはエチレンであり、VAは、ビニル酢酸であり、GMAは、メタクリル酸グリシジルである。E・GMAは、ARKEMA社製、LOTADERR AX8900を用いた。
【表2】
【0195】
(3)太陽電池封止材(シート)の製造
(実施例1)
合成例1のエチレン・α−オレフィン共重合体95重量部、エチレン・酢酸ビニル共重合体(EVA−1)を5重量部(エチレン・α−オレフィン共重合体とエチレン・酢酸ビニル共重合体の合計100重量部)に対し、シランカップリング剤として3−メタクリロキシプロピルトリメトキシシランを0.5重量部、有機過酸化物として1分間半減期温度が166℃のt−ブチルパーオキシ−2−エチルヘキシルカーボネートを0.7重量部、架橋助剤としてトリアリルイソシアヌレートを1.2重量部、紫外線吸収剤として2−ヒドロキシ−4−ノルマル−オクチルオキシベンゾフェノンを0.4重量部、ヒンダードアミン系光安定剤としてビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケートを0.2重量部、および耐熱安定剤1としてトリス(2,4−ジ−tert−ブチルフェニル)ホスファイト0.1重量部、耐熱安定剤2としてオクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート0.1重量部を配合した。
【0196】
サーモ・プラスチック社製の単軸押出機(スクリュー径20mmφ、L/D=28)にコートハンガー式T型ダイス(リップ形状:270×0.8mm)を装着し、ダイス温度100℃の条件下、ロール温度30℃、巻き取り速度1.0m/minで、冷却ロールにエンボスロールを用いて成形を行い、最大厚み0.5mmのエンボスシート(太陽電池封止材シート)を得た。得られたシートの空隙率は28%であった。得られたシートの各種評価結果を表3に示す。
【0197】
(実施例2〜7および比較例1〜2)
表3に示す配合としたこと以外は、前述の実施例1と同様にしてエンボスシート(太陽電池封止材シート)を得た。得られたシートの空隙率は全て28%であった。得られたシートの各種評価結果を表3に示す。
【表3】
【0198】
実施例1〜7の太陽電池封止材シートを用いた太陽電池モジュールでは、PID現象を抑制でき、かつ、気泡の発生も抑制できることが示された。また、実施例の太陽電池封止材シートを用いた太陽電池モジュールにより、85℃、85%rhでの恒温恒湿試験を行ったところ、実施例1、5の太陽電池封止材シートが、PID現象の発生をより長期化できることが確認された。
【0199】
この出願は、2012年1月5日に出願された日本出願特願2012−000809号を基礎とする優先権を主張し、その開示の全てをここに取り込む。