(58)【調査した分野】(Int.Cl.,DB名)
請求項1に記載の空気調和機用の制御回路において、前記筐体姿勢制御部は、在室者の存在を検知する人感センサから出力される検知信号に基づき前記第2筐体の姿勢を決定することを特徴とする空気調和機用の制御回路。
請求項1または2に記載の空気調和機用の制御回路において、前記筐体姿勢制御部は2つの前記第2筐体の姿勢を個別に独立に制御することを特徴とする空気調和機用の制御回路。
請求項1〜3のいずれか1項に記載の空気調和機用の制御回路において、前記第1吹出口から水平方向に前記冷気の気流が吹き出される際に、前記筐体姿勢制御部は、水平方向またはそれよりも上向きに前記第2吹出口から前記室温空気の気流を吹き出させる姿勢に前記第2筐体の姿勢を決定することを特徴とする空気調和機用の制御回路。
【発明の概要】
【発明が解決しようとする課題】
【0004】
一般に、吹出口には上下風向板および左右風向板が設置される。上下風向板および左右風向板は吹き出される気流の吹き出し方向を規定することができる。しかしながら、気流がひとたび吹出口から吹き出されてしまうと、その後の気流の向きや動きは自然の対流に委ねられる。こうした気流の向きや動きがきめ細かく制御されることができれば、これまで以上に心地よい温度環境が室内に作り出されることができると考えられる。
【0005】
本発明のいくつかの態様によれば、心地よい温度環境を作り出すことができる空気調和機用の制御回路および制御プログラムを提供することができる。
【課題を解決するための手段】
【0006】
本発明の一形態は、冷房運転の動作を確立する制御信号を出力する冷房確立部と、第1送風ファンを制御し、室内機の第1筐体に形成される第1吹出口から冷気の気流を吹き出させる第1送風ファン制御部と、第2送風ファンを制御し、前記第1筐体の両側面に配置される1対の第2筐体に形成される第2吹出口から室
温空気の気流を吹き出させる第2送風ファン制御部と、前記第1筐体に対して相対的に前記第2筐体の姿勢を変化させる駆動機構を制御する筐体姿勢制御部とを備え
、前記室温空気の気流の風速は前記冷気の気流の風速よりも大きく設定される空気調和機用の制御回路に関する。
【0007】
制御信号の供給に応じて空気調和機の冷凍回路で冷房運転が実施される。第1送風ファンが動作すると、室内機の第1吹出口から冷気の気流が吹き出される。第2送風ファンが動作すると、2つの第2吹出口から室
温空気の気流が吹き出される。駆動機構が動作すると、室
温空気の気流を直接に在室者に向けることができる。こうして第2送風ファンはいわゆる扇風機の代わりとして機能することができる。在室者は、室内の温度低下に基づく涼感に加え、気流の冷却効果に基づく涼感を得ることができる。
特に、冷気の気流は大きな風速の室温空気の気流に巻き込まれることから、室温空気の気流の働きで冷気の気流は遠方まで運搬される。冷気の気流の風速が弱められても、冷気の気流は遠方まで行き着くことができる。冷気の気流の風速が弱められても、室内は効率的に冷却される。
【0008】
前記筐体姿勢制御部は、在室者の存在を検知する人感センサから出力される検知信号に基づき前記第2筐体の姿勢を決定することができる。人感センサの働きで第2吹出口は在室者に向けられることができる。室
温空気の気流を在室者の移動に追従させることができる。在室者が移動しても、室
温空気の気流を的確に在室者に到達させることができる。在室者は確実に気流の冷却効果に基づく涼感を得ることができる。
【0009】
前記筐体姿勢制御部は2つの前記第2筐体の姿勢を個別に独立に制御することができる。在室者の人数や配置に応じて2つの第2筐体の姿勢を的確に制御することができる。個々の第2筐体ごとに室
温空気の気流は確実に在室者に向けられる。
【0010】
前記第1吹出口から水平方向に前記冷気の気流が吹き出される際に、前記筐体姿勢制御部は、水平方向またはそれよりも上向きに前記第2吹出口から前記室
温空気の気流を吹き出させる姿勢に前記第2筐体の姿勢を決定することができる。室
温空気の気流は室内に緩やかな空気の流れを生起することができる。在室者は対流の微風に応じて不自然でない心地よい涼感を得ることができる。
【0012】
本発明の他の形態は、暖房運転の動作を確立する制御信号を出力する暖房確立部と、第1送風ファンを制御し、室内機の第1筐体に形成される第1吹出口から暖気の気流を吹き出させる第1送風ファン制御部と、第2送風ファンを制御し、前記第1筐体の両側面に配置される1対の第2筐体に形成される第2吹出口から室
温空気の気流を吹き出させる第2送風ファン制御部と、前記第1筐体に対して相対的に前記第2筐体の姿勢を変化させる駆動機構を制御し、
前記第1吹出口から下向きに前記暖気の気流が吹き出される際に、室温が決められた特定温度よりも低いと、水平方向またはそれよりも上向きに前記第2吹出口から前記室温空気の気流を吹き出させる姿勢に前記第2筐体の姿勢を決定する筐体姿勢制御部とを備える空気調和機用の制御回路に関する。
【0013】
制御信号の供給に応じて空気調和機の冷凍回路で暖房運転が実施される。第1送風ファンが動作すると、室内機の第1吹出口から暖気の気流が吹き出される。第2送風ファンが動作すると、2つの第2吹出口から室
温空気の気流が吹き出される。室
温空気の気流は暖気の気流の向きや動きを制御することができる。暖気は室内で望まれる場所に送り込まれる。こうして室内の温度環境は効率的に整えられる。
【0014】
筐体姿勢制御部は、前記第1吹出口から下向きに前記暖気の気流が吹き出される際に、
室温が決められた特定温度よりも低いと、水平方向またはそれよりも上向きに前記第2吹出口から前記室
温空気の気流を吹き出させる姿勢に前記第2筐体の姿勢を決定す
る。暖気の気流が下向きに誘導されれば、暖気は床面に向かって吹き出される。室内の温度が低いと、暖気はすぐさま床面から天井に向かって上昇しやすい。このとき、ファンユニットは、上昇してくる暖気を巻き込みながら室内に空気の流れを生起する。空気の流れに沿って暖気は再び床面に向かって下降する。こうして室内の下方には十分に暖気が送り込まれる。室内全体が暖まらなくとも、在室者は暖を感じることができる。
【0015】
筐体姿勢制御部は、前記第1吹出口から下向きに前記暖気の気流が吹き出される際に、前記
室温が前記特定温度に達すると、前記第1吹出口よりも高い位置から、前記下向きまたは当該下向きよりも上向きに前記第2吹出口から前記室
温空気の気流を吹き出させる姿勢に前記第2筐体の姿勢を決定することができる。第2吹出口からの気流は暖気の気流よりも上側で吹き下りる。第2吹出口の気流は床面との間に暖気を挟み込むことができる。こうして暖気の上昇は抑制される。在室者は足下で暖を感じることができる。
【0016】
本発明のさらに他の形態は、冷房運転の動作を確立する制御信号を出力する手順と、室内機の第1筐体に形成される第1吹出口から吹き出す冷気の気流を生成する第1送風ファンを駆動する第1駆動信号を出力する手順と、前記第1筐体の両側面に配置される1対の第2筐体に形成される第2吹出口から吹き出す室
温空気の気流を生成する第2送風ファンを駆動
し、前記冷気の気流の風速よりも大きく前記室温空気の気流の風速を設定する第2駆動信号を出力する手順と、前記第1筐体に対して相対的に前記第2筐体の姿勢を変化させる駆動機構を駆動する第3駆動信号を出力する手順とを演算処理回路に実行させる空気調和機用の制御プログラムに関する。
【0017】
制御信号の供給に応じて空気調和機の冷凍回路で冷房運転が実施される。第1駆動信号の供給に応じて第1送風ファンが動作すると、室内機の第1吹出口から冷気の気流が吹き出される。第2駆動信号の供給に応じて第2送風ファンが動作すると、2つの第2吹出口から室
温空気の気流が吹き出される。第3駆動信号の供給に応じて駆動機構が動作すると、室
温空気の気流は直接に在室者に向けられる。こうして第2送風ファンはいわゆる扇風機の代わりとして機能することができる。在室者は、室内の温度低下に基づく涼感に加え、気流の冷却効果に基づく涼感を得ることができる。
特に、冷気の気流は大きな風速の室温空気の気流に巻き込まれることから、室温空気の気流の働きで冷気の気流は遠方まで運搬される。冷気の気流の風速が弱められても、冷気の気流は遠方まで行き着くことができる。冷気の気流の風速が弱められても、室内は効率的に冷却される。
【0018】
本発明のさらに他の形態は、暖房運転の動作を確立する制御信号を出力する手順と、室内機の第1筐体に形成される第1吹出口から吹き出す暖気の気流を生成する第1送風ファンを駆動する第1駆動信号を出力する手順と、前記第1筐体の両側面に配置される1対の第2筐体に形成される第2吹出口から吹き出す室
温空気の気流を生成する第2送風ファンを駆動する第2駆動信号を出力する手順と、前記第1筐体に対して相対的に前記第2筐体の姿勢を変化させる駆動機構を制御し、
前記第1吹出口から下向きに前記暖気の気流が吹き出される際に、室温が決められた特定温度よりも低いと、水平方向またはそれよりも上向きに前記第2吹出口から前記室温空気の気流を吹き出させる姿勢に前記第2筐体の姿勢を決定する第3駆動信号を出力する手順とを演算処理回路に実行させる空気調和機用の制御プログラムに関する。
【0019】
制御信号の供給に応じて空気調和機の冷凍回路で暖房運転が実施される。第1駆動信号の供給に応じて第1送風ファンが動作すると、室内機の第1吹出口から暖気の気流が吹き出される。第2駆動信号の供給に応じて第2送風ファンが動作すると、2つの第2吹出口から室
温空気の気流が吹き出される。第3駆動信号の供給に応じて駆動機構が動作すると、室
温空気の気流は暖気の気流の向きや動きを制御することができる。暖気は室内で望まれる場所に送り込まれる。こうして室内の温度環境は効率的に整えられる。
特に、室内の温度が低いと、暖気はすぐさま床面から天井に向かって上昇しやすい。このとき、ファンユニットは、上昇してくる暖気を巻き込みながら室内に空気の流れを生起する。空気の流れに沿って暖気は再び床面に向かって下降する。こうして室内の下方には十分に暖気が送り込まれる。室内全体が暖まらなくとも、在室者は暖を感じることができる。その一方で、筐体姿勢制御部は、前記第1吹出口から下向きに前記暖気の気流が吹き出される際に、前記室温が前記特定温度に達すると、前記第1吹出口よりも高い位置から、前記下向きまたは当該下向きよりも上向きに前記第2吹出口から前記室温空気の気流を吹き出させる姿勢に前記第2筐体の姿勢を決定することができる。第2吹出口からの気流は暖気の気流よりも上側で吹き下りることから、第2吹出口の気流は床面との間に暖気を挟み込むことができる。こうして暖気の上昇は抑制される。在室者は足下で暖を感じることができる。
【発明の効果】
【0020】
以上のように本発明によれば、心地よい温度環境を作り出すことができる空気調和機用の制御回路を提供することができる。
【発明を実施するための形態】
【0022】
以下、添付図面を参照しつつ本発明の一実施形態を説明する。
【0023】
図1は本発明の一実施形態に係る空気調和機11の構成を概略的に示す。空気調和機11は室内機12および室外機13を備える。室内機12は例えば建物内の室内空間に設置される。その他、室内機12は室内空間に相当する環境空間に設置されればよい。室内機12には室内熱交換
器14が組み込まれる。室外機13には圧縮機15、室外熱交換
器16、膨張弁17および四方弁18が組み込まれる。室内熱交換
器14、圧縮機15、室外熱交換
器16、膨張弁17および四方弁18は冷凍回路19を形成する。
【0024】
冷凍回路19は第1循環経路21を備える。第1循環経路21は四方弁18の第1口18aおよび第2口18bを相互に結ぶ。圧縮機15の吸入管15aは四方弁18の第1口18aに冷媒配管を介して接続される。第1口18aからガス冷媒は圧縮機15の吸入管15aに供給される。圧縮機15は低圧のガス冷媒を所定の圧力まで圧縮する。圧縮機15の吐出管15bは四方弁18の第2口18bに冷媒配管を介して接続される。圧縮機15の吐出管15bからガス冷媒は四方弁18の第2口18bに供給される。第1循環経路21は例えば銅管などの冷媒配管で形成される。
【0025】
冷凍回路19は第2循環経路22をさらに備える。第2循環経路22は四方弁18の第3口18cおよび第4口18dを相互に結ぶ。第2循環経路22には、第3口18c側から順番に室外熱交換器16、膨張弁17および室内熱交換器14が組み込まれる。室外熱交換器16は、通過する冷媒と周囲の空気との間で熱エネルギーの交換を実現する。室内熱交換器14は、通過する冷媒と周囲の空気との間で熱エネルギーの交換を実現する。第2循環経路22は例えば銅管などの冷媒配管で形成されればよい。
【0026】
室外機13には送風ファン23が組み込まれる。送風ファン23は室外熱交換器16に関連づけられる。送風ファン23は例えば羽根車の回転に応じて気流を生成する。気流は室外熱交換器16を通り抜ける。通り抜ける気流の流量は羽根車の毎分回転数に応じて調整される。気流の流量に応じて室外熱交換器16では冷媒と空気との間で交換される熱エネルギー量が調整される。
【0027】
室内機12は本体ユニット25および1対のファンユニット26を備える。本体ユニット25には室内熱交換器14および第1送風ファン27が組み込まれる。第1送風ファン27は室内熱交換器14に関連づけられる。第1送風ファン27は羽根車の回転に応じて気流を生成する。第1送風ファン27の働きで本体ユニット25には室内空気が吸い込まれる。室内空気は室内熱交換器14を通り抜ける。熱交換による冷気または暖気の気流は本体ユニット25から吹き出される。通り抜ける気流の流量は羽根車の毎分回転数に応じて調整される。気流の流量に応じて室内熱交換器14では冷媒と空気との間で交換される熱エネルギー量を調整することができる。ファンユニット26は室内空気を吸い込んで当該室内空気を吹き出す。
【0028】
冷凍回路19で冷房運転を行なう場合は、四方弁18は第2口18bおよび第3口18cを相互に接続し第1口18aおよび第4口18dを相互に接続する。したがって、圧縮機15の吐出管15bから高温高圧の冷媒が室外熱交換器16に供給される。冷媒は室外熱交換器16、膨張弁17および室内熱交換器14を順番に流通する。室外熱交換器16では冷媒の熱エネルギーが外気に放出される。膨張弁17で冷媒は低圧まで減圧される。減圧された冷媒は室内熱交換器14で周囲の空気から吸熱する。冷気が生成される。冷気は第1送風ファン27の働きで室内空間に流される。
【0029】
冷凍回路19で暖房運転を行なう場合は、四方弁18は第2口18bおよび第4口18dを相互に接続し第1口18aおよび第3口18cを相互に接続する。圧縮機15から高温高圧の冷媒が室内熱交換器14に供給される。冷媒は室内熱交換器14、膨張弁17および室外熱交換器16を順番に流通する。室内熱交換
器14では冷媒の熱エネルギーが周囲の空気に放出される。暖気が生成される。暖気は第1送風ファン27の働きで室内空間に流される。膨張弁17で冷媒は低圧まで減圧される。減圧された冷媒は室外熱交換器16で周囲の空気から吸熱する。その後、冷媒は圧縮機15に戻る。
【0030】
図2は第1実施形態に係る室内機12の外観を概略的に示す。室内機12の本体ユニット25は主筐体28を備える。主筐体28では筐体本体29にアウターパネル31が覆い被さる。筐体本体29には第1吹出口32が形成される。アウターパネル31には第1吸込口(図示されず)が形成される。第1吹出口32は下向きに開口する。筐体本体29は例えば室内の壁面に固定されることができる。第1吹出口32では前端32aは後端32bに比べて床面から高い位置に配置される。その結果、第1吹出口32は所定の傾斜角αで前上がりの姿勢に形成される。こうした傾斜角αの働きで気流は第1吹出口32から床面に向かって下向きに吹き出されることができるだけでなく床面に平行に水平方向に吹き出されることができる。
【0031】
第1吹出口32には前後1対の上下風向板33a、33bが配置される。上下風向板33a、33bはそれぞれ水平軸線34a、34b回りに回転することができる。これら水平軸線34a、34bは上下風向板33a、33bの後端に設定されればよい。回転に応じて上下風向板33a、33bは第1吹出口32を開閉することができる。
【0032】
筐体本体29の両側面には個別にファンユニット26が設置される。ファンユニット26は筐体本体29の側壁の外側に配置される。ファンユニット26はそれぞれ筐体35を備える。ファンユニット26の筐体35には第2吹出口36が形成される。後述されるように、第2吹出口36は水平軸線37回りに移動することができる。水平軸線34a、34b、37は相互に平行に延びる。筐体35の側面にはアウターパネル31のサイドパネル31aが覆い被さる。サイドパネル31aには第2吸込口38が形成される。第2吸込口38は例えば小開口の集合体で形成されることができる。
【0033】
図3に示されるように、上下風向板33a、33bには水平軸線34a、34bに同軸に左右の突軸39a、39bが形成される。突軸39a、39bは上下風向板33a、33bの左右から第1吹出口32の輪郭の外側に突出する。突軸39a、39bは水平軸線34a、34b回りで回転自在に筐体本体29に連結される。連結にあたって突軸39a、39bは例えば筐体本体29に一体の軸受けに受け止められればよい。
【0034】
突軸39a、39bには上下風向板駆動源40が接続される。上下風向板駆動源40は例えば電動モータで構成される。接続にあたって突軸39a、39bには例えば従動ギア41が取り付けられる。同様に電動モータの駆動軸には駆動ギア42が取り付けられる。駆動ギア42は従動ギア41に噛み合う。こうして電動モータの回転は所定の伝達比で突軸39a、39bに伝達される。上下風向板駆動源40の動作に応じて上下風向板33a、33bの回転は引き起こされる。
【0035】
第1吹出口32には複数枚の左右風向板43が併せて配置される。左右風向板43は水平軸線34a、34bに沿って水平方向に例えば等間隔で配列される。個々の左右風向板43は回転軸線44回りで回転することができる。回転軸線44は、水平軸線34a、34bに直交する鉛直平面内で延びる。全ての回転軸線44は水平軸線34a、34bに平行に広がる1仮想平面内に含まれる。こうした仮想平面は第1吹出口32に繋がる気流の通路に直交することが望まれる。
【0036】
左右風向板43には回転軸線44に同軸に突軸45が形成される。突軸45は、例えば、左右風向板43の上下(またはいずれか一方)から突出する。突軸45は回転軸線44回りで回転自在に筐体本体29に連結される。連結にあたって突軸45は例えば筐体本体29に固定の軸受け部材に受け止められればよい。
【0037】
突軸45には左右風向板駆動源46が接続される。左右風向板駆動源46は例えば電動モータで構成されることができる。接続にあたって例えば個々の左右風向板43には連結軸47が形成される。連結軸47は回転軸線44からずれた位置で回転軸線44に平行に延びる。連結軸47には連結軸47の軸心回りに回転自在にラック部材48が連結される。電動モータの駆動軸には駆動ギア49が取り付けられる。駆動ギア49はラック部材48のギア51に噛み合う。こうして電動モータの回転はラック部材48の直線運動に変換される。ラック部材48は回転軸線44回りで連結軸47の揺動を引き起こす。こうして左右風向板43の回転は引き起こされる。
【0038】
図4に示されるように、室内熱交換器14および第1送風ファン27は筐体本体29に組み付けられる。第1送風ファン27は筐体本体29に少なくとも部分的に収容される。第1送風ファン27にはクロスフローファンが用いられる。クロスフローファンは、細長い円筒面に沿って羽根を配置する羽根車52を備える。羽根車52は水平軸線34a、34bに平行な回転軸線53回りで回転する。筐体本体29には第1送風ファン27からの気流の通路が形成される。通路の下流端は第1吹出口32を形成する。
【0039】
室内熱交換器14は冷媒管54の集合体で構成される。冷媒管54は銅といった熱伝導性の高い材料から形成される。集合体は前側部55aおよび後側部55bに分割される。前側部55aはファンユニット26同士で挟まれる空間に配置される。後側部55bはファンユニット26同士で挟まれる空間の外側に配置される。具体的には、後側部55bは、ファンユニット26同士で挟まれる空間の背後に形成される空間に配置される。したがって、後側部55bは個々のファンユニット26の背後の空間に進入する。その結果、後側部55bは前側部55aに比べて左右方向に大きく広がることができる。
【0040】
主筐体28には前側空間56aと後側空間56bとが区画される。前側空間56aはファンユニット26同士の間に配置される。前側空間56aは第1送風ファン27の回転軸線53に平行に第1幅W1を有する。前側空間56aは筐体本体29の側壁で仕切られる。後側空間56bは前側空間56aの背後に形成される。後側空間56bは個々のファンユニット26の背後に進入する。後側空間56bは第1送風ファン27の回転軸線53に平行に第2幅W2を有する。第2幅W2は第1幅W1より大きい。室内熱交換器14の前側部55aは前側空間56aに収容される。室内熱交換器14の後側部55bは後側空間56bに収容される。前側部55aはファンユニット26同士の間で筐体本体29の前側から後側に向かって傾斜している。後側部55bは筐体本体29の後側から前側に向かって傾斜している。室内熱交換器14の前側部55aと後側部55bは、側面視で略逆V字型に配置されている。前側部55aおよび後側部55bの間の空間に第1送風ファン27が収容される。前側部55aの上端および後側部55bの上端は相互に連結される。
【0041】
図5に示されるように、ファンユニット26の筐体35には第2送風ファン57が収容される。第2送風ファン57は筐体本体29に組み付けられる。第2送風ファン57は筐体本体29の側壁に連結される。第2送風ファン57にはシロッコファンが用いられる。シロッコファンは円筒面に沿って多数の羽根を配置する羽根車58を備える。羽根車58は水平軸線34a、34bに平行な回転軸線59回りで回転する。
【0042】
筐体35の側面には開口61が形成される。開口61は例えば回転軸線59に同軸の円形の輪郭に形成されることができる。開口61の大きさは羽根車58の内径よりも小さく設定される。開口61にはサイドパネル31aの第2吸込口38が向き合わせられる。羽根車58が回転すると、第2吸込口38および開口61を通じて回転軸線59に沿って室内空気は羽根車58の内側に吸い込まれる。吸い込まれた室内空気は羽根車58から遠心方向に飛ばされる。飛ばされる空気は筐体35内に設けられた送風路により第2吹出口36に誘導される。
【0043】
ファンユニット26は本体ユニット25に対して相対的に姿勢変化自在に本体ユニット25に支持される。具体的には、ファンユニット26の筐体35は本体ユニット25の筐体本体29に対して水平軸線37回りで回転自在に筐体本体29の側面に取り付けられる。ここで、水平軸線37は回転軸線59に重なることができる。回転の実現にあたって筐体35の側面(外側)には水平軸線37に同軸に環状壁62が形成される。環状壁62は回転自在に1対の第1ブラケット63に支持される。環状壁62の外面は円筒面に形成される。第1ブラケット63はスライド自在に円筒面を挟み込む。
【0044】
第2吹出口36には左右風向板64が配置される。ここでは、例えば3枚の左右風向板64が筐体35に支持される。左右風向板64は水平方向に例えば等間隔で配列される。左右風向板64は回転軸線65回りで回転することができる。回転軸線65は、水平軸線37(回転軸線59に重なる)に直交する鉛直平面内で延びる。全ての回転軸線65は水平軸線37に平行に広がる1仮想平面内に含まれる。こうした仮想平面は第2吹出口36に繋がる気流の通路に直交することが望まれる。
【0045】
図6に示されるように、左右風向板64には回転軸線65に同軸に突軸66が形成される。突軸66は、例えば、左右風向板64の上下(またはいずれか一方)から突出する。突軸66は回転軸線65回りで回転自在に筐体35に連結される。連結にあたって突軸66は例えば筐体35に一体の軸受けに受け止められればよい。
【0046】
突軸66には左右風向板駆動源67が接続される。左右風向板駆動源67は例えば電動モータで構成されることができる。接続にあたって例えば個々の左右風向板64には連結軸68が形成される。連結軸68は回転軸線65からずれた位置で回転軸線65に平行に延びる。連結軸68には連結軸68の軸心回りに回転自在に連結部材69が連結される。電動モータの駆動軸には駆動ギア71が取り付けられる。1つの左右風向板64の突軸66には同軸に従動ギア72が取り付けられる。駆動ギア71は従動ギア72に噛み合う。こうして電動モータの回転は所定の伝達比で1つの左右風向板64の突軸66に伝達される。1つの左右風向板64の回転動作は連結部材69で残りの左右風向板64の回転動作を引き起こす。こうして左右風向板64の回転は引き起こされる。
【0047】
図7に示されるように、第1送風ファン27には第1ファン駆動源73が連結される。第1ファン駆動源73には例えば電動モータが用いられることができる。電動モータの駆動軸に羽根車52が同軸に固定される。第1ファン駆動源73が動作すると、羽根車52が回転する。筐体本体29内の空間で気流が生成される。第1ファン駆動源73は例えば筐体本体29の側壁に内側から固定される。
【0048】
第2送風ファン57には第2ファン駆動源74が連結される。第2ファン駆動源74には例えば電動モータが用いられることができる。電動モータの駆動軸に羽根車58が同軸に固定される。第2ファン駆動源74が動作すると、羽根車58が回転する。筐体35内の空間で気流が生成される。筐体35内の気流は筐体本体29の側壁で筐体本体29内の気流から隔てられる。第2ファン駆動源74は例えば筐体本体29の側壁に外側から固定される。
【0049】
ファンユニット26では筐体35の側面(筐体本体29との対向面)に環状壁75が形成される。環状壁75は環状壁62に同軸に形成される。環状壁75は回転自在に第2ブラケット76に支持される。環状壁75の内面は円筒面に形成される。第2ブラケット76には環状壁75に同軸に環状のフランジ76aが形成される。フランジ76aは相対回転自在に環状壁75の内面に受け止められる。こうして筐体35は1対の環状壁62、75で両持ち支持される。
【0050】
筐体35にはファン筐体駆動源77が結合される。ファン筐体駆動源77には例えば電動モータが用いられることができる。電動モータの駆動軸には駆動ギア78が取り付けられる。環状壁75の外周面には駆動ギア78に噛み合う歯が刻まれる。こうして電動モータの回転は所定の伝達比で筐体35に伝達される。ファン筐体駆動源77の動作に応じてファンユニット26の筐体35は水平軸線回りで回転することができる。こうした筐体35の回転動作に応じて第2吹出口36は水平軸線37回りで移動することができる。ファン筐体駆動源77は例えば筐体本体29の側壁に内側から固定される。駆動ギア78の取り付けにあたって電動モータの駆動軸は筐体本体29の側壁を貫通すればよい。環状壁62、75、第1および第2ブラケット63、76並びにファン筐体駆動源77は筐体本体29に対して相対的に筐体35の姿勢を変化させる駆動機構を提供する。
【0051】
図8は空気調和機11の制御系を概略的に示す。制御ユニット79は冷暖房確立部81を備える。冷暖房確立部81は冷凍回路19の動作を制御する。冷暖房確立部81の制御に応じて冷凍回路19では冷房運転の動作または暖房運転の動作が選択的に確立される。冷房運転または暖房運転の確立にあたって冷暖房確立部81には室外機13が接続される。冷暖房確立部81は圧縮機15や膨張弁17、四方弁18の動作を制御する。こうした制御にあたって冷暖房確立部81は圧縮機15や膨張弁17、四方弁18に制御信号を供給する。例えば四方弁18では制御信号の働きで弁の位置は切り替えられる。
【0052】
制御ユニット79は本体ユニット制御ブロック82を備える。本体ユニット制御ブロック82は本体ユニット25の動作を制御する。本体ユニット制御ブロック82は第1送風ファン制御部83、上下風向板制御部84および左右風向板制御部85を有する。第1送風ファン制御部83には第1ファン駆動源73が電気的に接続される。第1送風ファン制御部83は第1ファン駆動源73の動作を制御する。この制御にあたって第1送風ファン制御部83は第1ファン駆動源73に第1駆動信号を供給する。第1駆動信号の供給に応じて第1ファン駆動源73は第1送風ファン27の始動や停止、毎分回転数の制御を実行する。上下風向板制御部84には本体ユニット25の上下風向板駆動源40が電気的に接続される。上下風向板制御部84は上下風向板駆動源40の動作を制御する。この制御にあたって上下風向板制御部84は上下風向板駆動源40に制御信号を供給する。制御信号の供給に応じて上下風向板駆動源40は上下風向板33a、33bの向きの制御を実現する。左右風向板制御部85には左右風向板駆動源46が電気的に接続される。左右風向板制御部85は左右風向板駆動源46の動作を制御する。この制御にあたって左右風向板制御部85は左右風向板駆動源46に制御信号を供給する。制御信号の供給に応じて左右風向板駆動源46は左右風向板43の向きの制御を実現する。
【0053】
制御ユニット79はファンユニット制御ブロック86を備える。ファンユニット制御ブロック86はファンユニット26の動作を制御する。ファンユニット制御ブロック86は第2送風ファン制御部87、筐体姿勢制御部88および左右風向板制御部89を有する。第2送風ファン制御部87には第2ファン駆動源74が個々に電気的に接続される。第2送風ファン制御部87は2つの第2ファン駆動源74の動作を個別に制御する。この制御にあたって第2送風ファン制御部87は第2ファン駆動源74に第2駆動信号を供給する。第2駆動信号の供給に応じて第2ファン駆動源74は第2送風ファン57の始動や停止、毎分回転数の制御を実行する。筐体姿勢制御部88にはファンユニット26のファン筐体駆動源77が個々に電気的に接続される。筐体姿勢制御部88はファン筐体駆動源77の動作を制御する。この制御にあたって筐体姿勢制御部88はファン筐体駆動源77に個別に第3駆動信号を供給する。第3駆動信号の供給に応じてファン筐体駆動源77は筐体35の向きの制御を実現する。左右風向板制御部89には左右風向板駆動源67が個々に電気的に接続される。左右風向板制御部89は左右風向板駆動源67の動作を制御する。この制御にあたって左右風向板制御部89は左右風向板駆動源67に制御信号を供給する。制御信号の供給に応じて左右風向板駆動源67は左右風向板64の向きの制御を実現する。
【0054】
制御ユニット79には例えば受光センサ91が接続される。受光センサ91には例えばリモコンユニットから無線で指令信号が供給される。指令信号は例えば空気調和機11の動作モードや設定室温を特定する。指令信号にはリモコンユニットの操作に応じて動作モードや設定室温が記述される。動作モードには例えば「冷房運転」「暖房運転」「除湿運転」「送風運転」などが挙げられる。受光センサ91は受信した指令信号を出力する。指令信号は冷暖房確立部81、本体ユニット制御ブロック82およびファンユニット制御ブロック86にそれぞれ供給される。冷暖房確立部81、本体ユニット制御ブロック82およびファンユニット制御ブロック8
6は、指令信号で特定される動作モードや設定室温に応じて動作する。
【0055】
制御ユニット79には室温センサ92が接続される。室温センサ92は例えば室内機12に取り付けられる。室温センサ92は室内機12の周囲の温度を検出する。検出結果に応じて室温センサ92は温度信号を出力する。温度信号で室温は特定される。温度信号は例えば本体ユニット制御ブロック82およびファンユニット制御ブロック86に供給される。本体ユニット制御ブロック82およびファンユニット制御ブロック86は、制御の実行にあたって、温度信号で特定される温度を参照することができる。
【0056】
制御ユニット79には人感センサ93が接続される。人感センサ93は例えば室内機12に取り付けられる。人感センサ93は在室者の存在や在室者の位置を検知する。検知結果に応じて人感センサ93は検知信号を出力する。検知信号で在室者の有無や位置は特定される。検知信号は例えば冷暖房確立部
81、本体ユニット制御ブロック82およびファンユニット制御ブロック86に供給される。冷暖房確立部81、本体ユニット制御ブロック82およびファンユニット制御ブロック86は、制御の実行にあたって、検知信号で特定される在室者の有無や位置を参照することができる。
【0057】
なお、制御ユニット79は例えばマイクロプロセッサユニット(MPU)といった演算処理回路で構成されることができる。演算処理回路には例えば不揮発性の記憶装置が内蔵されることもでき外付けされることもできる。記憶装置には所定の制御プログラムが格納されることができる。演算処理回路は制御プログラムを実行することで制御ユニット79として機能することができる。
【0058】
次に空気調和機11の動作を説明する。例えば冷房運転の第1モードが設定されると、冷暖房確立部81は、冷房運転の動作を確立する制御信号を出力する。制御信号は圧縮機15や膨張弁17、四方弁18に供給される。四方弁18は第2口18bおよび第3口18cを相互に接続し第1口18aおよび第4口18dを相互に接続する。圧縮機15の動作に応じて冷媒が冷凍回路19を循環する。その結果、室内熱交換
器14で冷気が生成される。冷気の温度は少なくとも室内空気の温度よりも低い。室温センサ92で検出される室温に応じて圧縮機15の動作は制御される。その他、例えば人感センサ93で在室者の不存在が所定の期間にわたって検出されると、圧縮機15は停止されてもよい。
【0059】
本体ユニット制御ブロック82の第1送風ファン制御部83は、第1送風ファン27を駆動する第1駆動信号を出力する。第1駆動信号は第1ファン駆動源73に供給される。第1送風ファン27は回転する。冷気の気流が第1吹出口32から吹き出る。このとき、本体ユニット制御ブロック82の上下風向板制御部84は、本体ユニット25の上下風向板33a、33bを駆動する制御信号を出力する。その制御信号は上下風向板駆動源40に供給される。
図9に示されるように、上下風向板33a、33bの水平姿勢が確立される。上下風向板33a、33bは水平方向に第1吹出口32からの気流94の吹き出しを誘導する。冷気の気流94は第1吹出口32から水平方向に吹き出す。
【0060】
ファンユニット制御ブロック86の第2送風ファン制御部87は、個々の第2送風ファン57を駆動する第2駆動信号を出力する。第2駆動信号は個々の第2ファン駆動源74に個別に供給される。第2送風ファン57は回転する。ファンユニット26では筐体35内の空間に第2吸込口38および開口61から室内空気が吸い込まれる。室内空気の温度は室温に等しい。吸い込まれた室内空気の気流はファンユニット26の第2吹出口36から吹き出す。このとき、ファンユニット制御ブロック86の筐体姿勢制御部88は第1および第2ブラケット63、76に対して環状壁62、75を駆動する第3駆動信号を出力する。第3駆動信号は個々のファンユニット26ごとにファン筐体駆動源77に供給される。
図9に示されるように、筐体35の姿勢は水平姿勢から前下がりに変化することができる。筐体35は水平方向よりも下向きに第2吹出口36からの気流95の吹き出しを誘導する。室内空気の気流95は第2吹出口36から下向きに吹き出す。
【0061】
図10に示されるように、一般に、室内機12は室内で比較的に高い位置に設置される。冷気の気流94が水平方向に誘導されれば、冷気は高い位置から床面に向かって下降していく。室内では徐々に冷気が蓄積されていく。このとき、ファンユニット26は在室者Mに直接に室内空気の気流95を向けることができる。ファンユニット26は冷房運転時にいわゆる扇風機の代わりとして機能することができる。室内空気の気流95には冷気の混入は防止されることができ、その結果、在室者Mは心地よい涼感を得ることができる。在室者Mは、室内の温度低下に基づく涼感に加え、気流95の冷却効果に基づく涼感を得ることができる。
【0062】
しかも、筐体姿勢制御部88は、人感センサ93から出力される検知信号に基づきファンユニット26の筐体35の姿勢を決定することができる。同時に、ファンユニット26の左右風向板制御部89は、人感センサ93から出力される検知信号に基づき左右風向板64の向きを決定することができる。こうして人感センサ93の働きで第2吹出口36の気流95は高い精度で在室者Mに向けられることができる。人感センサ93の働きによれば、室内空気の気流95は在室者Mの移動に追従することもできる。在室者Mが移動しても、室内空気の気流95は的確に在室者Mに到達することができる。在室者Mは確実に気流95の冷却効果に基づく涼感を得ることができる。筐体姿勢制御部88は2つの筐体35の姿勢を個別に独立に制御することができ、その結果、在室者Mの人数や配置に応じて2つの筐体35の姿勢は的確に制御されることができる。個々のファンユニット26ごとに室内空気の気流95は確実に在室者Mに向けられることができる。
【0063】
次に、冷房運転の第2モードが設定されると、前述と同様に、冷暖房確立部81は冷凍回路19で冷房運転の動作を確立する。本体ユニット制御ブロック82は、前述と同様に、第1吹出口32から水平方向に冷気の気流94を吹き出させる。そして、ファンユニット26では第2吹出口36から室内空気の気流95が吹き出される。ここでは、筐体姿勢制御部88の第3駆動信号は、
図11に示されるように、水平方向に室内空気の気流95を吹き出す姿勢に筐体35の姿勢を決定することができる。
【0064】
ここで、第2吹出口36の気流95の風速が第1吹出口32の気流94の風速よりも大きいと、例えば
図12に示されるように、大きい風速の気流95はそれよりも小さい風速の気流94を制することができる。室内空気の気流95は冷気の気流94の向きや動きを制御することができる。冷気は室内で望まれる場所に送り込まれることができる。ここでは、第2吹出口36の気流95は冷気の気流94とともに天井および壁を伝って床面に向かって緩やかに吹き下りることができる。室内では床面に沿って緩やかな空気の流れが生起されることができる。在室者Mは対流の微風に応じて不自然でない心地よい涼感を得ることができる。緩やかな空気の流れの生成にあたって、ファンユニット26は、水平方向よりも上向きに室内空気の気流95を吹き出す姿勢を確立してもよい。
【0065】
例えば
図13に示されるように、室温が設定温度で一定に維持される際には第1吹出口32の気流94の風速は著しく弱まる。このとき、冷房運転の第3モードが設定されることができる。第3モードが設定されると、ファンユニット制御ブロック86の左右風向板制御部89は第2吹出口36の左右風向板64の向きを制御する。個々のファンユニット26で左右風向板64の前端は本体ユニット25側に近づけられる。したがって、2つの第2吹出口36から室内空気の気流95は相互に接近するように吹き出される。第1吹出口32の上下風向板33a、33bおよび筐体35の姿勢は第2モードと同様に設定される。
【0066】
図13から明らかなように、2つの第2吹出口36から大きな風速の気流95が吹き出されると、冷気の気流94は大きな風速の室内空気の気流95に巻き込まれることから、室内空気の気流95の働きで冷気の気流94は遠方まで運搬されることができる。冷気の気流94の風速が弱められても、冷気の気流94は遠方まで行き着くことができる。風速が弱められても、室内は効率的に冷却されることができる。その一方で、冷気の気流94が単独で第1吹出口32から吹き出されても、冷気の気流94は室内に十分に行き渡ることはできない。その結果、室内の温度分布にムラが生じてしまう。
【0067】
例えば暖房運転が設定されると、冷暖房確立部81は、暖房運転の動作を確立する制御信号を出力する。制御信号は圧縮機15や膨張弁17、四方弁18に供給される。四方弁18は第2口18bおよび第4口18dを相互に接続し第1口18aおよび第3口18cを相互に接続する。圧縮機15の動作に応じて冷媒が冷凍回路19を循環する。その結果、室内熱交換
器14で暖気が生成される。暖気の温度は少なくとも室内空気の温度よりも高い。室温センサ92で検出される室温に応じて圧縮機15の動作は制御される。例えば人感センサ93で在室者の不存在が所定の期間にわたって検出されると、圧縮機15は停止されてもよい。
【0068】
暖房運転では第1送風ファン27の回転に応じて暖気の気流が第1吹出口32から吹き出す。このとき、本体ユニット制御ブロック82の上下風向板制御部84は、上下風向板駆動源40に制御信号を供給し、
図14に示されるように、下向きに上下風向板33a、33bの姿勢を確立する。上下風向板33a、33bは下向きに床面に向かって第1吹出口32からの気流94の吹き出しを誘導する。暖気の気流94は第1吹出口32から下向きに吹き出す。
【0069】
暖房運転が開始されると、制御ユニット79は暖房運転の第1モードを実行する。ファンユニット制御ブロック86の筐体姿勢制御部88は、ファン筐体駆動源77に制御信号を供給し、
図14に示されるように、水平姿勢に筐体35の姿勢を変化させる。筐体35は水平方向に第2吹出口36からの気流95の吹き出しを誘導する。室内空気の気流95は第2吹出口36から水平方向に吹き出す。例えば設定温度よりも低い特定の温度に室温が達するまで、ファンユニット26の水平方向の吹き出しは維持されることができる。室温は室温センサ92で検出されることができる。
【0070】
暖気の気流94が下向きに誘導されれば、暖気は床面に向かって吹き出されることができる。室内の温度が低いと、例えば
図15に示されるように、暖気はすぐさま床面から天井に向かって上昇しやすい。このとき、ファンユニット26は、上昇してくる暖気を巻き込みながら室内に空気の流れを生起することができる。空気の流れに沿って暖気は再び床面に向かって下降することができる。こうして室内の下方には十分に暖気が送り込まれる。室内全体が暖まらなくとも、在室者Mは暖を感じることができる。
【0071】
設定温度よりも低い特定の温度に室温が達すると、制御ユニット79は暖房運転の第2モードを実行する。例えば
図16に示されるように、筐体姿勢制御部88は、水平方向よりも下向きに筐体35の姿勢を変化させる。ファンユニット26の筐体35は、第1吹出口32よりも高い位置から、上下風向板33a、33bと同様な下向きに室内空気の気流95を吹き出す姿勢を確立する。こうすると、例えば
図17に示されるように、ファンユニット26の気流95は暖気の気流94よりも上側で吹き下りる。ファンユニット26の気流95は床面との間に暖気を挟み込むことができる。こうして暖気の上昇は抑制される。在室者Mは足下で暖を感じ続けることができる。室温が設定温度より低いものの特定の温度に達することから、室内空気の気流95に基づき在室者Mが肌寒さを感じることは回避されることができる。
【0072】
こうした空気調和機11では本体ユニット25の第1吹出口32から冷気または暖気の気流94が吹き出される。ファンユニット26の第2吹出口36から室内空気の気流95が吹き出される。室内空気の気流95は冷気や暖気の気流94の向きや動きを制御することができる。冷気や暖気は室内で望まれる場所に送り込まれることができる。こうして室内の温度環境は効率的に整えられることができる。このとき、ファンユニット26の第2吹出口36は本体ユニット25の第1吹出口32に対して相対的に移動することができる。したがって、室内空気の気流95は所望の向きに設定されることができる。こうした向きの設定によれば、冷気や暖気の気流94の向きや動きは的確に制御されることができる。
【0073】
空気調和機11ではファンユニット26の第2吹出口36は本体ユニット25の第1吹出口32よりも前方に配置される。第2吹出口36は上下風向板33a、33bの剥離点よりも気流94の下流側に配置される。その結果、ファンユニット26の気流95は筐体本体29やアウターパネル31に邪魔されずにファンユニット26の第2吹出口36から吹き出されることができる。
【0074】
加えて、空気調和機11では室内熱交換器14の前側部55aに比べて後側部55bは大きい幅を有する。ファンユニット26の背後の空間が有効に活用されて、室内熱交換器14の後側部55bが配置される。したがって、ファンユニット26の配置に拘わらず室内熱交換器14の縮小はできる限り抑制されることができる。
【0075】
図18は第2実施形態に係る室内機12aの外観を概略的に示す。この第2実施形態では筐体本体29の両側面は水平軸線34a、34bに直交する1対の鉛直面で仕切られる。鉛直面で筐体本体29は途切れる。鉛直面上にファンユニット26が配置される。したがって、ファンユニット26の回転範囲はアウターパネル31で邪魔されない。しかも、ファンユニット26では第2吹出口36は大きく形成されることができる。その他の構成は第1実施形態に係る室内機12と同様に構成される。図中、第1実施形態に係る室内機12と均等な構成には同一の参照符号が付される。