特許第5966093号(P5966093)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 積水化学工業株式会社の特許一覧

<>
  • 特許5966093-リチウムイオン電池用正極活物質 図000004
  • 特許5966093-リチウムイオン電池用正極活物質 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】5966093
(24)【登録日】2016年7月8日
(45)【発行日】2016年8月10日
(54)【発明の名称】リチウムイオン電池用正極活物質
(51)【国際特許分類】
   H01M 4/36 20060101AFI20160728BHJP
   H01M 4/525 20100101ALI20160728BHJP
   H01M 4/505 20100101ALI20160728BHJP
   H01M 4/58 20100101ALI20160728BHJP
【FI】
   H01M4/36 C
   H01M4/525
   H01M4/505
   H01M4/58
【請求項の数】3
【全頁数】14
(21)【出願番号】特願2015-553981(P2015-553981)
(86)(22)【出願日】2015年9月28日
(86)【国際出願番号】JP2015077330
【審査請求日】2016年2月1日
(31)【優先権主張番号】特願2014-199390(P2014-199390)
(32)【優先日】2014年9月29日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000002174
【氏名又は名称】積水化学工業株式会社
(74)【代理人】
【識別番号】110000914
【氏名又は名称】特許業務法人 安富国際特許事務所
(72)【発明者】
【氏名】孫 仁徳
(72)【発明者】
【氏名】野里 省二
(72)【発明者】
【氏名】中壽賀 章
(72)【発明者】
【氏名】中村 雅則
【審査官】 市川 篤
(56)【参考文献】
【文献】 特開平11−097011(JP,A)
【文献】 国際公開第2013/027674(WO,A1)
【文献】 国際公開第2010/035681(WO,A1)
【文献】 国際公開第2008/120442(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/00− 4/62
(57)【特許請求の範囲】
【請求項1】
正極活物質の表面に、アモルファスカーボンからなる被覆層を有するリチウムイオン電池用正極活物質であり、
飛行時間型二次イオン質量分析法(TOF−SIMS)によって被覆層を測定した場合、ベンゼン環に由来する質量スペクトル、及び、ナフタレン環に由来する質量スペクトルのうち少なくとも1つが検出され、
X線回折法によって被覆層を測定した場合、2θが26.4°の位置にピークが検出されず、
前記アモルファスカーボンは、マンスペクトルを測定した場合のGバンドとDバンドのピーク強度比が1.0以上、
前記被覆層の平均膜厚が100nm以下、かつ、
前記被覆層の膜厚の変動係数(CV値)が10%以下である
ことを特徴とするリチウムイオン電池用正極活物質。
【請求項2】
正極活物質は、リチウムを含有する遷移金属の酸化物であることを特徴とする請求項1載のリチウムイオン電池用正極活物質。
【請求項3】
正極活物質は、LiCoO、LiNiO、LiMn、LiMnCoO、LiCoPO、LiMnCrO、LiNiVO、LiMn1.5Ni0.5、LiCoVO及びLiFePOからなる群より選択される少なくとも1種であることを特徴とする請求項記載のリチウムイオン電池用正極活物質。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金属イオンの溶出や充放電時の結晶構造変化を抑制することができ、使用時の経時による劣化が少なく、充放電時の高い安定性を実現することが可能なリチウムイオン電池用正極活物質に関する。
【背景技術】
【0002】
リチウムイオン電池は、現在実用化されている2次電池の中で最もエネルギー密度が高く、高い電圧が得られるため、ノートパソコンや携帯電話などのバッテリーによく使われている。リチウムイオン電池は、一般的に、正極、電解質、負極、及び正極と負極との間に設置される分離膜(セパレータ)により構成される。正極としては、リチウムイオンを含む正極活物質、導電助剤、及び有機バインダー等からなる電極合剤を金属箔(集電体)の表面に固着させたものが用いられ、負極としては、リチウムイオンの脱挿入可能な負極活物質、導電助剤、及び有機バインダー等からなる電極合剤を金属箔の表面に固着させたものが使用されている。
【0003】
リチウムイオン電池に使用される正極活物質としては、コバルト酸リチウム(LiCoO)系、ニッケル酸リチウム(LiNiO)系、マンガン酸リチウム(LiMn)系、鉄リン酸リチウム(LiFePO)系等のリチウム遷移金属複合酸化物が実用化されている。
しかし、これらのリチウム遷移金属複合酸化物は、充放電を繰り返すことにより、容量やサイクル特性等の電池性能が低下するという課題がある。例えば、LiCoOの理論容量は274mAh/gであるが、通常は、電圧4.2V、容量150mAh/g程度で使用され、理論容量の半分程度しか活用されていない。より高容量を得るためには、より高電圧での充放電が必要になり、その場合は、LiCoOの相転移や、コバルトの溶出による性能低下が顕在化することになる。また、酸化電圧上昇に伴う電解液の酸化分解も懸念される。
LiNiOは、LiCoOと同様な層状結晶構造を有し、安価であり、可逆容量はLiCoOを上回るが、LiCoOと同様に、充放電による結晶構造変化による容量低下が大きな課題である。また、LiMn系活物質は、資源的に豊富で、比較的に安全性が高いことから、自動車用など大型用途に期待される。しかし、MnがCoとNiよりも溶出しやすく、充放電による容量低下がより顕著である。
【0004】
電池容量低下の原因としては、上記結晶構造変化やイオン溶出の他、電解質の分解や、活物質の表面変質等も考えられる。
正極活物質の充放電容量の低下を改善する方法として、それらの活物質表面を異種物質により被覆する方法が提案されている。例えば、非特許文献1では、LiCoOを酸化物(ZrO、Al、TiO等)で被覆する方法が、充放電時の結晶構造変化やCo4+イオンの溶出抑制に有効であることが報告されている。
【0005】
また、LiMnやLiFePO等の正極活物質は、電気抵抗が高いため、低抵抗化による性能改善も大きな課題である。このような課題を改善する方法としては、炭素被覆が有効であると報告されている。例えば、非特許文献2では、リン酸鉄系活物質の表面を炭素で被覆することにより、リン酸鉄リチウムの導電性が改善され、電池容量が改善されることが報告されている。
また、特許文献1では、炭素被覆によってLiVPの電池容量を向上する方法が開示されている。
【0006】
しかしながら、非特許文献1のような酸化物被覆の場合は、酸化物における電子やリチウムイオンの伝達効率が悪いため、電池の性能が被覆層の厚みや膜質に大きく依存し、最適化が容易ではないという問題があった。
また、非特許文献2や特許文献1のような炭素被覆の場合は、炭素膜を形成するために、通常高温処理プロセスが必要であり、活物質の粒成長やコスト的に課題があった。更に、活物質と炭素原料との混合物を高温焼成する被覆法(特許文献1)では、緻密な被覆層が得られにくい問題もあった。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2013−95613号公報
【非特許文献】
【0008】
【非特許文献1】J.Cho,Y.J.Kim, T.J.Kim, B.Park, Angew. Chem. Int.Ed..40、3367(2001)
【非特許文献2】I.Belharouak, C.Johnson, K.Amine, Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4、Electrochemistry Communications、Volume 7, Issue 10, October 2005, Pages 983-988
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、上記現状に鑑み、金属イオンの溶出や充放電時の結晶構造変化を抑制することができ、使用時の経時による劣化が少なく、充放電時の高い安定性を実現することが可能なリチウムイオン電池用正極活物質を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明は、正極活物質の表面に、アモルファスカーボンからなる被覆層を有するリチウムイオン電池用正極活物質であり、飛行時間型二次イオン質量分析法(TOF−SIMS)によって被覆層を測定した場合、ベンゼン環に由来する質量スペクトル、及び、ナフタレン環に由来する質量スペクトルのうち少なくとも1つが検出され、X線回折法によって被覆層を測定した場合、2θが26.4°の位置にピークが検出されず、前記アモルファスカーボンは、マンスペクトルを測定した場合のGバンドとDバンドのピーク強度比が1.0以上、前記被覆層の平均膜厚が100nm以下、かつ、前記被覆層の膜厚の変動係数(CV値)が10%以下であるリチウムイオン電池用正極活物質である。
以下、本発明を詳述する。
【0011】
本発明者は、鋭意検討した結果、正極活物質の表面に所定の樹脂由来のカーボンからなり、所定の物性を有する被覆層を形成することで、金属イオンの溶出や充放電時の結晶構造変化を抑制することができ、使用時の経時による劣化が少なく、充放電時の高い安定性を実現することが可能なリチウムイオン電池用正極活物質とすることができることを見出し、本発明を完成させるに至った。
【0012】
本発明のリチウムイオン電池用正極活物質は、正極活物質の表面に、アモルファスカーボンからなる被覆層を有する。
【0013】
上記正極活物質としては、リチウムを含有する遷移金属の酸化物が好ましい。
上記リチウムを含有する遷移金属の酸化物としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、コバルトマンガン酸リチウム(LiMnCoO)、リン酸コバルトリチウム(LiCoPO)、クロム酸マンガンリチウム(LiMnCrO)、バナジウムニッケル酸リチウム(LiNiVO)、ニッケル置換マンガン酸リチウム(例えば、LiMn1.5Ni0.5)、バナジウムコバルト酸リチウム(LiCoVO)、鉄リン酸リチウム(LiFePO)からなる群より選ばれた少なくとも1種、または上記組成の一部を金属元素で置換した非化学量論的化合物からなる群より選ばれた少なくとも1種の何れか又は双方を含む化合物等が挙げられる。上記金属元素としては、Mn、Mg、Ni、Co、Cu、Zn及びGeからなる群より選択される少なくとも1種が挙げられる。
なかでも、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム及び鉄リン酸リチウムの群から選択される少なくとも1種が好ましい。
【0014】
上記正極活物質の形状としては、例えば、粒子状、薄片状、繊維状、管状、板状、多孔質状等が挙げられるが、粒子状、薄片状であることが好ましい。
また、上記正極活物質が粒子状である場合、その平均粒子径は0.02〜40μmであることが好ましい。
【0015】
本発明のリチウムイオン電池用正極活物質は、アモルファスカーボンからなる被覆層を有する。このような被覆層を有することで、充放電時の高い安定性が維持されたままで、金属イオンの溶出、結晶構造変化、使用時の経時劣化を大幅に向上することができる。
また、上記被覆層は、高温焼成プロセスを必要とせず、簡易なプロセスで作製することができる。
【0016】
上記被覆層は、正極活物質の表面の少なくとも一部に形成されていてもよく、正極活物質の表面全体を被覆するように形成されていてもよい。上記正極活物質の耐酸化性、耐腐食性をより一層改善できることから、上記被覆層は、正極活物質の表面全体を被覆するように形成されていることが好ましい。
【0017】
上記被覆層は、緻密性が高いことがより好ましい。本発明では、緻密性の高い被覆層が形成されることで、正極活物質と、外部との接触が遮断され、金属イオンの溶出や充放電時の結晶構造変化を抑制することができる。
なお、緻密な被覆層としての“緻密性”の厳密な定義はないが、本発明では、高解像度の透過電子顕微鏡を用いて一個一個のナノ粒子を観察した時に、図1のように、粒子表面の被覆層がはっきり観察され、かつ、被覆層が連続に形成されていることを“緻密”と定義する。
【0018】
上記被覆層を構成するアモルファスカーボンは、sp2結合とsp3結合が混在したアモルファス構造を有し、炭素からなるものであるが、ラマンスペクトルを測定した場合のGバンドとDバンドのピーク強度比が1.0以上である。
上記アモルファスカーボンをラマン分光で測定した場合、sp2結合に対応したGバンド(1580cm−1付近)及びsp3結合に対応したDバンド(1360cm−1付近)の2つのピークが明確に観察される。なお、炭素材料が結晶性の場合には、上記の2バンドのうち、何れかのバンドが極小化してゆく。例えば、単結晶ダイヤモンドの場合は1580cm−1付近のGバンドが殆ど観察されない。一方、高純度グラファイト構造の場合は、1360cm−1付近のDバンドが殆ど現れない。
本発明では、特にGバンドとDバンドのピーク強度比(Gバンドでのピーク強度/Dバンドでのピーク強度)が1.5以上であることで、形成されたアモルファスカーボン膜の緻密性が高く、高温における粒子間の焼結抑制効果も優れることとなる。
上記ピーク強度比が1.0未満であると、膜の緻密性と高温における焼結抑制効果が不十分であることだけではなく、膜の密着性及び膜強度も低下することとなる。
上記ピーク強度比は1.2以上であることが好ましく、10以下であることが好ましい。
上記被覆層は、カーボン以外の元素を含有しても良い。カーボン以外の元素としては、例えば、窒素、水素、酸素等が挙げられる。このような元素の含有量は、カーボンとカーボン以外の元素との合計に対して、10原子%以下であることが好ましい。
【0019】
上記被覆層を構成するアモルファスカーボンは、オキサジン樹脂が含有するカーボンに由来するものである、上記オキサジン樹脂は低温で炭化が可能であることから、コストを低減することが可能となる。
上記オキサジン樹脂は、一般にフェノール樹脂に分類される樹脂であるが、フェノール類とホルムアルデヒドに加えて、さらにアミン類を加えて反応させることで得られる熱硬化樹脂である。なお、フェノール類において、フェノール環にさらにアミノ基があるようなタイプ、例えば、パラアミノフェノールのようなフェノールを用いる場合には、上記反応でアミン類を加える必要はなく、炭化もしやすい傾向にある。炭化のしやすさでは、ベンゼン環ではなく、ナフタレン環を用いることで、さらに炭化がしやすくなる。
【0020】
上記オキサジン樹脂としては、ベンゾオキサジン樹脂、ナフトオキサジン樹脂があり、このうち、ナフトオキサジン樹脂は、最も低温で炭化しやすいため好適である。以下にオキサジン樹脂の構造の一部として、ベンゾオキサジン樹脂の部分構造を式(1)に、ナフトオキサジン樹脂の部分構造を式(2)に示す。
このように、オキサジン樹脂とは、ベンゼン環又はナフタレン環に付加した6員環をもつ樹脂のことをさし、その6員環には、酸素と窒素が含まれ、これが名前の由来となっている。
【0021】
【化1】
【0022】
上記オキサジン樹脂を用いることにより、エポキシ樹脂等の他の樹脂に比べてかなり低温でアモルファスカーボンの皮膜を得ることが可能となる。具体的には200℃以下の温度で炭化が可能である。特に、ナフトオキサジン樹脂を用いることで、より低温で炭化させることができる。
このように、オキサジン樹脂を用いて、より低温で炭化させることにより、アモルファスカーボンを有し、緻密性の高い被覆層を形成することができる。
アモルファスカーボンを有し、緻密性の高い被覆層を形成できる理由については明らかではないが、例えば、オキサジン樹脂としてナフタレンオキサジン樹脂を使用した場合、樹脂中のナフタレン構造が低温加熱によって局部的に繋がり、分子レベルで層状構造が形成されるためであると考えられる。上記層状構造は、高温処理されていないため、グラファイトのような長距離の周期構造までは進展しないため、結晶性は示さない。
得られたカーボンが、グラファイトのような構造であるか、アモルファス構造であるかは、後述するX線回折法によって、2θが26.4°の位置にピークが検出されるか否かにより確認することができる。
【0023】
上記ナフトオキサジン樹脂の原料として用いられるのは、フェノール類であるジヒドロキシナフタレンと、ホルムアルデヒドと、アミン類とである。なお、これらについては後に詳述する。
【0024】
上記アモルファスカーボンは、上記オキサジン樹脂を150〜350℃の温度で熱処理することにより得られるものであることが好ましい。本発明では、低温で炭化が可能なナフトオキサジン樹脂を用いていることで、比較的低温でアモルファスカーボンとすることが可能となる。
このように低温で得られることで、従来より低コスト、且つ簡便なプロセスで作製できるという利点がある。
上記熱処理の温度は170〜300℃であることがより好ましい。
【0025】
上記被覆層の平均膜厚の上限は100nmである。上記被覆層の平均膜厚が100nmを超えると、被覆後の粒子が大きくなり、これを用いて作製したリチウムイオン電池用正極活物質の充放電特性が低くなることがある。好ましい上限は80nmである。なお、下限については特に限定されないが1nmが好ましい。
【0026】
上記被覆層の膜厚の変動係数(CV値)は、10%以下である。上記被覆層の膜厚のCV値が10%以下であると、被覆層の膜厚が均一でバラツキが少ないことから、薄い膜でも所望の機能(イオン溶出と結晶性保持)を付与することができる。上記被覆層の膜厚のCV値の好ましい上限は8.0%である。なお、下限については特に限定されないが0.5%が好ましい。
膜厚のCV値(%)とは、標準偏差を平均膜厚で割った値を百分率で表したものであり、下記式により求められる数値のことである。CV値が小さいほど膜厚のばらつきが小さいことを意味する。
膜厚のCV値(%)=(膜厚の標準偏差/平均膜厚)×100
平均膜厚及び標準偏差は、例えば、FE−TEMを用いて測定することができる。
【0027】
上記被覆層は、正極活物質との間に良好な密着性を有することが好ましい。密着性に関する明確な定義はないが、リチウムイオン電池用正極活物質と、樹脂と、可塑剤と分散剤とを含有した混合物をビーズミルで処理しても、被覆層が剥離しないことが好ましい。
【0028】
本発明では、飛行時間型二次イオン質量分析法(TOF−SIMS)によって被覆層を測定した場合、ベンゼン環に由来する質量スペクトル、及び、ナフタレン環に由来する質量スペクトルのうち少なくとも1つが検出されることが好ましい。
このようなベンゼン環、ナフタレン環に由来する質量スペクトルが検出されることで、オキサジン樹脂が含有するカーボンに由来するものであることを確認できる。
本願発明において、ベンゼン環に由来する質量スペクトルとは、77.12付近の質量スペクトルをいい、ナフタレン環に由来する質量スペクトルとは、127.27付近の質量スペクトルをいう。
なお、上記測定は、例えば、TOF−SIMS装置(ION−TOF社製)等を用いて行うことができる。
【0029】
本発明では、X線回折法によって被覆層を測定した場合、2θが26.4°の位置にピークが検出されないことが好ましい。
上記2θが26.4°の位置のピークは、グラファイトの結晶ピークであり、このような位置にピークが検出されないことで、被覆層を形成するカーボンがアモルファス構造であるということができる。
なお、上記測定は、例えば、X線回折装置(SmartLab Multipurpose、リガク社製)等を用いて行うことができる。
【0030】
本発明のリチウムイオン電池用正極活物質を製造する方法としては、ホルムアルデヒド、脂肪族アミン及びジヒドロキシナフタレンを含有する混合溶液を調製する工程と、正極活物質を前記混合溶液に添加し、反応させる工程と、150〜350℃の温度での熱処理する工程を有する方法を用いることができる。
【0031】
本発明のリチウムイオン電池用正極活物質の製造方法では、ホルムアルデヒド、脂肪族アミン及びジヒドロキシナフタレンを含有する混合溶液を調製する工程を行う。
上記ホルムアルデヒドは不安定であるので、ホルムアルデヒド溶液であるホルマリンを用いることが好ましい。ホルマリンは、通常、ホルムアルデヒド及び水に加えて、安定剤として少量のメタノールが含有されている。本発明で用いられるホルムアルデヒドは、ホルムアルデヒド含量が明確なものであれば、ホルマリンであっても構わない。
また、ホルムアルデヒドには、その重合形態としてパラホルムアルデヒドがあり、こちらの方も原料として使用可能であるが、反応性が劣るため、好ましくは上記したホルマリンが用いられる。
【0032】
上記脂肪族アミンは一般式R−NHで表され、Rは炭素数5以下のアルキル基であることが好ましい。炭素数5以下のアルキル基としては、以下に制限されないが、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、シクロブチル基、シクロプロピルメチル基、n−ペンチル基、シクロペンチル基、シクロプロピルエチル基、及びシクロブチルメチル基が挙げられる。
分子量を小さくする方が好ましいので、置換基Rは、メチル基、エチル基、プロピル基などが好ましく、実際の化合物名としては、メチルアミン、エチルアミン、プロピルアミン等が好ましく使用できる。最も好ましいものは、分子量が一番小さなメチルアミンである。
【0033】
上記ジヒドロキシナフタレンとしては、多くの異性体がある。例えば、1,3−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレンが挙げられる。
このうち、反応性の高さから、1,5−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレンが好ましい。さらに1,5−ジヒドロキシナフタレンが最も反応性が高いので好ましい。
【0034】
上記混合溶液中におけるジヒドロキシナフタレン、脂肪族アミン、ホルムアルデヒドの3成分の比率については、ジヒドロキシナフタレン1モルに対して、脂肪族アミンを1モル、ホルムアルデヒドを2モル配合することが最も好ましい。
反応条件によっては、反応中に揮発などにより原料を失うので、最適な配合比は正確に上記比率とは限らないが、ジヒドロキシナフタレン1モルに対して、脂肪族アミンを0.8〜1.2モル、ホルムアルデヒドを1.6〜2.4モルの配合比の範囲で配合することが好ましい。
上記脂肪族アミンを0.8モル以上とすることにより、オキサジン環を十分に形成することができ、重合を好適に進めることができる。また1.2モル以下とすることにより、反応に必要なホルムアルデヒドを余計に消費することがないため、反応が順調に進み、所望のナフトオキサジンを得ることができる。同様に、ホルムアルデヒドを1.6モル以上とすることで、オキサジン環を充分に形成することができ、重合を好適に進めることができる。
また2.4モル以下とすることで、副反応の発生を低減できるため好ましい。
【0035】
上記混合溶液は、上記3原料を溶解し、反応させるための溶媒を含有することが好ましい。
上記溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドン等の通常樹脂を溶解するために用いられる溶媒が挙げられる。
上記混合溶液中の溶媒の添加量は特に限定されないが、ジヒドロキシナフタレン、脂肪族アミン及びホルムアルデヒドを含む原料を100質量部とした場合は、通常300〜20000質量部で配合することが好ましい。300質量部以上とすることで、溶質を充分に溶解することができるため、皮膜を形成した際に均一な皮膜とすることができ、20000質量部以下とすることで、被覆層の形成に必要な濃度を確保することができる。
【0036】
本発明のリチウムイオン電池用正極活物質の製造方法では、正極活物質を上記混合溶液に添加し、反応させる工程を行う。反応を進行させることにより、上記正極活物質の表面にナフトオキサジン樹脂からなる層を形成することができる。
上記反応は常温でも進行するが、反応時間を短縮することができるため、40℃以上に加温することが好ましい。加温を続けることで、作製されたオキサジン環が開き、重合が起こると分子量が増加し、いわゆるポリナフトオキサジン樹脂となる。反応が進みすぎると溶液の粘度が増し被覆に適さないため注意を要する。
【0037】
また、例えば、ホルムアルデヒド、脂肪族アミン及びジヒドロキシナフタレンの混合液を一定時間反応させて後に正極活物質を添加する方法を用いてもよい。
また、粒子への被覆を均一に行うためには、被覆反応時に粒子が分散された状態が好ましい。分散方法としては、撹拌、超音波、回転など公知の方法が利用できる。また、分散状態を改善するために、適当な分散剤を添加しても良い。
更に、反応工程を行った後に、熱風等により溶媒を乾燥除去することにより、樹脂を正極活物質表面に均一に被覆してもよい。加熱乾燥方法についても特に制限はない。
【0038】
本発明のリチウムイオン電池用正極活物質の製造方法では、次いで、150〜350℃の温度での熱処理する工程を行う。
これにより、前工程で被覆した樹脂が炭化されてアモルファスカーボンからなる被覆層とすることができる。
【0039】
上記熱処理の方法としては、特に限定されず、加熱オーブンや電気炉等を用いる方法等が挙げられる。
上記熱処理における温度は、150〜350℃である。本発明では、低温で炭化が可能なナフトオキサジン樹脂を用いていることから、更に低温でアモルファスカーボンとすることが可能となる。この場合の加熱温度の好ましい上限は250℃である。
上記加熱処理は、空気中で行っても良いし、窒素、アルゴンなどの不活性ガス中で行っても良い。熱処理温度が250℃以上の場合は、不活性ガス雰囲気の方がより好ましい。
【0040】
本発明のリチウムイオン電池用正極活物質は、産業用、民生用、自動車等のリチウムイオン電池等の用途に有用である。
【発明の効果】
【0041】
本発明によれば、金属イオンの溶出や充放電時の結晶構造変化を抑制することができ、使用時の経時による劣化が少なく、充放電時の高い安定性を実現することが可能なリチウムイオン電池用正極活物質を提供することができる。
【図面の簡単な説明】
【0042】
図1】実施例1で得られたカーボン被覆正極活物質の断面写真(電子顕微鏡写真)である。
図2】実施例2で得られたカーボン被覆正極活物質の断面写真(電子顕微鏡写真)である。
【発明を実施するための形態】
【0043】
以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
【0044】
(実施例1)
(被覆層の形成)
1,5−ジヒドロキシナフタレン(東京化成社製)0.1gと、40%メチルアミン(和光純薬工業社製)0.05gと、37%ホルムアルデヒド水溶液(和光純薬工業社製)0.1gとをエタノールに順次溶解し、20gのエタノール混合溶液を作製した。
次に、得られた混合液に、正極活物質粒子(コバルト酸リチウム[LiCoO]、平均粒径2μm)0.5gを添加し、超音波槽にて4時間を処理した。溶液を濾過し、エタノールで3回洗浄した後に、50℃で3時間真空乾燥した。更に、上記乾燥した粒子を150℃で2時間加熱することにより、カーボン被覆正極活物質を得た。
【0045】
150℃で2時間加熱を行う前のカーボン被覆正極活物質の表面について、核磁気共鳴スペクトル(NMRスペクトル)測定を行ったところ、ナフトオキサジン環の「ベンゼン環−CH−N」のメチレン基に対応したピーク(3.95ppm)と、「O−CH−N」のメチレン基に対応したピーク(4.92ppm)がほぼ同強度で検出され、ナフトオキサジン環を含有する樹脂成分が正極活物質の表面に析出したことが確認された。
なお、核磁気共鳴スペクトル測定は、Varian Inova社製のH−NMR(600MHz)を用いて行い、測定に際して、重水素ジメチルスルホキシドを使用し、スペクトル積算回数は256回、緩和時間は10秒とした。
【0046】
また、得られたカーボン被覆正極活物質をAlmega XR(Thermo Fisher Scientific社製)を用いてラマン分光で測定したところ、GバンドとDバンドで共にピークが観察され、ナフトオキサジン樹脂はアモルファスカーボンへと変化していると判断できた。
また、GバンドとDバンドのピーク強度比は1.2であった。なお、レーザー光は530nmとした。
更に、得られたカーボン被覆正極活物質の断面写真(電子顕微鏡写真)を図1に示す。下記の方法を用いて厚みを測定したところ、12nmのアモルファスカーボン被覆層が形成されていた。
【0047】
(実施例2)
1,5−ジヒドロキシナフタレン(東京化成社製)0.3gと、40%メチルアミン(和光純薬工業社製)0.15gと、37%ホルムアルデヒド水溶液(和光純薬工業社製)0.3gとをエタノールに順次溶解し、20gのエタノール混合溶液を作製した。
次に、得られた混合液に、正極活物質粒子(コバルト酸リチウム[LiCoO]、平均粒径2μm)0.5gを添加し、超音波槽にて2時間を処理した。溶液を濾過し、エタノールで3回洗浄した後に、50℃で3時間真空乾燥した。更に、上記乾燥した粒子を250℃で2時間加熱することにより、カーボン被覆正極活物質を得た。得られたカーボン被覆正極活物質の断面写真(電子顕微鏡写真)を図2に示す。下記の方法を用いて厚みを測定したところ、厚み30nmのアモルファスカーボン被覆層が形成されていた。
【0048】
(実施例3)
1,5−ジヒドロキシナフタレン(東京化成社製)0.8gと、40%メチルアミン(和光純薬工業社製)0.35gと、37%ホルムアルデヒド水溶液(和光純薬工業社製)0.7gとをエタノールに順次溶解し、20gのエタノール混合溶液を作製した。
次に、得られた混合液に、正極活物質粒子(コバルト酸リチウム[LiCoO]、平均粒径2μm)0.5gを添加し、超音波槽にて1時間を処理した。溶液を濾過し、エタノールで3回洗浄した後に、50℃で3時間真空乾燥した。更に、上記乾燥した粒子を250℃で2時間加熱することにより、カーボン被覆正極活物質を得た。得られたカーボン被覆正極活物質の断面写真から、下記の方法を用いて厚みを測定したところ、厚み50nmのアモルファスカーボン被覆層が形成されていた。
【0049】
(比較例1)
実施例1で使用した「正極活物質粒子(コバルト酸リチウム)」について、「(被覆層の形成)」を行わずにそのまま使用した。
【0050】
(比較例2)
1,5−ジヒドロキシナフタレン(東京化成社製)1.5gと、40%メチルアミン(和光純薬工業社製)0.4gと、37%ホルムアルデヒド水溶液(和光純薬工業社製)0.8gとをエタノールに順次溶解し、20gのエタノール混合溶液を作製した。
次に、得られた混合液に、正極活物質粒子(コバルト酸リチウム[LiCoO]、平均粒径2μm)3.0gを添加し、超音波槽にて2時間を処理した。溶液を濾過し、エタノールで3回洗浄した後に、50℃で3時間真空乾燥した。更に、上記乾燥した粒子を200℃で5時間加熱することにより、カーボン被覆熱伝導粒子を得た。
【0051】
(比較例3)
1.5gのグルコースを溶解した50mlの水に、正極活物質粒子(コバルト酸リチウム[LiCoO]、平均粒径2μm)1.0gを添加し、撹拌によって粒子を分散させた。その後、分散液をテフロン(登録商標)内筒付のステンレス耐圧容器に移し、180℃で8時間熱処理した。反応後、室温まで冷却し、遠心分離、洗浄工程を経て、カーボン被覆正極活物質を得た。
【0052】
(評価方法)
【0053】
(1)被覆層膜厚測定(平均膜厚及びCV値)
被覆層の平均膜厚及びCV値を、透過顕微鏡(FE−TEM)を用いて評価した。
具体的には、FE−TEMにより任意の20個の粒子について被覆層の断面写真を撮影した後、得られた断面写真から、各粒子の異なる10箇所の膜厚をランダムに測定し、平均膜厚、標準偏差を算出した。得られた数値から膜厚の変動係数を算出した。
なお、表面被覆したカーボンと中のコバルト酸リチウムとは原子量の差が大きいため、TEM像のコントラストの差から被覆層(カーボン層)の膜厚を見積もることができる。
【0054】
(2)TOF−SIMS測定
得られた粒子の被覆層について、TOF−SIMS 5型装置(ION−TOF社製)を用いて、飛行時間型二次イオン質量分析法(Time−of−Flight Secondary Ion Mass Spectrometry,TOF−SIMS)によるベンゼン環に由来する質量スペクトル(77.12付近)、及び、ナフタレン環に由来する質量スペクトル(127.27付近)の確認を行った。なお、TOF−SIMS測定は、下記のような条件で行った。また、空気中や保管ケースに由来するコンタミをできるだけ避けるために、サンプル作製後に、シリコンウェハー保管用クリーンケースにて保管した。

一次イオン:209Bi+1
イオン電圧:25kV
イオン電流:1pA
質量範囲:1〜300mass
分析エリア:500×500μm
チャージ防止:電子照射中和
ランダムラスタスキャン
【0055】
(3)X線回折
X線回折装置(SmartLab Multipurpose、リガク社製)を用い、以下の測定条件では回折データを得た。X線波長:CuKα1.54A、測定範囲:2θ=10〜70°、スキャン速度:4°/min、ステップ:0.02°
得られた回折データについて、2θ=26.4°の位置にピークが検出されるか否かを確認した。
また、得られる回折データから半価幅を算出し、Scherrerの式をあてはめることで結晶子サイズを求めた。具体的には、2θ=27.86°の時の半価幅から算出した平均結晶子径を採用した。また、800℃で2時間焼成した後の平均結晶子径も測定した。
なお、一連の解析は、解析ソフト(PDXL2)を用いて行った。
【0056】
(4)金属イオン溶出量
実施例と比較例で得られた粒子50mgを、非水電解液(電解質:LiPF、溶媒:エチレンカーボネートとジメチルカーボネートの混合物(40:60))30mlに入れ、密閉し、60℃のオーブンに20時間保持した。その後、試料溶液をメンブレンフィルターでろ過し、得られたろ液中の金属イオン濃度を誘導結合プラズマ発光分析(ICP)により測定した。
表1中の金属イオン溶出量は、比較例1の溶出量を1とした時の相対量である。
【0057】
(5)充放電特性
(電極形成用スラリーの作製)
得られた正極活物質、導電助剤として導電性粒子であるケッチェンブラック、結合剤としてポリフッ化ビニリデン(PVdF)を、重量比90:5:5で混合した。上記混合物に分散媒としてn−メチルピロリドン(NMP)を添加し、ペイントシェーカー処理を行いスラリーペーストを作製した。
(正極の作製)
集電体としてアルミニウム板を用い、得られたスラリーペーストをアルミニウム板の両面に均一に塗布した後に、150℃でプレスしながら減圧乾燥し、20mm×20mmに切断して正極とした。
(リチウムイオン電池の作製)
負極として30mm×30mmに切断した金属リチウム板を用い、ポリオレフィン系微多孔膜よりなるセパレータを介して正極と負極とを対向させ、アルミラミネートの外装体に挿入した。外装体のラミネート一端より電解液(1M LiPF/EC:DEC=1:1混合溶媒)を注入することでリチウムイオン電池の単積層セルを作製した。
得られた単積層セルを用いて、充放電サイクル試験を行った。充電は0.1Cで4.2Vの定電流−定電圧(CC−CV)充電方式とし、放電は0.1Cの定電流(CC)放電方式とした。
表1中の充放電50回後の容量保持率は下式により求めた。
容量保持率(%)=50回充放電繰り返した後の放電容量値/初期放電容量
【0058】
【表1】
【産業上の利用可能性】
【0059】
本発明によれば、金属イオンの溶出や充放電時の結晶構造変化を抑制することができ、使用時の経時による劣化が少なく、充放電時の高い安定性を実現することが可能なリチウムイオン電池用正極活物質を提供することができる。
また、本発明によれば、該リチウムイオン電池用正極活物質の製造方法、及び、リチウムイオン電池を提供することができる。
【要約】
本発明は、金属イオンの溶出や充放電時の結晶構造変化を抑制することができ、使用時の経時による劣化が少なく、充放電時の高い安定性を実現することが可能なリチウムイオン電池用正極活物質を提供する。
本発明は、正極活物質の表面に、アモルファスカーボンからなる被覆層を有するリチウムイオン電池用正極活物質であり、前記アモルファスカーボンは、オキサジン樹脂が含有するカーボンに由来するものであり、ラマンスペクトルを測定した場合のGバンドとDバンドのピーク強度比が1.0以上、前記被覆層の平均膜厚が100nm以下、かつ、前記被覆層の膜厚の変動係数(CV値)が10%以下であるリチウムイオン電池用正極活物質である。
図1
図2