特許第5966994号(P5966994)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社アドヴィックスの特許一覧

<>
  • 特許5966994-車両用ブレーキ制御装置 図000002
  • 特許5966994-車両用ブレーキ制御装置 図000003
  • 特許5966994-車両用ブレーキ制御装置 図000004
  • 特許5966994-車両用ブレーキ制御装置 図000005
  • 特許5966994-車両用ブレーキ制御装置 図000006
  • 特許5966994-車両用ブレーキ制御装置 図000007
  • 特許5966994-車両用ブレーキ制御装置 図000008
  • 特許5966994-車両用ブレーキ制御装置 図000009
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5966994
(24)【登録日】2016年7月15日
(45)【発行日】2016年8月10日
(54)【発明の名称】車両用ブレーキ制御装置
(51)【国際特許分類】
   B60T 8/175 20060101AFI20160728BHJP
【FI】
   B60T8/175
【請求項の数】7
【全頁数】17
(21)【出願番号】特願2013-66010(P2013-66010)
(22)【出願日】2013年3月27日
(65)【公開番号】特開2014-189132(P2014-189132A)
(43)【公開日】2014年10月6日
【審査請求日】2015年3月5日
(73)【特許権者】
【識別番号】301065892
【氏名又は名称】株式会社アドヴィックス
(74)【代理人】
【識別番号】110001128
【氏名又は名称】特許業務法人ゆうあい特許事務所
(72)【発明者】
【氏名】石田 康人
(72)【発明者】
【氏名】中川 友佑
(72)【発明者】
【氏名】工藤 健
【審査官】 鎌田 哲生
(56)【参考文献】
【文献】 特開2005−335411(JP,A)
【文献】 特開平10−059159(JP,A)
【文献】 特開2011−157038(JP,A)
【文献】 特開平10−157603(JP,A)
【文献】 特開平01−223064(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60T 7/12−8/96
(57)【特許請求の範囲】
【請求項1】
車両の各車輪に設けられ、ブレーキ液圧に基づいて制動力を発生させる液圧制動機構(4、5)と、
ポンプ(10)および当該ポンプを駆動するモータ(11)を有し、前記モータ(11)を駆動して前記ポンプを動作させることで、前記液圧制動機構に発生させるブレーキ液圧を任意の液圧に制御する液圧制御手段(10、11、20、30〜33、40)と、
前記液圧制御手段により前記液圧制動機構に発生させるブレーキ液圧の制御目標とする目標圧を設定する液圧設定手段(50)と、を有し、
前記液圧制御手段は、前記液圧制動機構に発生させるブレーキ液圧の加圧を通常の昇圧性能で制御する通常制御状態と、前記通常制御状態よりも昇圧性能が低い抑制制御状態とを有して前記ブレーキ液圧の加圧を行え、
前記液圧設定手段は、前記目標圧を増加させる側の変化に対して前記目標圧の増加を調整する液圧増加フィルタ(S115)と、前記目標圧を減少させる側の変化に対して前記目標圧の減少を調整する液圧低下フィルタ(S125、S130)とを備え、前記抑制制御状態のときに、前記液圧増加フィルタによる前記目標圧の変化の抑制効果を前記液圧低下フィルタによる前記目標圧の変化の抑制効果よりも低く設定するフィルタ調整処理を実行し、
前記抑制制御状態は前記各車輪の加速スリップを抑制するトラクション制御に実行されることを特徴とする車両用ブレーキ制御装置。
【請求項2】
前記液圧制御手段は、前記液圧制動機構に発生させるブレーキ液圧の加圧を通常の昇圧性能で制御する通常制御状態と、前記通常制御状態よりも昇圧性能が低い抑制制御状態とを有して前記ブレーキ液圧の加圧を行え、
前記液圧設定手段は、前記抑制制御状態のときに前記通常制御状態と比較して、前記液圧増加フィルタによる前記目標圧の変化の抑制効果と前記液圧低下フィルタによる前記目標圧の変化の抑制効果の差が大きくなるように前記フィルタ調整処理を実行することを特徴とする請求項1に記載の車両用ブレーキ制御装置。
【請求項3】
前記目標圧は、前記車輪を駆動する駆動トルク(TRQ**)から、車両の前後加速度(Gx)から演算した車両加速度トルクと走行抵抗トルクとを減算して求められる車輪の余剰トルク(SurplusTrq**)に比例して設定されることを特徴とする請求項1または2に記載の車両用ブレーキ制御装置。
【請求項4】
前記液圧設定手段は、前記車輪が加速スリップしているときに対して、前記車輪がグリップしているときには、前記液圧増加フィルタによる前記目標圧の変化の抑制効果と前記液圧低下フィルタによる前記目標圧の変化の抑制効果の差が小さくなるように前記フィルタ調整処理を実行することを特徴とする請求項1ないし3のいずれか1つに記載の車両用ブレーキ制御装置。
【請求項5】
前記液圧設定手段は、前記車両の速度が低いときに対して、前記車両の速度が高いときには、前記液圧増加フィルタによる前記目標圧の変化の抑制効果と前記液圧低下フィルタによる前記目標圧の変化の抑制効果の差が小さくなるように前記フィルタ調整処理を実行することを特徴とする請求項1ないし4のいずれか1つに記載の車両用ブレーキ制御装置。
【請求項6】
前記液圧設定手段は前記車輪の加速スリップが減少方向にあるときには、前記目標圧を前記ブレーキ液圧に基づいて定められた実液圧相当値に設定することを特徴とする請求項1ないし5のいずれか1つに記載の車両用ブレーキ制御装置。
【請求項7】
前記液圧設定手段は、前記車輪がグリップ状態になっている時間であるグリップタイムを計測し、前記グリップタイムが大きくなるほど徐々に前記液圧増加フィルタによる前記目標圧の変化の抑制効果と前記液圧低下フィルタによる前記目標圧の変化の抑制効果の差が小さくなるように前記フィルタ調整処理を実行することを特徴とする請求項4に記載の車両用ブレーキ制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液圧回路中のポンプをモータにより駆動することによって各車輪のホイールシリンダ(以下、W/Cという)にかかるブレーキ液圧(W/C圧)を目標圧に追従させてトラクション制御などの車両制動制御を実行する車両用ブレーキ制御装置に関するものである。
【背景技術】
【0002】
従来、例えば特許文献1において、W/C圧をポンプ加圧できる車両用ブレーキ制御装置が提案されている。具体的には、この車両用ブレーキ制御装置では、モータを駆動することにより液圧回路中に備えられるポンプを駆動し、ポンプによるブレーキ液の吐出動作に基づいてW/C圧を加圧する。また、この車両用ブレーキ制御装置では、トラクション制御として、スリップしている車輪のW/Cを加圧して制動力を付与することで、その車輪と同じ車軸に備えられた反対側の車輪への駆動力の伝達が行えるようにし、左右前後すべての車輪速度差が抑制されるようにしてトラクションを稼ぐデファレンシャルロックと等価の制御が行えるようにしている。
【0003】
一方、特許文献2において、モータを駆動してポンプ加圧を行う際に、モータの作動頻度を低減させるべく、今回の目標圧から前回の目標圧を引いた差である要求液圧変化勾配が規定以内になるとモータ駆動をオフするようにした車両用ブレーキ制御装置が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平11−139288号公報
【特許文献2】特開2000−95094号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に示すようなトラクション制御を実行する場合、例えばダート路などのようにタイヤがスリップとグリップを繰り返すような状態になると、意図したトラクション制御が実行できなくなる可能性がある。例えば、ポンプ加圧によってW/C圧を制御する形態では、減圧性能に比べて昇圧性能が十分ではないため、増圧と減圧を繰り返すような制御を行うと、W/C圧を十分上昇させられずスリップを十分に抑制できない。このため、意図したトラクション制御が実行できなくなる。
【0006】
また、特許文献2に示した車両用ブレーキ制御装置のように、モータの作動頻度を低減させるべくモータ駆動をオンオフ制御する場合、ポンプ加圧による昇圧能力が低いとW/C圧が目標圧に達するまでに時間が掛かる。
【0007】
本発明は上記点に鑑みて、昇圧性能が低いことによってW/C圧を的確に上昇させられなくなることを抑制できる車両用ブレーキ制御装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成するため、請求項1に記載の発明では、液圧制御手段(10、11、20、30〜33、40)により液圧制動機構(4、5)に発生させるブレーキ液圧の制御目標とする目標圧を設定する液圧設定手段(50)を有し、液圧制御手段は、液圧制動機構に発生させるブレーキ液圧の加圧を通常の昇圧性能で制御する通常制御状態と、通常制御状態よりも昇圧性能が低い抑制制御状態とを有してブレーキ液圧の加圧を行え、液圧設定手段は、目標圧を増加させる側の変化に対して目標圧の増加を調整する液圧増加フィルタ(S115)と、目標圧を減少させる側の変化に対して目標圧の減少を調整する液圧低下フィルタ(S125、S130)とを備え、抑制制御状態のときに、液圧増加フィルタによる目標圧の変化の抑制効果を液圧低下フィルタによる目標圧の変化の抑制効果よりも低く設定するフィルタ調整処理を実行し、抑制制御状態は各車輪の加速スリップを抑制するトラクション制御に実行されることを特徴としている。
【0009】
このように、目標圧を増加させる側と減少させる側とで異なるフィルタ、つまり液圧増加フィルタと液圧低下フィルタを備えるようにしている。そして、液圧増加フィルタによる目標圧変化の抑制効果を液圧低下フィルタによる目標圧変化の抑制効果よりも小さくし、目標圧を増加させる側へは速く変化させ、減少させる側へは遅く変化させるようにしている。
【0010】
これにより、液圧制動機構のブレーキ液圧が目標圧に追従して大きくなった後に、目標圧が減少させられたとしても、緩やかにしか減少しないため、次に目標圧を増加させる際に液圧制動機構のブレーキ液圧を目標圧まで上昇させるのに必要とされる増圧量が少なくなる。したがって、ポンプ加圧の昇圧能力が高い場合は勿論のこと、昇圧能力が低い場合にも、液圧制動機構のブレーキ液圧を十分に上昇させられ、応答性良く液圧制動機構のブレーキ液圧が目標圧に達するようにできる。よって、昇圧性能が低いことによって液圧制動機構のブレーキ液圧を的確に上昇させられなくなることを抑制することが可能となる。
【0012】
また、ポンプ加圧を通常の昇圧性能で制御する通常制御状態とそれよりも昇圧性能が低い抑制制御状態で行う場合、抑制制御状態だと通常制御状態と比較して昇圧性能が低くなる。このため、このような場合にフィルタ調整処理を行うようにすると、応答性良く液圧制動機構のブレーキ液圧が目標圧に達するようにできるため、好適である。
【0013】
請求項に記載の発明では、液圧制御手段は、抑制制御状態のときに通常制御状態と比較して、液圧増加フィルタによる目標圧の変化の抑制効果と液圧低下フィルタによる目標圧の変化の抑制効果の差が大きくなるようにフィルタ調整処理を実行することを特徴としている。
【0014】
このようにしても、通常制御状態だけでなく抑制制御状態のときにも、応答性良く液圧制動機構のブレーキ液圧が目標圧に達するようにできる。
【0017】
請求項に記載の発明では、目標圧は、車輪を駆動する駆動トルク(TRQ**)から、車両の前後加速度(Gx)から演算した車両加速度トルクと走行抵抗トルクとを減算して求められる車輪の余剰トルク(SurplusTrq**)に比例して設定されることを特徴としている。
【0018】
ここのように、余剰トルク(SurplusTrq**)を用いる場合であってもフィードフォワードで余剰トルク(SurplusTrq**)を演算できることから、より速く目標圧を設定できる。
【0019】
請求項に記載の発明では、液圧設定手段は、車輪が加速スリップしているときに対して、車輪がグリップしているときには、液圧増加フィルタによる目標圧の変化の抑制効果と液圧低下フィルタによる目標圧の変化の抑制効果の差が小さくなるようにフィルタ調整処理を実行することを特徴としている。
【0020】
このように、車輪がグリップしているときには既に加速スリップが収まっていることから、目標圧の減少側の変化が速くなるようにしても構わない。このため、車輪が加速スリップしているときに対して、車輪がグリップしているときの方が、液圧増加フィルタによる目標圧の変化の抑制効果と液圧低下フィルタによる目標圧の変化の抑制効果の差が小さくなるようにしても良い。
【0021】
請求項に記載の発明では、液圧設定手段は、車両の速度が低いときに対して、車両の速度が高いときには、液圧増加フィルタによる目標圧の変化の抑制効果と液圧低下フィルタによる目標圧の変化の抑制効果の差が小さくなるようにフィルタ調整処理を実行することを特徴としている。
【0022】
これにより、車両の速度が高いときに、より早く目標圧を低下させられるようにできるため、より減少側の応答性を高められ、運転者にブレーキの引き摺り感を与えないようにすることができる。
【0023】
請求項に記載の発明では、液圧設定手段は車輪の加速スリップが減少方向にあるときには、目標圧をブレーキ液圧に基づいて定められた実液圧相当値に設定することを特徴としている。
【0024】
このように、車輪の加速スリップが減少方向にあるときには、既に車輪の加速スリップを収束させるのに十分な制動力が発生されていると考えられるため、目標圧を高く保つと制動力が過剰に発生する恐れがある。このため、車輪の加速スリップが減少方向にあるときには、目標圧をブレーキ液圧相当値に設定することで、目標圧をブレーキ液圧相当値まで小さくし、過剰な制動力が発生して運転者が引き摺り感を覚えることを防止できるとともに、十分な制動力によって制御性能を確保することができる。
【0025】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係の一例を示すものである。
【図面の簡単な説明】
【0026】
図1】本発明の第1実施形態にかかる車両用ブレーキ制御装置の概略図である。
図2】車両用ブレーキ制御装置の制御系の関係を表したブロック図である。
図3】目標圧設定処理の詳細を示したフローチャートである。
図4】従来方法によりトラクション制御を行ったときのタイムチャートである。
図5】第1実施形態の方法によりトラクション制御を行ったときのタイムチャートである。
図6】他の実施形態で説明する目標液圧リセット処理を行わないときと行ったときそれぞれの場合のタイムチャートである。
図7(a)】他の実施形態で説明する目標液圧リセット処理を含めた目標圧設定処理の詳細を示したフローチャートである。
図7(b)】図7(a)に続く目標液圧リセット処理を含めた目標圧設定処理の詳細を示したフローチャートである。
【発明を実施するための形態】
【0027】
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
【0028】
(第1実施形態)
図1に、本発明の一実施形態にかかる車両用ブレーキ制御装置の概略図を示すと共に、図2に車両用ブレーキ制御装置の制御系の関係を表したブロック図を示す。これらの図を参照して、本実施形態の車両用ブレーキ制御装置の基本構成について説明する。
【0029】
なお、図1では、車両用ブレーキ制御装置のうちの第1配管系統のみを示したが、第2配管系統も同様の構成とされている。また、ここでは前輪駆動車において前輪系の配管系統と後輪系の配管系統を備える前後配管の液圧回路を構成する車両に対して本実施形態にかかる車両用ブレーキ制御装置を適用した場合について説明するが、X配管などに適用することもできる。
【0030】
図1に示すように、ブレーキペダル1が倍力装置2と接続されており、この倍力装置2によりブレーキ踏力等が倍力される。倍力装置2は、倍力された踏力をマスタシリンダ(以下、M/Cという)3に伝達するプッシュロッド等を有しており、このプッシュロッドがM/C3に配設されたマスタピストンを押圧することによりM/C圧を発生させる。そして、M/C圧は、アンチロックブレーキ(以下、ABSという)制御等を行うブレーキ液圧制御用アクチュエータを介して、左前輪FL用のW/C4および右前輪FR用のW/C5へ伝達される。なお、M/C3には、マスタリザーバ3aが接続されており、M/C3内にブレーキ液を供給したり、M/C3内の余剰ブレーキ液を貯留できるようになっている。また、本実施形態では、W/C4、5がブレーキ液圧に基づいて制動力を発生させる液圧制動機構に相当し、ブレーキ液圧制御用アクチュエータが液圧制動機構に発生させるブレーキ液圧を制御する液圧制御手段に相当する。
【0031】
以下の説明では、第1配管系統である右前輪FRおよび左前輪FL側について説明するが、第2配管系統である左後輪RLおよび右後輪RR側についても全く同様である。
【0032】
車両用ブレーキ制御装置は、M/C3に接続する管路(主管路)Aを備えており、この管路Aには逆止弁20aと共に、図2に示すブレーキ制御用の電子制御装置(以下、ブレーキECUという)50にて制御される差圧制御弁20が備えられている。この差圧制御弁20によって管路Aは2部位に分けられている。具体的には、管路Aは、M/C3から差圧制御弁20までの間においてM/C圧を受ける管路A1と、差圧制御弁20から各W/C4、5までの間の管路A2に分けられる。
【0033】
差圧制御弁20は、通常は連通状態であるが、W/C4、5にM/C圧以上のW/C圧を発生させる時、あるいはトラクション制御時などに、M/C側とW/C側との間に所定の差圧を発生させる状態(差圧状態)となる。
【0034】
また、管路A2は2つに分岐しており、一方にはW/C4へのブレーキ液圧の増圧を制御する増圧制御弁30が備えられ、他方にはW/C5へのブレーキ液圧の増圧を制御する増圧制御弁31が備えられている。
【0035】
これら増圧制御弁30、31は、ブレーキECU50により連通・遮断状態を制御できる2位置弁として構成されている。増圧制御弁30、31が連通状態に制御されているときには、M/C圧あるいは後述するポンプ10の吐出によるブレーキ液圧を各W/C4、5に加えることができる。これら増圧制御弁30、31は、ABS制御やトラクション制御等の車両制動制御が実行されていないノーマルブレーキ時に常時連通状態に制御されるノーマルオープン弁とされている。
【0036】
なお、増圧制御弁30、31には、それぞれ安全弁30a、31aが並列に設けられており、ブレーキ踏み込みを止めてABS制御が終了したときにおいてW/C4、5側からブレーキ液を排除するようになっている。
【0037】
管路Aのうちの増圧制御弁30、31と各W/C4、5との間に管路(吸入管路)Bが接続されている。この管路Bには、ブレーキECU50により連通・遮断状態を制御できる減圧制御弁32、33がそれぞれ配設されている。これらの減圧制御弁32、33は、ノーマルブレーキ状態(ABS非作動時)のときに常時遮断状態とされるノーマルクローズ弁とされている。
【0038】
また、管路Bは調圧リザーバ40の第1リザーバ孔40aに接続されている。そして、ABS制御時などにおいては、管路Bを通じて調圧リザーバ40へブレーキ液を流動させることにより、W/C4、5におけるブレーキ液圧を制御し、各車輪がロック傾向に至ることを防止できるようにしている。
【0039】
管路Aの差圧制御弁20および増圧制御弁30、31の間と調圧リザーバ40の第1リザーバ孔40aとを結ぶ管路(補助管路)Cには回転式ポンプ10が配設されている。この回転式ポンプ10の吐出口側には、安全弁10aが備えられており、ブレーキ液が逆流しないようになっている。この回転式ポンプ10にはモータ11が接続されており、このモータ11によって回転式ポンプ10が駆動される。
【0040】
また、調圧リザーバ40の第2リザーバ孔40bとM/C3とを接続するように管路(補助管路)Dが設けられている。
【0041】
調圧リザーバ40は、リザーバ内のブレーキ液圧とM/C圧との差圧の調圧を行いつつ、回転式ポンプ10へのブレーキ液の供給を行う。調圧リザーバ40に備えられた第1、第2リザーバ孔40a、40bは、それぞれがリザーバ室40cに連通させられている。第1リザーバ孔40aは、管路Bおよび管路Cに接続され、W/C4、5から排出されるブレーキ液を受け入れると共に回転式ポンプ10の吸入側にブレーキ液を供給する。第2リザーバ孔40bは、管路Dに接続されてM/C3側からのブレーキ液を受け入れる。
【0042】
リザーバ孔40aより内側には、ボール弁などで構成された弁体41が配設されている。この弁体41は、弁座42に離着することで管路Dとリザーバ室40cとの間の連通遮断を制御したり、弁座42との間の距離が調整されることでリザーバ室40cの内圧とM/C圧との差圧の調圧を行う。弁体41の下方には、弁体41を上下に移動させるための所定ストロークを有するロッド43が弁体41と別体で設けられている。また、リザーバ室40c内には、ロッド43と連動するピストン44と、このピストン44を弁体41側に押圧してリザーバ室40c内のブレーキ液を押し出そうとする力を発生するスプリング45が備えられている。
【0043】
このように構成された調圧リザーバ40は、所定量のブレーキ液が貯留されると、弁体41が弁座42に着座して調圧リザーバ40内にブレーキ液が流入しないようになっている。このため、回転式ポンプ10の吸入能力より多くのブレーキ液がリザーバ室40c内に流動することがなく、回転式ポンプ10の吸入側に高圧が印加されることもない。
【0044】
ブレーキECU50は、車両用ブレーキ制御装置の制御系を司る液圧設定手段に相当する部分である。ブレーキECU50は、CPU、ROM、RAM、I/Oなどを備えたマイクロコンピュータで構成され、ROMなどに記憶されたプログラムに従って各種演算を行い、ABS制御やトラクション制御などのモータ駆動が行われる車両制動制御を実行する。
【0045】
図2に示すように、ブレーキECU50は、各種検出信号を受け取り、各種物理量を演算したり、ドライバ操作に基づく車両走行状態を検出している。具体的には、ブレーキECU50は、各車輪FL〜RRに備えられた車輪速度センサ51a〜51d、および車両前後方向の加速度を検出する加速度センサ53の検出信号を受け取っている。そして、例えば、ブレーキECU50は、各検出信号に基づいて各車輪FL〜RRの車輪速度や車輪加速度および車速(推定車体速度)、車両の前後加速度を求めている。また、ブレーキECU50は、駆動システムのECU(例えば、エンジンECU)より各車輪の駆動トルクに関する情報を取得している。そして、これらに基づいてABS制御やトラクション制御などの車両制動制御を実行している。
【0046】
例えば、ABS制御の場合、制御を実行するか否かを判定すると共に、制御対象輪のW/C圧を増圧、保持、減圧のいずれを行うかの判定などを行う。また、トラクション制御の場合、制御を実行するか否かを判定すると共に、制御対象輪のW/Cに発生させるW/C圧を求める。そして、その結果に基づいて、ブレーキECU50が各制御弁20、30〜33やモータ11の制御を実行する。これにより、ABS制御においては制御対象輪の減速スリップを抑制し、トラクション制御においては制御対象輪となる駆動輪の加速スリップを抑制する。
【0047】
例えば、トラクション制御において、左前輪FLを制御対象輪としてW/C圧を発生させる場合には、差圧制御弁20を差圧状態にしつつ、モータ11をオンさせ、ポンプ10を駆動する。これにより、差圧制御弁20の下流側(W/C側)のブレーキ液圧が差圧制御弁20で発生させられる差圧に基づいて高くなる。そして、非制御対象輪となる右前輪FRに対応する増圧制御弁31を遮断状態とすることで、W/C5が加圧されないようにしつつ、制御対象輪となる左前輪FLに対応する増圧制御弁30には電流を流さない、もしくは流す電流量を調整(例えばデューティ制御)することで、W/C4に所望のW/C圧を発生させる。
【0048】
以上のようにして、本実施形態の車両用ブレーキ制御装置が構成されている。次に、この車両用ブレーキ制御装置の具体的な作動について説明する。なお、本車両用ブレーキ制御装置では、通常ブレーキに加えて、ABS制御やトラクション制御などの車両制動制御を実行できるが、これらの基本的な作動に関しては従来と同様である。このため、ここでは本発明の特徴に関わるトラクション制御時に駆動されるモータ11の目標圧設定方法について説明する。
【0049】
本実施形態の車両用ブレーキ制御装置では、トラクション制御時にポンプ加圧によってW/C圧を発生させる。一般的に、ポンプ加圧によってW/C圧を発生させるシステムでは、減圧性能に比べて昇圧性能が十分ではないため、トラクション制御によってW/C圧の増圧と減圧を繰り返すと、W/C圧を十分に上昇させられず、スリップを十分に抑制できなくなる。
【0050】
そこで、本実施形態では、トラクション制御時におけるW/C圧の目標圧の設定のために、W/C圧を増圧側に変化させるときの液圧増加フィルタと減圧側に変化させるときの液圧低下フィルタを設けるようにしている。そして、フィルタ調整処理により、液圧増加フィルタによる目標圧変化の抑制効果を液圧低下フィルタによる目標圧変化の抑制効果よりも小さくし、目標圧を増圧側へは速く変化させ、減圧側へは遅く変化させるようにする。これにより、ポンプ加圧による昇圧能力が低い場合であっても、目標圧が低下し難くなるため、増圧と減圧が繰り返されるときにも目標圧が保持され、次の増圧の際に実際に発生させられるW/C圧(以下、実W/C圧という)を目標圧まで速く上昇させることが可能となる。
【0051】
また、モータ11の温度上昇の防止や耐久性向上を図るために、トラクション制御中に継続してモータ11を駆動するのではなく、モータ11を必要時にオンし、それ以外の時にはオフするようにすることもできる。例えば、実W/C圧が目標圧に達するとモータ11の駆動を停止し、再び目標圧が増加するときにモータ11の駆動をオンすることができる。その場合には、特に、ポンプ加圧による昇圧能力が低いと実W/C圧が目標圧に達するまでに時間が掛かる。このような制御を行う場合であっても、上記のように液圧増加フィルタと液圧低下フィルタを備えることで、より速く実W/C圧が目標圧に達するようにすることが可能となる。
【0052】
図3は、本実施形態にかかるブレーキECU50が実行する目標圧設定処理の詳細を示したフローチャートである。以下、この図を参照して目標圧設定処理の詳細について説明する。なお、この目標圧設定処理は、加速スリップが発生してトラクション制御が実行されたとき、例えば車速と車速に対して所定の制御閾値を加算して設定される目標車速との偏差がトラクション制御の開始閾値を超えた場合に、所定の制御周期毎に実行される。
【0053】
まず、ステップ100では、入力処理を行う。この入力処理では、トラクション制御に用いられる各種情報を取得する。具体的には、車輪速度センサ51a〜51dの検出信号に基づいて各輪の車輪速度VWFR、VWFL、VWRR、VWRLを演算する。また、各車輪速度VWFR、VWFL、VWRR、VWRLの微分値(例えば今回値と前回値の差)から各車輪加速度DVWFR、DVWFL、DVWRR、DVWRLを演算する。さらに、加速度センサ53の検出信号に基づいて車両の前後加速度Gxを取得すると共に、駆動システムより各車輪の駆動トルクTRQFR、TRQFL、TRQRR、TRQRLを取得する。
【0054】
続いて、ステップ105では、基本演算処理を実行する。この基本演算処理では、トラクション制御において、各輪の加速スリップを抑制する為に必要とされるW/C圧の制御量、つまり目標圧に相当する各輪加速スリップ必要液圧DSLIP_P**を演算する。なお、**は、FL、FR、RL、RRのいずれかであって、制御対象輪に対応する符号を意味している。
【0055】
具体的には、この各輪加速スリップ必要液圧DSLIP_P**を演算するために駆動トルク演算や車輪スリップフィードバック演算を行い、これらの演算結果を用いて制御量演算を行うことにより、各輪加速スリップ必要液圧DSLIP_P**を求める。
【0056】
駆動トルク演算では、まず、各輪加速スリップトルクDSlipTrq**を演算する。一般的なトラクション制御では、目標車速と車速との偏差と加速度とに応じて制御量となる目標圧を演算し、その目標圧に追従させるようにW/C圧を制御したときに、実際に発生した実W/C圧をフィードバックして次の制御量を設定している。しかしながら、ここでは車輪の回転運動方程式に基づいて、車輪を含む車両の回転部材(車輪や車軸など)の慣性モーメントである車輪慣性モーメントIと、各車輪加速度DVW**から前後加速度Gxを差し引いた回転部材の角速度αとを掛け合わせること(=I×α)により、各輪加速スリップトルクDSlipTrq**を演算している。このように、実W/C圧をフィードバックするのではなく、回転運動方程式に基づいてフィードフォワードで各輪加速スリップトルクDSlipTrq**を演算することにより、より速く目標圧を設定できるようにしている。
【0057】
また、各車輪の駆動トルクTRQ**から車両を加速させるモーメントIvに対して前後加速度Gxを掛けた値(Iv×Gx)と走行抵抗Rを差し引くことで、各輪余剰トルクSurplusTrq**(=TRQ**−Iv×Gx−R)を演算する。このとき、演算結果が負の値になる可能性があるため、最小値を0[Nm]として下限ガードを行うようにしている。このようにして、駆動トルク演算を行っている。このように、各輪余剰トルクSurplusTrq**を用いる場合であってもフィードフォワードで各輪余剰トルクSurplusTrq**を演算できることから、より速く目標圧を設定できる。
【0058】
続いて、車輪スリップフィードバック演算では、加速スリップをフィードバックすることで、加速スリップが続く場合に対応した制御量を演算する。すなわち、加速スリップが続く場合には、例えばブレーキパッドの摩擦係数やタイヤ性能が変化している可能性があるため、この場合に対応できるように加速スリップをフィードバックして、目標圧をその変化分上昇させるようにするのが好ましい。このため、その加速スリップに起因する変化に応じてフィードバックすべき制御量を演算する。
【0059】
まず、加速スリップによるスリップ量SlipVW**を演算する。具体的には、各車輪速度VW**から車速V0とトラクション制御における目標速度偏差TVを差し引くことで、スリップ量SlipVW**(=VW**−V0−TV)を演算している。その後、そのようなスリップ量SlipVW**を実現するのに必要なトルクであるスリップ制御量トルクSlipFB**(n)を演算する。なお、nは今回の制御周期で求められた値であることを意味している。具体的には、前回の制御周期で求められたスリップ制御量トルクSlipFB**(n-1)にスリップ量SlipVW**に対して予め設定される制御ゲインを掛けた値を加算することで、スリップ制御量トルクSlipFB**(n)(=SlipFB**(n-1)+SlipVW**×制御ゲイン)を演算する。このようにして、車輪スリップフィードバック演算を行っている。
【0060】
さらに、制御量演算では、まず、各輪のスリップを抑制するのに必要なトルクである各輪スリップ抑制トルクSlipControlTrq**を演算する。具体的には、駆動トルク演算において演算した各輪加速スリップトルクDSlipTrq**と各輪余剰トルクSurplusTrq**のうちの小さい方の値をスリップ制御量トルクSlipFB**(n)に加算することで、各輪スリップ抑制トルクSlipControlTrq**を演算する。すなわち、各輪加速スリップトルクDSlipTrq**や各輪余剰トルクSurplusTrq**に比例した目標圧が設定されるようにする。
【0061】
そして、演算した各輪スリップ抑制トルクSlipControlTrq**を液圧換算することで、各輪加速スリップ必要液圧DSLIP_P**を演算する。このとき、車速上昇に伴って、各輪スリップ抑制トルクSlipControlTrq**を可変にしても良い。車速が上昇している場合、運転者が加速したいという意思を有していることから、ブレーキを掛けることで加速感が得られず、運転者にブレーキの引き摺り感を与えてしまう可能性がある。このため、車速上昇に伴ってブレーキトルクを小さくできるように、車速が上昇するほど液圧換算の際に用いる変換係数を小さくすることもできる。このようにして、制御量演算が行われ、基本演算処理が終了する。
【0062】
この後、ステップ110〜135において、液圧増加フィルタおよび液圧低下フィルタのフィルタ係数K1を調整するフィルタ調整処理を実行する。まず、ステップ110では、今回の制御周期に演算された各輪加速スリップ必要液圧DSLIP_P**が前回の制御周期に最終的に設定されたフィルタリング後の各輪加速スリップ必要液圧DSLIP_P**Filter(n-1)未満であるか否かを判定する。各輪加速スリップ必要液圧DSLIP_P**Filter(n-1)については、前回の制御周期のときに後述するステップ150で設定された値を用いている。これにより、今回の制御が目標圧を減少させる側なのか、それとも増加させる側なのかを判定する。ここで、否定判定されれば増加させる側となり、肯定判定されれば減少させる側となる。
【0063】
そして、目標圧を増加させる側、つまりステップ110で否定判定された場合にはステップ115に進み、より速く目標圧が立ち上がるようにフィルタ係数K1を大きな値、例えば1.0に設定する。つまり、目標圧を増加させる側においては、目標圧の変化が速くなるように液圧増加フィルタによる目標圧変化の抑制効果が小さくなるようにする。また、加速スリップが収まって車輪**がグリップ状態になっている時間を計測したグリップタイムを0に更新する。その後、後述するステップ140に進む。
【0064】
一方、目標圧を減少させる側、つまりステップ110で肯定判定された場合にはステップ120に進み、スリップ量SlipVW**が0未満であるか否かを判定する。スリップ量SlipVW**が0未満のときは、ほぼスリップが収まってグリップ状態になっている場合である。
【0065】
このため、ステップ120で否定判定された場合には、ステップ125に進み、スリップが収まっていない状況であるため、フィルタ係数K1を小さな値、例えば0.01に設定し、目標圧の減少が抑えられるようにする。つまり、目標圧を減少させる側においては、目標圧の変化が遅くなるように液圧低下フィルタによる目標圧変化の抑制効果が液圧増加フィルタよりも大きくなるようにする。その後、ステップ140に進む。
【0066】
また、ステップ120で肯定判定された場合にはステップ130に進み、グリップタイムに基づいてフィルタ係数K1を取得する。ここでは、既に加速スリップが収まってグリップ状態になっていることから、その場合には加速スリップが収まる前よりもフィルタ係数K1を大きく設定し、目標圧の変化が速くなるようにする。つまり、フィルタ調整処理として、車輪がスリップしているときに対して、車輪がグリップしているときには、液圧増加フィルタによる目標圧の変化の抑制効果と液圧低下フィルタによる目標圧の変化の抑制効果の差が小さくなるようにする。具体的には、グリップタイムが大きくなるほど徐々にフィルタ係数K1が大きくなるようにしてあり、グリップタイムが短いときにはよりフィルタ係数K1が小さくなって、目標圧の減少が緩やかに行われるようにしている。グリップタイムとフィルタ係数K1の関係は予め実験などによって求めてあり、例えば図中に示したように、グリップタイムが一定時間に達するまではフィルタ係数K1が0.01となり、一定時間が経過するとグリップタイムの増加に伴ってフィルタ係数K1を増加させて徐々に1に近づけるようにしている。そして、ステップ135に進み、グリップタイムを1つインクリメントしてからステップ140に進む。
【0067】
ステップ140では、車速V0に対応するフィルタ係数K2を設定する。上記ステップ105で説明したように、各輪加速スリップ必要液圧DSLIP_P**を演算する際に、各輪スリップ抑制トルクSlipControlTrq**を液圧換算するときの換算係数を小さくすることで、車速上昇に伴ってブレーキトルクを小さくすることもできるが、フィルタ係数の設定によって同様のことを行うこともできる。このため、ステップ140では、車速V0が大きくなるほどフィルタ係数K2が大きくなるようにする。これにより、車速V0が大きくなると、より早く目標圧を上昇もしくは低下させられるようにすることで、より応答性を高め、運転者にブレーキの引き摺り感を与えないようにする。
【0068】
そして、ステップ145に進み、ステップ115、125、135で設定されたフィルタ係数K1と、ステップ140で設定されたフィルタ係数K2とを比較し、いずれか大きい方を最終的なフィルタ係数Kとして設定する。
【0069】
その後、ステップ150に進み、今回の制御周期の各輪加速スリップ必要液圧DSLIP_P**Filter(n)を演算する。例えば、一次のローパスフィルタにてフィルタリングを行う場合には、今回の各輪加速スリップ必要液圧DSLIP_P**に対してフィルタ係数Kを掛けた値と前回の各輪加速スリップ必要液圧DSLIP_P**Filter(n-1)に対して1−Kを掛けた値とを足す。これにより、各輪加速スリップ必要液圧DSLIP_P**Filter(n)を演算することができる。なお、ここでは一次のローパスフィルタにてフィルタリングを行う場合の一例を示したが、他の方法によるフィルタリング、例えばバタワースフィルタによるフィルタリングを行っても良い。
【0070】
このようにして、今回の制御周期の目標圧に相当する各輪加速スリップ必要液圧DSLIP_P**Filter(n)を演算することができる。このため、このように得られた目標圧が得られるように、ブレーキECU50が各制御弁20、30〜33やモータ11の制御を実行する。これにより、制御対象輪となる駆動輪の加速スリップが抑制される。
【0071】
図4および図5は、従来方法と本実施形態の方法それぞれにより、トラクション制御を行ったときのタイムチャートである。
【0072】
まず、図4に示すように、従来の場合、目標速度に対して車輪速度が上昇して加速スリップが発生した場合に、それに応じて目標圧が設定され、モータや制御弁などの制御が実行されてW/C圧が発生させられる。このとき、ポンプ加圧による昇圧能力が高い場合には、車輪速度の上昇に合わせて応答性良くW/C圧を増減できるが、昇圧能力が低い場合には、車輪速度の上昇に合わせて応答性良くW/C圧を増減できない。このため、加速スリップを十分に抑制できず、意図したトラクション制御が実行できなくなる。
【0073】
また、W/C圧を上昇させる際にモータをオンし、W/C圧を低下させる際にモータをオフするように、モータ駆動をオンオフ制御することでモータ作動頻度を低減させることも可能であるが、このような場合には、モータの駆動開始からポンプがブレーキ液の吸入吐出動作を行うまでに時間を要する。このため、ポンプ加圧による昇圧能力が低いと応答性良くW/C圧を増減できない。
【0074】
一方、図5に示すように、本実施形態の場合にも、従来と同様に、目標速度に対して車輪速度が上昇して加速スリップが発生した場合に、それに応じて目標圧が設定され、制御弁などの制御が実行されてW/C圧が発生させられる。しかしながら、このときの目標圧がW/C圧を増加する側へは速く変化させ、減圧側へは遅く変化させるようにしている。このため、実W/C圧が目標圧に追従して大きくなった後に、目標圧が減少させられたとしても、緩やかにしか減少しないため、次に目標圧を増加させる際にW/C圧を目標圧まで上昇させるのに必要とされる増圧量が少なくなる。したがって、ポンプ加圧の昇圧能力が高い場合は勿論のこと、昇圧能力が低い場合にも、W/C圧を十分に上昇させられ、応答性良くW/C圧が目標圧に達するようにできる。
【0075】
以上説明したように、本実施形態では、トラクション制御において、目標圧を増加させる側と減少させる側とで異なるフィルタ、つまり液圧増加フィルタと液圧低下フィルタを備えるようにしている。そして、液圧増加フィルタによる目標圧変化の抑制効果を液圧低下フィルタによる目標圧変化の抑制効果よりも小さくし、目標圧を増加させる側へは速く変化させ、減少させる側へは遅く変化させるようにしている。
【0076】
これにより、実W/C圧が目標圧に追従して大きくなった後に、目標圧が減少させられたとしても、緩やかにしか減少しないため、次に目標圧を増加させる際にW/C圧を目標圧まで上昇させるのに必要とされる増圧量が少なくなる。したがって、ポンプ加圧の昇圧能力が高い場合は勿論のこと、昇圧能力が低い場合にも、W/C圧を十分に上昇させられ、応答性良くW/C圧が目標圧に達するようにできる。よって、昇圧性能が低いことによってW/C圧を的確に上昇させられなくなることを抑制することが可能となる。また、W/C圧を的確に上昇させられるため、例えばダート路などのようにタイヤがスリップとグリップを繰り返すような状態になった場合でも、応答性良く制動力を発生させられる。このため、ポンプ加圧の昇圧能力が低い場合であっても、十分な走破性を得ることが可能となる。
【0077】
(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
【0078】
上記実施形態では、図3のステップ105において、各輪加速スリップトルクDSlipTrq**と各輪余剰トルクSurplusTrq**のうちの小さい方の値をスリップ制御量トルクSlipFB**(n)に加算することで各輪スリップ抑制トルクSlipControlTrq**を演算している。しかしながら、いずれか一方のみを用いて、その一方がスリップ制御量トルクSlipFB**(n)に加算されるようにすることで、各輪スリップ抑制トルクSlipControlTrq**を演算するようにしても良い。
【0079】
また、各車輪の駆動トルクTRQ**を把握できるシステムである場合、正確に各輪余剰トルクSurplusTrq**を求めることができることから、これに基づいて正確に目標圧を設定できる。したがって、各車輪の駆動トルクTRQ**を把握できるシステムにおいて正確に各輪余剰トルクSurplusTrq**を求められる場合には、余剰分に対応するブレーキトルクを正確に求められるため、目標圧を減少させる側の液圧低下フィルタの抑制効果を大きくして目標圧変化が遅くなるようにしなくても良い。
【0080】
また、上記実施形態では、トルクを液圧換算することで各輪加速スリップ必要液圧DSLIP_P**Filter(n)を演算しているが、トルクを用いて制御を行うようにしても、実質的に液圧換算後の目標圧に基づいて制御を行うのと同じことを意味している。
【0081】
また、上記実施形態では、ポンプ加圧の昇圧性能が低い場合にも対応できるように、液圧低下フィルタと比較して液圧増加フィルタによる目標圧変化の抑制効果が小さくなるようにするフィルタ調整処理を実行したが、勿論、ポンプ加圧の昇圧性能にかかわらずフィルタ調整処理を実行することができる。また、ポンプ加圧を通常の昇圧性能で制御する通常制御状態とそれよりも昇圧性能が低い抑制制御状態で行う場合、例えばモータ11を継続的にオン(フルオン)させる場合とオンオフ制御する場合には、フルオンさせる場合と比較してオンオフ制御を行う場合に昇圧性能が低くなる。このため、オンオフ制御する場合にフィルタ調整処理を行うようにすると、応答性良く液圧制動機構のブレーキ液圧が目標圧に達するようにできるため、好適である。さらに、ポンプ加圧を通常の昇圧性能で制御する通常制御状態とそれよりも昇圧性能が低い抑制制御状態で行う場合の両方でフィルタ調整処理を実行しつつ、前者の場合よりも後者の場合の方が液圧増加フィルタによる目標圧の変化の抑制効果と液圧低下フィルタによる目標圧の変化の抑制効果の差が大きくなるようにしても良い。このようにしても、通常制御状態だけでなく抑制制御状態のときにも、応答性良く液圧制動機構のブレーキ液圧が目標圧に達するようにできる。
【0082】
また、上記実施形態では、目標圧に対してW/C圧を追従させる制御としてトラクション制御を例に挙げたが、目標圧が増加と減少を繰り返すような車両制動制御であれば、他の制御に対しても本発明を適用できる。
【0083】
また、上記実施形態では、車輪のスリップが収まった場合に過剰な制動力が作用しないように、スリップ量SlipVW**が0(ゼロ)より小さい場合にはスリップが収まったとして、時間の経過に伴いフィルタ係数K1が大きくなるようにしていたが、目標液圧となる各輪加速スリップ必要液圧DSLIP_P**Filterを小さくする目標液圧リセット処理を行うことで対応しても良い。
【0084】
具体的には、図6(a)に示すように、車輪のスリップが減少方向にあるにもかかわらず、高い目標液圧に向かって制動力が上昇し続けると、車輪ロック気味になる可能性がある。このため、図6(b)に示すように、車輪加速度DV**が0より小さくなり、車輪のスリップが減少方向となった場合には、目標液圧となる各輪加速スリップ必要液圧DSLIP_P**Filterを一旦、実液圧である実W/C圧WC**にすることで、車輪のスリップが減少方向にあるにもかかわらず、高い目標液圧に向かって制動力が上昇し続けることを防止し、スリップが収まった場合に過剰な制動力が作用しないようにすることができる。
【0085】
なお、目標液圧リセット処理で目標液圧となる各輪加速スリップ必要液圧DSLIP_P**Filterを小さくする値は、実W/C圧WC**に限らず、実W/C圧WC**に0を含む所定の偏差を加算または減算した実液圧相当値であっても良い。
【0086】
実W/C圧WC**は、各W/C4、5あるいはW/C4、5に接続された管路A2に、圧力センサを設置して直接的に検出しても良いし、増減圧時間や差圧制御弁20の出力やモータ出力等に基づいて既知の方法で求めた推定値を用いても良い。
【0087】
目標液圧リセット処理は図7に示すように、図3のフローにステップ160〜175の簡単な判定処理を追加することで実現できる。具体的には、ステップ160で車輪加速度DV**が0より小さいか否かを判定する。ステップ160で肯定判定となったときには、車輪の加速スリップが減少方向にあるので、さらに、ステップ165で各輪加速スリップ必要液圧DSLI_P**が実W/C圧WC**より大きいか否かを判定する。これにより、各輪加速スリップ必要液圧DSLI_P**が大きく設定されることを防止している。ステップ165が肯定判定となったら、ステップ170へ移動し、各輪加速スリップ必要液圧DSLIP_P**に実W/C圧WC**を設定し、さらにステップ175でフィルタ係数K1に1を設定し、ステップ140へ移動する。これにより、車輪加速度が0より小さく車輪のスリップが減少方向にある場合には、各輪加速スリップ必要液圧DSLIP_P**を一旦実W/C圧WC**に設定し、目標液圧となる各輪加速スリップ必要液圧DSLIP_P**Filterも実W/C圧WC**となるようにしている。
【0088】
一方、ステップ165で否定判定された場合には、各輪加速スリップ必要液圧DSLIP_P**が実W/C圧WC**まで低下したので、上記実施形態と同様に、液圧低下フィルタを小さく設定し、液圧の過剰な低下を防止するようにしている。その他の動作は、図6に示された上記実施形態と変わらないため、ここでの説明は割愛する。
【0089】
なお、上記実施形態においては、ブレーキECU50が本発明における液圧設定手段に相当し、各図中に示したステップは、各種処理を実行する機能部に対応している。例えば、ステップ115の処理を実行する部分が液圧増加フィルタ、ステップ125、130の処理を実行する部分が液圧低下フィルタに相当する。
【符号の説明】
【0090】
1…ブレーキペダル、3…M/C、10…ポンプ、11…モータ、20…差圧制御弁、30、31…増圧制御弁、32、33…減圧制御弁、40…調圧弁、50…ブレーキECU、51a〜51d…車輪速度センサ、53…加速度センサ
図1
図2
図3
図4
図5
図6
図7(a)】
図7(b)】