(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための最良の形態】
【0017】
以下、本発明に係るポリプロピレン樹脂およびその用途について具体的に説明する。
【0018】
本発明に係るポリプロピレン樹脂(R−1)は、ランダムポリプロピレン(P1)を含有しており、ポリプロピレン樹脂(R−2)はランダムポリプロピレン(P1)およびホモポリプロピレンないしランダムポリプロピレン(P2)を含有している。
〔ランダムポリプロピレン(P1)〕
本発明で用いられるランダムポリプロピレン(P1)は、エチレンとプロピレンとから得られる樹脂であって、メルトフローレート(MFR;ASTM D 1238,230℃、2.16kg荷重、以下同じ)は、0.5〜100g/10分、好ましくは5.0〜50g/10分、さらに好ましくは8.0〜30g/10分であり、エチレン含有量は、3.0重量%以上、7.0重量%未満、好ましくは4.5重量%以上、7.0重量%未満、さらに好ましくは5.0重量%を超え、7.0重量%未満である。エチレン含有量は
13C−NMR法により求められる。
【0019】
メルトフローレートとエチレン含有量が上記の範囲内にあると、得られるポリプロピレン樹脂の流動性(成形性)と後述する造核剤との相乗効果によって卓越した透明性と耐衝撃性・柔軟性が得られ、しかも、見映えのよい外観を有する延伸ブロー成形品が得られる。
〔ホモポリプロピレンないしランダムポリプロピレン(P2)〕
ホモポリプロピレンないしランダムポリプロピレン(P2)(以下、ホモポリプロピレンないしランダムポリプロピレン(P2)を総称して、「ポリプロピレン(P2)」ともいう。)は、融点(Tm)が120を超え、150℃以下、好ましくは124〜150℃の範囲にあり、エチレン含有量が0〜4.5重量%、好ましくは0〜4.0重量%の範囲にある。
【0020】
ポリプロピレン(P2)は、MFRが、0.5〜100g/10分、好ましくは5.0〜50g/10分、さらに好ましくは10〜30g/10分の範囲にあることが望ましい。
【0021】
上記ランダムポリプロピレン(P1)およびポリプロピレン(P2)は、通常下記一般式(1)で表される架橋メタロセン化合物を必須成分として含むメタロセン触媒を用いて製造することができる。
【0022】
【化1】
【0023】
〔上記一般式(1)において、R
1、R
2、R
3、R
4、R
5、R
6、R
7、R
8、R
9、R
10、R
11、R
12、R
13、R
14は水素、炭化水素基、ケイ素含有基から選ばれ、それぞれ同一でも異なっていてもよい。Mは第4族遷移金属であり、Yは炭素原子またはケイ素原子であり、Qはハロゲン、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子から同一または異なる組合せで選んでもよく、jは1〜4の整数である。〕
上記一般式(1)で表される架橋メタロセン化合物としては、R
1とR
3が炭素数1〜5のアルキル基、好ましくはメチル基、エチル基およびtert-ブチル基から選ばれる基であり、R
2とR
4が水素原子であり、Yが炭素原子であり、R
13とR
14がメチル基、フェニル基および核置換フェニル基から選ばれる基であり、R
6とR
11および/またはR
7とR
10が炭素数1〜10のアルキル基であるものが好んで使用される。このような架橋メタロセン化合物としては、イソプロピリデン(3-tert-ブチル-5-メチル-シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、イソプロピリデン(3-tert-ブチル-5-メチル-シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3-tert-ブチル-5-メチル-シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3-tert-ブチル-5-メチル-シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3-tert-ブチル-5-メチル-シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ジルコニウムジクロリド、イソプロピリデン(3-tert-ブチル-5-メチルシクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、イソプロピリデン(3-tert-ブチル-5-エチルシクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3-tert-ブチル-5-エチルシクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、フェニルメチルメチレン(3-tert-ブチル-5-エチルシクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、フェニルメチルメチレン(3-tert-ブチル-5-メチルシクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリドが好ましく用いられる。
【0024】
メタロセン触媒は、
(a)前記一般式(1)で表される架橋メタロセン化合物、
(b)有機金属化合物(b-1)、有機アルミニウムオキシ化合物(b-2)、およびメタロセン化合物と反応してイオン対を形成することのできる化合物(b-3)、から選ばれる少なくとも1種の化合物、さらに必要に応じて、
(c)粒子状担体、
から構成される。
【0025】
成分(a)、成分(b)および成分(c)については、本願出願人によって国際出願され既に公開されているWO2005/019283号パンフレットで開示されている各種成分が制限無く用いられる。
【0026】
本発明に係るランダムポリプロピレン(P1)およびポリプロピレン(P2)は、通常は前記したメタロセン触媒を用いて製造されるが、ランダムポリプロピレン(P1)およびポリプロピレン(P2)が備えるべき前記要件を満たす限りは、重合触媒、製造方法、ランダムポリプロピレン(P1)およびポリプロピレン(P2)とは異なる他のオレフィン重合体の共存を何ら妨げるものではない。
〔核剤〕
本発明で用いられることのある有機リン酸エステル金属塩系の核剤(C-1)としては、例えば下記式(2)または下記式(3)で表される環状有機リン酸エステル金属塩を主成分とする核剤が挙げられる。
【0027】
【化2】
【0028】
【化3】
【0029】
式(2)および式(3)中、R
1は炭素数1〜10の2価炭化水素基であり、例えばメチレン、エチレン、プロピレン基等が挙げられる。
【0030】
R
2およびR
3は水素または炭素数1〜10の1価炭化水素基であり、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、tert-ブチル、アミル、tert-アミル、ヘキシル、ヘプチル、オクチル、ノニル、2−エチルヘキシル等が挙げられる。また、R
2とR
3は同じであってもよいし異なっていてもよい。
【0031】
式(2)中のMは1〜3価の金属原子であり、具体的には、ナトリウム原子、リチウム原子、カルシウム原子、マグネシウム原子、バリウム原子およびアルミニウム原子が例示される。
【0032】
式(2)中のnは1〜3の整数であってMの価数を満たす数である。
【0033】
式(3)中のmは1または2である。
【0034】
式(2)または式(3)で表される環状有機リン酸エステル金属塩として、具体的には、ナトリウム-2,2'-メチレン-ビス(4,6-ジ-tert-ブチルフェニル)フォスフェート、ナトリウム-2,2'-エチリデン-ビス(4,6-ジ-tert-ブチルフェニル)フォスフェート、リチウム-2,2'-メチレン-ビス-(4,6-ジ-tert-ブチルフェニル)フォスフェート、リチウム-2,2'-エチリデン-ビス(4,6-ジ-tert-ブチルフェニル)フォスフェート、ナトリウム-2,2'-エチリデン-ビス(4-iso-プロピル-6-tert-ブチルフェニル)フォスフェート、リチウム-2,2'-メチレン-ビス(4-メチル-6-tert-ブチルフェニル)フォスフェート、リチウム-2,2'-メチレン-ビス(4-エチル-6-tert-ブチルフェニル)フォスフェート、カルシウム-ビス[2,2'-チオビス(4-メチル-6-tert-ブチルフェニル)フォスフェート]、カルシウム-ビス[2,2'-チオビス(4-エチル-6-tert-ブチルフェニル)フォスフェート]、カルシウム-ビス[2,2'-チオビス-(4,6-ジ-tert-ブチルフェニル)フォスフェート]、マグネシウム-ビス[2,2'-チオビス(4,6-ジ-tert-ブチルフェニル)フォスフェート]、マグネシウム-ビス[2,2'-チオビス-(4-tert-オクチルフェニル)フォスフェート]、ナトリウム-2,2'-ブチリデン-ビス(4,6-ジ-メチルフェニル)フォスフェート、ナトリウム-2,2'-ブチリデン-ビス(4,6-ジ-tert-ブチルフェニル)フォスフェート、ナトリウム-2,2'-tert-オクチルメチレン-ビス(4,6-ジ-メチルフェニル)フォスフェート、ナトリウム-2,2'-tert-オクチルメチレン-ビス(4,6-ジ-tert-ブチルフェニル)フォスフェート、カルシウム-ビス-[2,2'-メチレン-ビス(4,6-ジ-tert-ブチルフェニル)フォスフェート]、マグネシウム-ビス[2,2'-メチレン-ビス(4,6-ジ-tert-ブチルフェニル)フォスフェート]、バリウム-ビス[2,2'-メチレン-ビス(4,6-ジ-tert-ブチルフェニル)フォスフェート]、ナトリウム-2,2'-メチレン-ビス(4-メチル-6-tert-ブチルフェニル)フォスフェート、ナトリウム-2,2'-メチレン-ビス(4-エチル-6-tert-ブチルフェニル)フォスフェート、ナトリウム(4,4'-ジメチル-5,6'-ジ-tert-ブチル-2,2'-ビフェニル)フォスフェート、カルシウム-ビス[(4,4'-ジメチル-6,6'-ジ-tert-ブチル-2,2'-ビフェニル)フォスフェート]、ナトリウム-2,2'-エチリデン-ビス(4-m-ブチル-6-tert-ブチルフェニル)フォスフェート、ナトリウム-2,2'-メチレン-ビス(4,6-ジ-メチルフェニル)フォスフェート、ナトリウム-2,2'-メチレン-ビス(4,6-ジ-エチルフェニル)フォスフェート、カリウム-2,2'-エチリデン-ビス(4,6-ジ-tert-ブチルフェニル)フォスフェート、カルシウム-ビス[2,2'-エチリデン-ビス(4,6-ジ-tert-ブチルフェニル)フオスフェート]、マグネシウム-ビス[2,2'-エチリデン-ビス(4,6-ジ-tert-ブチルフェニル)フォスフェート]、バリウム-ビス[2,2'-エチリデン-ビス(4,6-ジ-tert-ブチルフェニル)フォスフェート]、アルミニウム-トリス[2,2'-メチレン-ビス(4,6-ジ-tert-ブチルフェル)フォスフェート]、アルミニウム-トリス[2,2'-エチリデン-ビス(4,6-ジ-tert-ブチルフェニル)フォスフェート]およびこれらの2個以上の混合物等が例示できる。
【0035】
環状有機リン酸エステル金属塩(C-1)としては、前記式(3)においてR
1がメチレン基であり、R
2とR
3が共にtert-ブチル基であり、mが1である下記式(4)で表される化合物を主成分とする核剤であることが好ましい。
【0036】
【化4】
【0037】
本発明で用いられることのあるソルビトール系の核剤(C-2)としては、例えば下記式(5)で表される化合物を主成分とする核剤が挙げられる。
【0038】
【化5】
【0039】
式(5)中、R
4およびR
5は互いに同一でも異なっていてもよく、炭素数1〜8のアルキル基、ハロゲン原子、炭素数1〜4のアルコキシ基のいずれかであり、mおよびnはそれぞれ独立に0〜3の整数である。
【0040】
具体的には、1,3,2,4-ジベンジリデンソルビトール、1,3-ベンジリデン-2,4-p-メチルベンジリデンソルビトール、1,3-ベンジリデン-2,4-p-エチルベンジリデンソルビトール、1,3-p-メチルベンジリデン-2,4-ベンジリデンソルビトール、1,3-p-エチルベンジリデン-2,4-ベンジリデンソルビトール、1,3-p-メチルベンジリデン-2,4-p-エチルベンジリデンソルビトール、1,3-p-エチルベンジリデン-2,4-p-メチルベンジリデンソルビトール、1,3,2,4-ジ(p-メチルベンジリデン)ソルビトール、1,3,2,4-ジ(p-エチルベンジリデン)ソルビトール、1,3,2,4-ジ(p-n-プロピルベンジリデン)ソルビトール、1,3,2,4-ジ(p-iso-プロピルベンジリデン)ソルビトール、1,3,2,4-ジ(p-n-ブチルベンジリデン)ソルビトール、1,3,2,4-ジ(p-s-ブチルベンジリデン)ソルビトール、1,3,2,4-ジ(p-tert-ブチルベンジリデン)ソルビトール、1,3,2,4-ジ(2',4'-ジメチルベンジリデン)ソルビトール、1,3,2,4-ジ(p-メトキシベンジリデン)ソルビトール、1,3,2,4-ジ(p-エトキシベンジリデン)ソルビトール、1,3-ベンジリデン-2-4-p-クロルベンジリデンソルビトール、1,3-p-クロルベンジリデン-2,4-ベンジリデンソルビトール、1,3-p-クロルベンジリデン-2,4-p-メチルベンジリデンソルビトール、1,3-p-クロルベンジリデン-2,4-p-エチルベンジリデンソルビトール、1,3-p-メチルベンジリデン-2,4-p-クロルベンジリデンソルビトール、1,3-p-エチルベンジリデン-2,4-p-クロルベンジリデンソルビトールおよび1,3,2,4-ジ(p-クロルベンジリデン)ソルビトールおよびこれらの2個以上の混合物を例示でき、特に1,3,2,4-ジベンジリデンソルビトール、1,3,2,4-ジ(p-メチルベンジリデン)ソルビトール、1,3,2,4-ジ(p-エチルベンジリデン)ソルビトール、1,3-p-クロルベンジリデン-2,4-p-メチルベンジリデンソルビトール、1,3,2,4-ジ(p-クロルベンジリデン)ソルビトールおよびそれらの2種以上の混合物が好ましい。
【0041】
このような核剤の使用量は、樹脂(R−1)中のランダムポリプロピレン(P1)または樹脂(R−2)中の前記(P1)とホモポリプロピレンないしランダムポリプロピレン(P2)との合計量100重量部に対して、0.1〜0.5重量部、好ましくは0.15〜0.35重量部である。
【0042】
上記核剤の分散剤として一般的に脂肪酸金属塩や滑剤が用いられるが、本発明に支障をきたさない分散剤や滑剤を用いてもよい。
【0043】
本発明に係るポリプロピレン樹脂は、必要に応じて、後述するようなリン系酸化防止剤や中和剤を含有することができる。
【0044】
〔リン系酸化防止剤〕
本発明で必要に応じて好ましく用いられるリン系酸化防止剤としては、特に制限はなく、従来公知のリン系酸化防止剤を用いることができる。なお、リン系酸化防止剤を1種類のみ使用することがブリードによる内容物汚染が少ないため好ましい。
【0045】
本発明で好ましく用いられるリン系酸化防止剤は、3価の有機リン化合物であり、具体的には、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルフォスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジフォスファイトなどが挙げられる。
【0046】
リン系酸化防止剤は、樹脂成分100重量部に対して、通常0.02〜0.20重量部、好ましくは0.03〜0.08重量部、さらに好ましくは0.04〜0.06重量部の割合で用いられる。
【0047】
〔中和剤〕
本発明でリン系酸化防止剤とともに必要に応じて用いることができる中和剤としては、一般的なステアリン酸カルシウムやハイドロタルサイトが挙げられる。
【0048】
メタロセン触媒を用いてポリプロピレンを合成した場合には触媒起因の塩酸発生が皆無の為、樹脂成分100重量部に対し、通常0.02〜0.20重量部、好ましくは0.03〜0.08重量部、さらに好ましくは0.04〜0.06重量部の割合で用いる。
【0049】
〔ポリプロピレン樹脂(R−1)および(R−2)〕
本発明のポリプロピレン樹脂(R−1)は、上記ランダムポリプロピレン(P1)を含み、DSC測定によって得られる融解曲線がブロードであって、かつ融点ピークが一つであり、最高強度ピーク温度(Tm)が120℃以下、好ましくは115℃以下であり、最高強度ピークの高温側の半価幅(最高強度ピークの半価幅のうち、最高強度ピーク温度より高温側の部分)が20℃以上、好ましくは22℃以上、より好ましくは25℃以上である。
【0050】
本発明に係るポリプロピレン樹脂(R−1)は、ポリプロピレン樹脂(R−1)が備えるべき前記要件を満たす限りは、ランダムポリプロピレン(P1)以外の他の成分を含んでいてもよい。この場合、ランダムポリプロピレン(P1)は、ポリプロピレン樹脂(R−1)に対して80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上、特に好ましくは97重量%以上の割合で含有している。「他の成分」とは、通常はポリオレフィンの成形において用いられる各種の添加剤、例えば造核剤、酸化防止剤、中和剤などである。
【0051】
本発明に係るポリプロピレン樹脂(R−2)は、上記ランダムポリプロピレン(P1)およびポリプロピレン(P2)を含み、(P1)と(P2)との含有比率が(P1)と(P2)との合計を100重量%としたときに(P1)が60〜99重量%、好ましくは60〜95重量%、(P2)が1〜40重量%、好ましくは5〜40重量%である。
【0052】
本発明に係るポリプロピレン樹脂(R−2)は、上述したような核剤を、(P1)と(P2)との合計量100重量部に対して0.1〜0.5重量部、好ましくは0.15〜0.35重量部の割合で含有している。
【0053】
また、本発明のポリプロピレン樹脂(R−2)は、ランダムポリプロピレン(P1)およびポリプロピレン(P2)以外の他の成分を含んでいてもよい。この場合、ランダムポリプロピレン(P1)およびポリプロピレン(P2)は、ポリプロピレン樹脂(R−2)に対して合計量で80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上の割合で含有することが望ましい。他の成分は、上記と同じ意味である。
【0054】
本発明に係るポリプロピレン樹脂(R−1)は、ランダムポリプロピレン(P1)に、必要に応じて、他の成分、例えば核剤、リン系酸化防止剤、中和剤等を、ヘンシェルミキサー、V型ブレンダー、タンブラーブレンダー、リボンブレンダーなどを用いて混合した後、単軸押出機、多軸押出機、ニーダー、バンバリーミキサーなどを用いて溶融混練し、上記各成分を均一に分散混合することにより得られる。
【0055】
本発明に係るポリプロピレン樹脂(R−2)は、ランダムポリプロピレン(P1)、ポリプロピレン(P2)および核剤に、必要に応じて、他の成分、例えばリン系酸化防止剤、中和剤等を、ヘンシェルミキサー、V型ブレンダー、タンブラーブレンダー、リボンブレンダーなどを用いて混合した後、単軸押出機、多軸押出機、ニーダー、バンバリーミキサーなどを用いて溶融混練し、上記各成分を均一に分散混合することにより得られる。
【0056】
本発明に係るポリプロピレン樹脂(R−1)および(R−2)からブロー成形機にて製造される成形品は、透明性が良化し、かつ耐衝撃性および減容化に必須なスクイーズ性を備える。特にポリプロピレン樹脂(R−2)は広い成形温度幅をも有する、優れた性質を有している。
【0057】
〔延伸ブロー容器〕
本発明の延伸ブロー容器を製造する方法としては、具体的には前記ポリプロピレン樹脂(R−1)または(R−2)を溶融し、金型内にこの樹脂を射出成形することによりプリフォームを成形し、次いでこのプリフォームが溶融状態あるいは軟化状態にある状況で、あるいは一旦プリフォームを固化させた後再加熱した後、このプリフォームを、延伸棒等を用いて強制的に縦延伸し、その後縦横方向にさらに延伸する為にプリフォーム内に加圧流体を圧入することにより、延伸ブロー容器を成形する。
【0058】
ポリプロピレン樹脂(R−1)または(R−2)の溶融、射出温度は、通常200〜280℃の範囲で行われる。延伸直前のプリフォーム温度は約110〜150℃、縦延伸倍率は、1.5〜4.0倍で通常行われ、横延伸倍率は1.5〜3.0倍で通常行われる。
【0059】
〔ダイレクトブロー容器〕
ダイレクトブロー成形の場合、前記ポリプロピレン樹脂(R−1)または(R−2)をリングダイを通してパイプ状に押し出し、押し出されたパリソンがまだ溶融状態にある間に、ブロー型で挟んでパリソン内に流体を吹き込んで所定形状に成形する。
【0060】
本発明のポリプロピレン樹脂(R−1)または(R−2)は延伸成形する際の延伸性に優れているので、広い温度範囲で延伸成形できるとともに、得られる延伸ブロー容器、ダイレクトブロー容器の厚薄むらが少ない。また本発明のポリプロピレン樹脂は透明性および剛性に優れているので、得られる延伸ブロー容器、ダイレクトブロー容器は透明性および剛性に優れている。
【0061】
また本発明の延伸ブロー容器、ダイレクトブロー容器は焼却が容易であり、食品衛生性に優れている。従ってその特性を生かして食品、調味料、飲料水、化粧品等の容器に好適に用いることができる。
[実施例]
次に、本発明を実施例により説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
【0062】
なお、実施例等において、物性は次の方法で測定した。
(1)ヘイズ
ヘイズは、ASTM D1003に準拠し、2mm厚の射出シートを用いて測定した。
【0063】
ボトルのヘイズについては、ボトル側面のほぼ中心部から試料を切り出し、ASTM D1003に準拠し、ヘイズ値を測定した。
(2)曲げ弾性率
ASTM D790に準拠して曲げ試験を行い、その結果から曲げ弾性率を算出した。
(3)アイゾット衝撃強度
ASTM D256に準拠してアイゾット試験を行った。
(4)融点確認(DSC)
示差走査型熱量計(DSC)を用い、窒素置換してなる測定容器に試料5mgを装入し、まず240℃で溶融し、次いで30℃まで10℃/分の速度で試料を冷却し、30℃でさらに5分間保持したのち、さらにこの試料を10℃/分の速度で温度上昇させた際の融点付近の融解曲線を得た。
【0064】
得られた融解曲線が「ブロード」であるとは、融解開始温度(Ti)と融解終了温度(Tf)の範囲において、二個以上の複数のピークを有さず、且つショルダーも持たない曲線形状として定義され、TiとTm間で二個以上の複数のピークを有する融解曲線、および/または、ショルダーが認められる曲線形状は「非ブロード」として定義される。ブロード状の融解曲線とベースライン(TiとTfを結ぶ直線部分)を結んで形成される部分の面積に対応する融解熱(ΔH)は通常10〜70(J/g)、好ましくは20〜60(
J/g)の範囲にある。温度(Ti)と温度(Tf)の間において最高強度を示す唯一ピークの温度を融点(Tm)と定義した。最高強度ピークの高温側の半価幅(ΔT)とは、
次式(Eq-1)に従いチャートから読み取った。
【0065】
ΔT=Tf−Tm ・・・(Eq-1)
(5)加熱変形温度
ASTM D648に準拠して加熱変形温度測定を行った。
(6)高速面衝撃試験(ハイレート試験)
3m/sの速度で先端径1/2インチのロードセル付き撃芯を2mm厚み角板の試料に衝突させた。試料の裏面には、受け台として先端径(受け径)3インチの台を使用した。値としては、破壊に至るまでの全吸収エネルギーをそれぞれ求めた。延伸ブローボトルに関しては、厚みが0.8mmと薄い為、打撃速度を1m/sで実施した。試料はボトル側面のほぼ中心部からを切り出した。
【0066】
〔製造例1〕
[シリカ担持メチルアルミノキサンの調製]
充分に窒素置換した500ml容量の反応器に、シリカ20gおよびトルエン200mlを仕込み攪拌しながらメチルアルミノキサン60mlを窒素雰囲気下で滴下した。次いで、この混合物を110℃で4時間反応させた後、反応系を放冷して固体成分を沈殿させ、上澄み溶液をデカンテーションによって取り除いた。次いで、固体成分をトルエンで3回、ヘキサンで3回洗浄し、シリカ担持メチルアルミノキサンを得た。
[メタロセン触媒の調製]
充分に窒素置換した1000ml容量の二つ口フラスコ中に上記シリカ担持メチルアルミノキサンをアルミニウム換算で20mmol入れ、ヘプタン500mlに懸濁させた。次いで、その懸濁液にジフェニルメチレン(3-tert-ブチル-5-メチルシクロペンタジエニル)(2,7-ジ-tert-ブチルフルオレニル)ジルコニウムジクロリド 70mgをトルエン溶液として加えた後、トリイソブチルアルミニウム(80mmol)を加え、30分攪拌してメタロセン触媒懸濁液とした。
[ランダムポリプロピレンの製造]
充分に窒素置換した容量200lのオートクレーブに、上記メタロセン触媒懸濁液を添加し、液体プロピレン 300リットルとエチレン 2.2kgを圧入した、次いで10リットルの水素を仕込み、3.0〜3.5MPaの圧力下、60℃で60分間重合を行った。重合終了後、メタノールを加え重合を停止させ、未反応のプロピレンをパージしてエチレン・プロピレン共重合体(PP−1)を得た。これを真空下80℃で6時間乾燥した。このエチレン・プロピレン共重合体(PP−1)は、MFRが23g/10分であり、エチレン含量が5.3重量%であった。
【0067】
〔製造例2〕
製造例1において、エチレン量を2.0kgへ変更し、水素量を5リットルに変更した以外は製造例1と同様にしてプロピレン・エチレン共重合体(PP−2)を製造した。得られたエチレン・プロピレン共重合体(PP−2)は、MFRが7.9g/10分であり、エチレン含量が4.8重量%であった。
【0068】
〔製造例3〕
製造例1において、エチレン量を1.7kgへ変更した以外は製造例1と同様にしてプロピレン・エチレン共重合体(PP−3)を製造した。得られたエチレン・プロピレン共重合体(PP−3)は、MFRが21g/10分であり、エチレン含量が4.0重量%であった。
【0069】
〔製造例4〕
製造例1において、エチレン量を0.65kgへ変更した以外は製造例1と同様にしてプロピレン・エチレン共重合体(PP−4)を製造した。得られたプロピレン・エチレン共重合体(PP−4)は、MFRが20g/10分であり、エチレン含量が1.5重量%であった。
【0070】
〔製造例5〕
[メタロセン触媒の調製とホモポリプロピレンの製造]
充分に窒素置換した20リットル容量のオートクレーブ中に、シリカ担持メチルアルミノキサンをアルミニウム換算で20mmol入れ、ヘプタン500mlに懸濁させた。次いでその懸濁液に、ジメチルメチレン(3-tert-ブチル-5-メチルシクロペンタジエニル)(3,6-ジ-tert-ブチルフルオレニル)ジルコニウムジクロライド54mg(0.088mmol)をトルエン溶液として加えた後、次いでトリイソブチルアルミニウム(80mmol)を加え、30分攪拌して触媒懸濁液とした。
【0071】
充分に窒素置換した内容積20リットルのオートクレーブに、プロピレン5kgと水素1.5リットルを装入し、上記の触媒懸濁液を添加し、3.0〜3.5MPaの圧力下、70℃で60分間バルクホモ重合を行なった。少量のメタノールを添加することで重合反応を停止し、重合器内の未反応ガスをパージした。
【0072】
上記のようにして得られたプロピレン単独重合体の収量は、2.8kgであった。この重合体は、MFRが22g/10分であり、融点(Tm)が159℃であった。また立体規則性は、mmmm分率が97.0%であり、2,1-挿入と1,3-挿入は共に検出されなかった。得られたプロピレン単独重合体(PP−5)は、MFRが21g/10分であった。
【0073】
〔製造例6〕
[固体状チタン触媒成分(a)の調製]
無水塩化マグネシウム952g、デカン4420mlおよび2-エチルヘキシルアルコール3906gを、130℃で2時間加熱して均一溶液とした。この溶液中に無水フタル酸213gを添加し、130℃にてさらに1時間攪拌混合を行って無水フタル酸を溶解させた。
【0074】
このようにして得られた均一溶液を23℃まで冷却した後、この均一溶液の750mlを、−20℃に保持された四塩化チタン2000ml中に1時間にわたって滴下した。滴下後、得られた混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)52.2gを添加し、これより2時間攪拌しながら同温度に保持した。次いで熱時濾過にて固体部を採取し、この固体部を2750mlの四塩化チタンに再懸濁させた後、再び110℃で2時間加熱した。
【0075】
加熱終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンを用いて、洗浄液中にチタン化合物が検出されなくなるまで洗浄した。
【0076】
上記の様に調製された固体状チタン触媒成分(a)はヘキサンスラリーとして保存されるが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分(a)は、チタンを3重量%、塩素を58重量%、マグネシウムを18重量%およびDIBPを21重量%の量で含有していた。
[予備重合触媒の調製]
200リットルの攪拌機付きオートクレーブ中に、窒素雰囲気下、精製ヘプタン 140リットル、トルエチルアルミニウム 0.28mol、および上記で得られた固体状チタン触媒成分(a)をチタン原子換算で0.094mol装入した後、プロピレンを1350g導入し、温度20℃以下に保ちながら、1時間反応させた。
【0077】
重合終了後、反応器内を窒素で置換し、上澄液の除去および精製ヘプタンによる洗浄を3回行った。得られた予備重合触媒を精製ヘプタンに再懸濁して触媒供給槽に移し、固体状チタン触媒成分(a)濃度で1.5g/Lとなるよう、精製ヘプタンにより調整を行った。この予備重合触媒は固体状チタン触媒成分(a)1g当たりポリプロピレンを6g含んでいた。
[プロピレン単独重合体の製造]
内容積500リットルの攪拌機付き重合槽に液化プロピレンを300リットル装入し、この液位を保ちながら、液化プロピレン 130kg/h、予備重合触媒1.5g/h、トリエチルアルミニウム 38mmol/h、ジシクロペンチルジメトキシシラン 6.3mmol/hを連続的に供給し、温度75℃で重合した。また水素230NL/h供給した。得られたスラリーは失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダーを洗浄した。その後、プロピレンを蒸発させてパウダー状のプロピレン単独重合体(PP−6)を得た。得られたプロピレン単独重合体(PP−6)は、MFRが22g/10分であった。
【0078】
〔製造例7〕
内容積500リットルの攪拌機付き重合槽に液化プロピレンを300リットルを装入し、この液位を保ちながら、液化プロピレン 110kg/h、製造例6と同じ予備重合触媒 2.5g/h、トリエチルアルミニウム 50mmol/h、シクロヘキシルメチルジメトキシシラン 50mmol/hを連続的に供給し、温度65℃で重合した。また水素550NL/hを連続的に供給した。また重合槽内の気相部のエチレン濃度が1.5mol%となるように、エチレンを供給した。得られたスラリーは失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダーを洗浄した。その後、プロピレンを蒸発させてパウダー状のプロピレン・エチレン共重合体(PP−7)を得た。得られたプロピレン・エチレン共重合体(PP−7)は、MFRが17g/10分であり、エチレン含量が3.8重量%であった。
【0079】
〔製造例8〕
[ホモポリプロピレンの製造]
充分に窒素置換した容量200lのオートクレーブに、製造例1において調製したメタロセン触媒懸濁液を添加し、液体プロピレン 300リットルを圧入した、次いで10リットルの水素を仕込み、3.0〜3.5MPaの圧力下、60℃で60分間重合を行った。重合終了後、メタノールを加え重合を停止させ、未反応のプロピレンをパージして、これを真空下80℃で6時間乾燥した。
【0080】
上記のようにして得られたプロピレン単独重合体(PP−8)は、MFRが22g/10分であり、融点(Tm)が146℃であった。
【0081】
〔実施例1〕
[ポリプロピレン樹脂の製造]
製造例1で得られたプロピレン・エチレン重合体(PP−1)100重量部、核剤(株)アデカ製 NA−21(商品名)を0.25重量部、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルフォスファイト(商品名:イルガフォス168、(株)チバスペシャルティケミカルズ製)を0.10重量部、テトラキス[メチレン-3-(3',5'-ジ-tert-ブチル-4'-ヒドロキシフェニル)プロピオネート]メタン(商品名 イルガノックス1010、(株)チバスペシャルティケミカルズ製)0.10重量部、ステアリン酸カルシウム0.05重量部をヘンシェルミキサーで混合し、その後二軸押出機(65mmφ)に投入して、200℃およびスクリュー回転数200rpmで混練し、ポリプロピレン樹脂のペレットを得た。このポリプロピレン樹脂のMFR、融点、融点幅を表1に示す。また、ポリプロピレン樹脂のDSC曲線を
図1に示す。
[延伸ブロー容器の製造]
射出延伸ブロー成形機(日精ASB機械(株)製、PF6−2B)にて上記ポリプロピレン樹脂組成物を用い、容量200mlのPETボトル形状の容器を射出延伸ブロー成形し胴部の厚さが0.8mmのボトルを製造した。
【0082】
具体的には、まず射出成形機でポリプロピレン樹脂組成物を樹脂温度200℃で溶融し、水循環回路により15℃に温度調節されている第1の金型に射出成形してプリフォームを成形した。次いでこのプリフォームを予熱ゾーンへ移し、赤外線ヒーターにてプリフォームを加熱後、予備ブローを行い、その後直ちに延伸棒と吹き込みエアーにて縦横に延伸し、縦方向に2.0倍、横方向に約1.5延伸しブロー金型で冷却固化し、ボトルを取り出した。この時にブロー成形可能であったプリフォーム予熱時の表面温度下限と上限を成形温度幅とした。
〔実施例2〕
実施例1においてアデカ社製NA−21のかわりにソルビトール系結晶核剤(商品名:ゲルオールMD、新日本理化(株)製)を用いたこと以外は実施例1と同様に行い、延伸ブロー容器を製造した。
〔比較例1〕
実施例1においてアデカ社製NA−21を用いない以外は実施例1と同様に行い、延伸ブロー容器を製造した。ポリプロピレン樹脂のDSC曲線を
図1に示す。
〔実施例3〕
実施例1においてアデカ社製NA−21のかわりにアデカ社製NA−11UYを用いた以外は実施例1と同様に行い、延伸ブロー容器を製造した。
〔実施例4〕
実施例1において、プロピレン・エチレン重合体(PP−1)の代わりに、製造例2で得られたプロピレン・エチレン重合体(PP−2)を用いた以外は実施例1と同様に行い、延伸ブロー容器を製造した。
〔比較例2〕
実施例4においてアデカ社製NA−21を用いない以外は実施例4と同様に行い、延伸ブロー容器を製造した。
〔
参考例5〕
実施例1において、プロピレン・エチレン重合体(PP−1)の代わりに、製造例3で得られたプロピレン・エチレン重合体(PP−3)を用いた以外は実施例1と同様に行い、延伸ブロー容器を製造した。
〔比較例3〕
参考例5においてアデカ社製NA−21を用いない以外は
参考例5と同様に行い、延伸ブロー容器を製造した。
〔比較例4〕〜〔比較例12〕
表2〜3に記載したプロピレン樹脂および必要により核剤を用いて、実施例1記載の方法に準じて、同様の試験を行った。比較例10および12で得られたポリプロピレン樹脂のDSC曲線を
図2に示す。
〔実施例6〕
実施例1において、プロピレン・エチレン重合体(PP−1)100重量部の代わりに、プロピレン・エチレン重合体(PP−1)70重量部および製造例8で得られたプロピレン単独重合体(PP−8)30重量部を用いた以外は実施例1と全く同様に行い、延伸ブロー容器を製造した。
〔実施例7〕
実施例1において、プロピレン・エチレン重合体(PP−1)100重量部の代わりに、プロピレン・エチレン重合体(PP−1)90重量部および製造例8で得られたプロピレン単独重合体(PP−8)10重量部を用いた以外は実施例1と全く同様に行い、延伸ブロー容器を製造した。
〔実施例8〕
実施例1において、プロピレン・エチレン重合体(PP−1)100重量部の代わりに、プロピレン・エチレン重合体(PP−1)70重量部および製造例3で得られたプロピレン単独重合体(PP−3)30重量部を用いた以外は実施例1と全く同様に行い、延伸ブロー容器を製造した。
【0083】
以上の結果を表1〜4に示す。
【0084】
【表1】
【0085】
【表2】
【0086】
【表3】
【0087】
【表4】
【0088】
表1〜4に記載した物性測定結果から、本発明に係るポリプロピレン樹脂は、透明性と耐衝撃性が大幅に改善され、かつ柔軟性に優れることが分かる。
【0089】
また、本発明に係るポリプロピレン樹脂は、延伸ブロー成形性が飛躍的に向上しており、従来のポリプロピレンとは異なり、容易に延伸ブローができる。
【0090】
得られたボトルは非常に透明で、従来のPETに比べ30%も軽量であり、かつ柔軟で廃棄には容易に押しつぶす(スクイーズ)できる特性があり、非常に有用である。