(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
[実施例1]
図1Aに実施例1による蓄電モジュールに用いられているラミネート型の蓄電セル31
の平面図を示す。蓄電セル31には、例えば電気二重層キャパシタ、リチウムイオン二次電池、リチウムイオンキャパシタ等が用いられる。ほぼ長方形の平面形状を有する蓄電容器50の、相互に平行な2つの縁から、反対向きに一対の電極タブ33が引き出されている。
【0012】
図1Bに、
図1Aの一点鎖線1B−1Bにおける断面図を示す。2枚のラミネートフィルム50A、50Bにより蓄電容器50が構成されている。ラミネートフィルム50A、50Bには、例えばアルミラミネートフィルムが用いられる。ラミネートフィルム50A、50Bは、蓄電積層体56を挟み、蓄電積層体56を密封する。一方のラミネートフィルム50Bは、ほぼ平坦であり、他方のラミネートフィルム50Aは、蓄電積層体56の形状を反映して変形している。ほぼ平坦な面を「背面」といい、変形している面を「腹面」ということとする。
【0013】
図1Cに蓄電積層体56の部分断面図を示す。正極集電体51の両面に、正極用の分極性電極57が形成されており、負極集電体52の両面に、負極用の分極性電極58が形成されている。正極集電体51及び負極集電体52には、例えばアルミニウム箔が用いられる。正極用の分極性電極57は、例えば、活性炭粒子が混錬されたバインダを含むスラリーを、正極集電体51の表面に塗布した後、加熱して定着させることにより形成される。負極用の分極性電極58も同様の方法で形成される。
【0014】
正極集電体51と、その両面に形成された分極性電極57とを「正極板」といい、負極集電体52、及びその両面に形成された分極性電極58とを「負極板」ということとする。正極板と負極板とが交互に積層されている。正極板と負極板との間に、セパレータ53が配置されている。セパレータ53には、例えばセルロース紙が用いられる。このセルロール紙に、電解液が含浸されている。電解液の溶媒には、例えば分極性有機溶剤、例えばプロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート等が用いられる。電解質(支持塩)として、4級アンモニウム塩、例えばSBPB4(スピロビピロリジニウムテトラフルオロボレート)が用いられる。セパレータ53は、正極用の分極性電極57と負極用の分極性電極58との短絡、及び正極集電体51と負極集電体52との短絡を防止する。
【0015】
図1Bに戻って説明を続ける。
図1Bでは、セパレータ53、及び分極性電極57、58の記載を省略している。
【0016】
正極集電体51及び負極集電体52は、それぞれ両者の重なり領域から、相互に反対向き(
図1Aにおいて、左向き及び右向き)に伸びた接続部51A、52Aを有する。複数の正極集電体51の接続部51Aが重ね合わされ、一方の電極タブ33に超音波溶接されている。複数の負極集電体52の接続部52Aが重ね合わされ、他方の電極タブ33に超音波溶接されている。電極タブ33には、例えばアルミニウム板が用いられる。
【0017】
電極タブ33は、ラミネートフィルム50Aとラミネートフィルム50Bとの間を通って、蓄電容器50の外側まで導出されている。電極タブ33は、導出箇所において、ラミネートフィルム50Aとラミネートフィルム50Bとに熱溶着されている。
正極集電体51の接続部51Aと、ラミネートフィルム50Aとの間に、ガス抜き弁55が配置されている。ガス抜き弁55は、ガス抜き孔54を塞ぐように配置され、ラミネートフィルム50Aに熱溶着されている。蓄電容器50内で発生したガスが、ガス抜き弁55及びガス抜き孔54を通って外部に排出される。
【0018】
蓄電容器50内は真空排気されている。このため、ラミネートフィルム50A、50Bは、大気圧により、蓄電積層体56及びガス抜き弁55の外形に沿うように、変形してい
る。
【0019】
図2に、実施例1による蓄電モジュールに用いられる枠体及び伝熱板の斜視図を示す。
図3Aに、枠体及び伝熱板の平面図を示し、
図3Bに、枠体及び伝熱板の底面図を示す。以下、
図2、
図3A、及び
図3Bを参照しながら、枠体及び伝熱板の構造について説明する。
【0020】
長方形の外周線に沿う形状を有する枠体20の内側に、ラミネート型の蓄電セルが収容される。以下、理解を容易にするため、xyz直交座標系を定義する。枠体20のz軸の正の方向を向く面を上面と定義し、負の方向を向く面を底面と定義する。枠体20は、長方形のx方向に平行な辺に沿う部分(x方向部分)20xと、y方向に平行な辺に沿う部分(y方向部分)20yとを含む。枠体20の底面に伝熱板21が取り付けられている。伝熱板21は、長方形の平面形状を有し、枠体20に囲まれた領域の大部分を塞ぐように配置されている。
【0021】
枠体20には、絶縁性の樹脂、例えばABS樹脂、ポリブチレンテレフタレート(PBT)等が用いられる。伝熱板21には、熱伝導率の高い金属、例えばアルミニウムが用いられる。
【0022】
枠体20の四隅よりもやや内側の上面に、z軸の正の向きに突出した凸部22(
図2、
図3A)が形成されている。凸部22の各々は、中空の円筒形状を有する。枠体20の底面の、凸部22に対応する領域に、凹部29(
図3B)が形成されている。複数の枠体20をz方向に重ね合わせる時、z方向の負の側の枠体20の凸部22が、z方向の正の側の枠体20の凹部29内に挿入される。これにより、複数の枠体20の、xy面内における相対位置が拘束される。
【0023】
伝熱板21は、枠体20のy方向部分20yの間に架け渡されており、x方向部分20xからは離れている。このため、枠体20のx方向部分20xと伝熱板21との間には、開口部23が形成されている。伝熱板21は、枠体20のy方向部分20yの外側の縁よりもさらに外側まではみ出している。
【0024】
枠体20のy方向部分20yのうち、伝熱板21と重なる領域20Aの上面が、他の領域よりも低くなっている。低い領域20Aと、他の領域との段差は、伝熱板21の厚さよりも大きい。複数の枠体20をz方向に重ね合わせた時、伝熱板21が低い領域20A内に収まる。このため、枠体20をz方向に積層したとき、伝熱板21は、z方向の負の側の枠体20の上面と、z方向の正の側の枠体20の底面との接触を妨げない。
【0025】
枠体20のx方向部分20xの一部の領域20Bが、他の領域よりも低くなっている。この低い領域20Bの上に、電極タブ33(
図1A)が配置される。
【0026】
枠体20のx方向部分20xの外周側の表面に、複数、例えば3個のねじ穴(ねじ止め部)24が形成されている。ねじ穴24が形成された表面から間隙を隔てて、その表面と平行に保護板25が配置されている。保護板25は、支持壁26を介して枠体20に支持されている。支持壁26は、ねじ穴24が形成された表面と保護板25との間の間隙と、低い領域20Bの上の空間との連絡を妨げない位置に配置されている。
【0027】
保護板25に、貫通孔28が形成されている。貫通孔28は、ねじ穴24をy方向に延長した仮想円柱と保護板25との交差箇所に配置されている。貫通孔28にドライバーを挿入し、ねじ穴24にねじを螺合させることができる。
【0028】
枠体20、保護板25、及び支持壁26は、樹脂で一体成型される。伝熱板21は、例えば枠体20にねじ止めされる。または、枠体20の成型時に伝熱板21を枠体20に固着させてもよい。
【0029】
図4に、実施例1による蓄電モジュールを構成するセルユニットの斜視図を示す。
図5A及び
図5Bに、それぞれセルユニットの平面図及び底面図を示す。
図6に、
図5A及び
図5Bの一点鎖線6−6における断面図を示す。以下、
図4、
図5A、
図5B、及び
図6を参照しながら、セルユニットの構造について説明する。
【0030】
セルユニット40は、枠体20、伝熱板21、及び2枚の蓄電セル31を含む。
図6に示すように、2枚の蓄電セル31が腹面同士を対向させて重ねられ、伝熱板21の上面側に載置されている。2枚の蓄電セル31が枠体20の内側に支持される。
図5Aに示すように、z軸に平行な視線で見た時、枠体20は、蓄電セル31の蓄電容器50を取り囲んでいる。
【0031】
枠体20の底面側(伝熱板21側)に配置された蓄電セル31の一方の電極タブ33は、
図5B、
図6に示すように、y方向の正の側の(
図5B、
図6において左側)の開口部23を通過して枠体20の底面側の空間まで導出されている。y方向の負の側(
図5B、
図6において右側)の電極タブ33は、枠体20のx方向部分20xの低い領域20B(
図2、
図3A、
図6)上を通過して、x方向部分20xと保護板25との間の間隙に挿入される。
【0032】
枠体20の上面側に配置された蓄電セル31の一対の電極タブ33は、
図4、
図5A、
図6に示すように、それぞれ枠体20のx方向部分20xの低い領域20Bの上を通って、x方向部分20xと保護板25との間の間隙に挿入される。2枚の蓄電セル31の、y方向の負の側(
図6において右側)の電極タブ33は、x方向部分20xと保護板25との間の間隙内において相互に重なる。上面側の蓄電セル31の上面(背面)は、枠体20の上面よりも上方にはみ出ている。すなわち、2枚の蓄電セル31の合計の厚さは、枠体20の底面から上面までの厚さよりも厚い。
【0033】
図7に、複数のセルユニット40を重ねた状態の断面図を示す。z方向の負の側の枠体20の凸部22が、z方向の正の側の枠体20の凹部29(
図2B、
図5B)内に挿入される。これにより、複数のセルユニット40のxy面内における位置が拘束される。凸部22と凹部29とを、「位置決め部」ということとする。
【0034】
z方向に隣り合う2つのセルユニット40のうち、z方向の正の側のセルユニット40の底面側に配置された蓄電セル31の、y方向の正の側の電極タブ33が、z方向の負の側のセルユニット40のx方向部分20xと保護板25との間の間隙に挿入される。これにより、z方向の負の側のセルユニット40の、y方向の正の側の電極タブ33と、z方向の正の側のセルユニット40の、y方向の正の側の電極タブ33とが、y方向の正の側(
図7において左側)のx方向部分20xと保護板25との間の間隙内で相互に重なる。
【0035】
y方向の負の側(
図7において右側)のx方向部分20xと保護板25との間の間隙内においては、1つのセルユニット40に含まれる2つの蓄電セル31の、y方向の負の側の電極タブ33が相互に重なる。電極タブ33には、ねじを通すための孔が形成されている。電極タブ33に形成された孔を通してねじ34をねじ穴24に螺合させることにより、電極タブ33を電気的に接続するとともに、枠体20に固定することができる。これにより、複数の蓄電セル31が直列接続される。保護板25に貫通孔28が形成されているため、セルユニット40を積層した状態でも、ねじ34を外部から締め付けることができる。
【0036】
y方向の負の側の保護板25を枠体20に支持する支持壁26は、y方向の負の側の電極タブ33が、z方向に隣接するセルユニット40の、y方向の負の側の電極タブ33に接触することを防止する機能を併せ持つ。y方向の正の側の保護板25を支持する支持壁26は、同一のセルユニット40内の2つの蓄電セル31の、y方向の正の側の電極タブ33同士が接触することを防止する機能を併せ持つ。
【0037】
枠体20の底面側に配置された蓄電セル31は、当該蓄電セル31を収容するセルユニット40の伝熱板21に接触し、熱的に結合する。枠体20の上面側に配置された蓄電セル31は、当該蓄電セル31を収容するセルユニット40の、z方向の正の側に隣接するセルユニット40の伝熱板21に接触し、熱的に結合する。
【0038】
図8Aに、位置決め部の断面図を示す。枠体20の各々の上面に凸部22が形成され、底面に凹部29が形成されている。凹部29の底面から、凸部22の上面まで至る貫通孔30が形成されている。このため、凸部22は中空の円筒形状を有する。
【0039】
z方向に隣り合う2つのセルユニット40のうち、z方向の負の側のセルユニット40に形成された凸部22が、z方向の正の側のセルユニット40に形成された凹部29内に挿入されている。
図6を参照して説明したように、2枚の蓄電セル31の厚さの合計が、枠体20の底面から上面までの厚さよりも厚いため、z方向の負の側の枠体20の上面と、z方向の正の側の枠体20の底面とは、接触していない。凸部22の先端と、当該凸部22が挿入されている凹部29の底面との間にも、隙間が形成されている。このため、凸部22と凹部29とで構成された位置決め部は、積層されたセルユニット40のxy面内に関する相対位置を拘束するが、z方向にさらに近づく向きの変位を許容する。
【0040】
図8Bに、z方向の圧縮力を印加した時の位置決め部の断面図を示す。位置決め部(凸部22、凹部29)が、積層されたセルユニット40の、z方向に近づく向きの変位を許容するため、圧縮力を印加すると、蓄電セル31(
図6)の各々が薄くなるように変形するとともに、枠体20が相互に近づく向きに変位する。圧縮力を印加した後も、z方向に隣り合う2つの枠体20の上面と底面とは接触しておらず、枠体20同士がz方向にさらに近づく向きのマージンMが残されている。
【0041】
蓄電セル31に厚さのばらつきがあるため、マージンMが残されていない場合には、圧縮力を印加した状態で枠体20同士が接触する箇所が生じる場合がある。枠体20同士が接触すると、加圧板43によって印加された圧縮力が、蓄電セル31と枠体20とに分散されて印加される。このため、蓄電セル31に加わる圧縮力が弱くなってしまう。
【0042】
実施例1においては、マージンMが残されているため、蓄電セル31に厚さのばらつきがあったとしても、蓄電セル31の各々に優先的に圧縮力を印加することができる。このため、すべての蓄電セル31に圧縮力が均等に配分される。この圧縮力は、蓄電セル31の電気的特性の低下を抑制するとともに、蓄電セル31の位置を強固に固定する。
【0043】
図9Aに、実施例1による蓄電モジュール60の平面図を示す。複数のセルユニット40が積層されている。加圧機構によって、セルユニット40の積層構造に積層方向の圧縮力が印加される。加圧機構は、積層構造の両端に配置された加圧板43、及び複数、例えば4本のタイロッド44を含む。タイロッド44は、一方の加圧板43を貫通し他方の加圧板43まで到達している。タイロッド44の先端にボルトを締め付けることにより、2枚の加圧板43に、両者を近づける向きの力が印加されている。これにより、セルユニット40の積層構造に積層方向の圧縮力が印加される。タイロッド44は、枠体20に形成された凹部29及び貫通孔30(
図8A)内を通過する。
図9Aの右端に配置された枠体
20の凸部22の先端が加圧板43に接触する場合には、右端の伝熱板21と加圧板43との間にスペーサを挿入すればよい。このスペーサは、右端に配置された枠体20の凸部22の先端が加圧板43に接触することを回避する。
【0044】
加圧板43の外側の表面に、絶縁碍子46を介して中継バスバー45が取り付けられている。両端のセルユニット40の各々の一方の電極タブ33が中継バスバー45に電気的に接続されている。中継バスバー45は、蓄電セル31の直列接続回路の充放電を行うための端子となる。
【0045】
加圧板43の1つの縁が、L字型に折り曲げられている。折り曲げ箇所よりも先端の部分に、ねじ止め用のU字型の切り込み47が形成されている。
【0046】
図9Bに、
図9Aの一点鎖線9B−9Bにおける断面図を示す。実施例1による蓄電モジュール60が、下部筐体110の底面に、ねじ61により固定されている。伝熱板21の端面が、下部筐体110の底面に接触する。蓄電モジュール60の上に、上部筐体111が配置されている。伝熱板21の上側の端面が、上部筐体111に接触する。伝熱板21は、蓄電セル31で発生した熱を下部筐体110及び上部筐体111まで伝達させる。
【0047】
図10A及び
図10Bに、それぞれ実施例1による蓄電モジュールが収容される上部筐体111及び下部筐体110の斜視図を示す。
【0048】
図10Bに示すように、下部筐体110は、長方形の底面120と、その縁から上方に向かって延びる4枚の側面121とを含む。下部筐体110の上部は開放されている。下部筐体110の開放部が、上部筐体111(
図10A)で塞がれる。側面121の上端に鍔127が設けられている。鍔127に、ボルトを通すための複数の貫通孔128が形成されている。下部筐体110及び上部筐体111の各々は、例えば鋳造法により形成される。
【0049】
底面120に、2つの蓄電モジュール60(
図9A、
図9B)が搭載される。蓄電モジュール60は、切り込み47(
図9A)の位置で底面120にねじ止めされる。蓄電モジュール60は、その積層方向が相互に平行になる姿勢で配置される。蓄電モジュール60の各々の積層方向と交差する1つの側面121に開口123が形成されている。
【0050】
開口123が形成された側面121の外側に、開口123を塞ぐように、コネクタボックス124が配置されている。コネクタボックス124の上面は開放されている。この開放部は、コネクタによって塞がれる。蓄電モジュール60が、コネクタを介して外部の電気回路に接続される。2つの蓄電モジュール60は、コネクタボックス124とは反対側の端部において、ヒューズ及び安全スイッチを介して相互に接続される。
【0051】
上部筐体111は、上面140と、その縁から下方に延びる側面141を含む。上面140の外周は、下部筐体110の底面120の外周に整合する。上部筐体111の側面141の高さは、下部筐体110の側面121の高さより低い。例えば、側面141の高さは、側面121の高さの約25%である。側面141の下端に鍔142が設けられている。鍔142に、複数の貫通孔143が形成されている。貫通孔143は、下部筐体110の貫通孔128に対応する位置に配置されている。
【0052】
上部筐体111の上面140、及び下部筐体110の底面120の内部に、冷却媒体を流すための流路が形成されている。
【0053】
下部筐体110の貫通孔128と、上部筐体111の貫通孔143とにボルトを通し、
ナットで締め付けることにより、蓄電モジュール60を上下方向から挟み込む。
図9Bに示したように、伝熱板21が下部筐体110と上部筐体111とで上下方向から挟まれることにより、蓄電モジュール60が筐体内に強固に、かつ摺動不能に固定される。また、伝熱板21と下部筐体110、及び伝熱板21と上部筐体111との間の熱伝達効率を高めることができる。上部筐体111に形成された流路及び下部筐体110に形成された流路を流れる冷却媒体が、伝熱板21(
図9B)を介して蓄電セル31(
図9B)を冷却する。
【0054】
図11に、蓄電モジュール60を構成するセルユニット40と、下部筐体110の側面121との相対位置関係を示す。電極タブ33及び電極タブ33を固定するためのねじ34と、側面121との間に、保護板25が配置される。このため、電極タブ33及びねじ34が側面121に接触することによる電気的な短絡を防止することができる。
【0055】
図12に、実施例1による蓄電モジュール60の製造方法のフローチャートを示す。ステップ201において、蓄電セル31(
図1A〜
図1C)を枠体20(
図2〜
図3B)の内側に収容する。これにより、セルユニット40(
図4〜
図6)が完成する。このとき、
図6に示したように、2枚の蓄電セル31のy方向の負の側の電極タブ33は、x方向部分20xと保護板25との間の間隙に挿入され、相互に重なる。底面側の蓄電のy方向の正の側の電極タブ33は、開口部23を通って枠体20の底面側の空間まで導出される。上面側の蓄電セル31のy方向の正の側の電極タブ33は、y方向の正の側のx方向部分20xと保護板25との間の間隙に挿入される。
【0056】
ステップ202において、セルユニット40を積層する。具合的には、セルユニット40の凸部22(
図8A、
図8B)を、他のセルユニット40の凹部29(
図8A、
図8B)内に挿入する。このとき、
図7に示したように、相互に隣接する2枚のセルユニット40のうち、z方向の正の側のセルユニット40の、底面側の蓄電セル31のy方向の正の側の電極タブ33を、z方向の負の側のセルユニット40のx方向部分20xと保護板25との間の間隙に挿入し、2枚の電極タブ33を重ねる。
【0057】
セルユニット40を積層した状態で、積層構造の両端に加圧板43(
図9A、
図9B)を配置し、タイロッド44で仮止めする。この段階では積層構造に圧縮力は印加されていない。
【0058】
ステップ203において、仮止めされたセルユニット40の積層構造の伝熱板21(
図9B)の端面を一平面上に揃える。例えば、
図9Bに示したように、加圧板43のL字型に折り曲げられた縁を下に向けて、下部筐体110の上に載置する。この段階では、積層構造に圧縮力が印加されていないため、セルユニット40は、積層方向と直交する方向に、位置決め部(凸部22と凹部29)の位置合わせ余裕の範囲内でずれる。位置決め部には、伝熱板21と枠体20との相対位置のばらつきを吸収して、伝熱板21の下側の端面が一平面上に揃う程度の位置合わせ余裕が確保されている。
【0059】
ステップ204において、セルユニット40の積層構造に、積層方向の圧縮力を印加する。これにより、伝熱板21の下側の端面が一平面上に揃った状態で、セルユニット40の相対位置を固定させることができる。
【0060】
ステップ205において、x方向部分20xと保護板25との間に挿入され、重ねられている電極タブ33を、ねじ34(
図7)で枠体20に固定する。これにより、蓄電モジュール60(
図9A、
図9B)内の蓄電セル31が直列接続される。ねじ穴24(
図7)が枠体20の外周側の表面に形成されているため、セルユニット40を積層した状態で、ねじ34を締め付けることができる。
【0061】
実施例1による製造方法では、セルユニット40を積層する工程の時に、セルユニット40の間で電極タブ33が接続されていない。このため、セルユニット40を積層する時に、作業者は、電極タブ33の接続箇所を変形させると同時にセルユニット40の位置合わせを行う煩雑さから解放される。
【0062】
また、実施例1による方法では、圧縮力を印加した後に、電極タブ33を枠体にねじ止めする。セルユニット40の積層構造に圧縮力を印加すると、蓄電セル31が変形することにより、複数のセルユニット40がz方向に相対的に変位する。この時点で電極タブ33が枠体20に固定されていないため、電極タブ33の変形は生じない。このため、
図1Bに示した電極タブ33と正極集電体51との接続箇所、及び電極タブ33と負極集電体52との接続箇所に生じる応力を抑制することができる。
【0063】
[実施例2]
図13に、実施例2によるハイブリッド型作業機械の例としてショベルの概略平面図を示す。上部旋回体170に、旋回軸受け173を介して、下部走行体171が取り付けられている。上部旋回体170に、エンジン174、油圧ポンプ175、電動モータ(電動部品)176、油タンク177、冷却ファン178、座席179、蓄電装置180、及び電動発電機(電動部品)183が搭載されている。エンジン174は、燃料の燃焼により動力を発生する。エンジン174、油圧ポンプ175、及び電動発電機183が、トルク伝達機構181を介して相互にトルクの送受を行う。油圧ポンプ175は、ブーム182等の油圧シリンダに圧油を供給する。蓄電装置180は、上記実施例1による蓄電モジュール60(
図9A、
図9B)、下部筐体110(
図10B)、及び上部筐体111(
図10A)を含む。
【0064】
電動発電機183は、エンジン174の動力によって駆動され、発電を行う(発電運転)。発電された電力は、蓄電装置180に供給され、蓄電装置180が充電される。また、電動発電機183は、蓄電装置180からの電力によって駆動され、エンジン174をアシストするための動力を発生する(アシスト運転)。油タンク177は、油圧回路の油を貯蔵する。冷却ファン178は、油圧回路の油温の上昇を抑制する。操作者は、座席179に着座して、ショベルを操作する。
【0065】
蓄電装置180から供給される電力によって、旋回モータ176が駆動される。旋回モータ176は、上部旋回体170を旋回させる。また、旋回モータ176は、運動エネルギを電気エネルギに変換することによって回生電力を発生する。発生した回生電力によって、蓄電装置180が充電される。
【0066】
図14に、実施例2によるショベルの部分破断側面図を示す。下部走行体171に、旋回軸受け173を介して上部旋回体170が搭載されている。上部旋回体170は、旋回フレーム170A、カバー170B、及びキャビン170Cを含む。旋回フレーム170Aは、キャビン170C、及び種々の部品の支持構造体として機能する。カバー170Bは、旋回フレーム170Aに搭載された種々の部品、例えば蓄電装置180等を覆う。キャビン170C内に座席179(
図13)が収容されている。
【0067】
旋回モータ176(
図13)が、その駆動対象である旋回フレーム170Aを、下部走行体171に対して、時計回り、または反時計周りに旋回させる。上部旋回体170に、ブーム182が取り付けられている。ブーム182は、油圧駆動されるブームシリンダ195により、上部旋回体170に対して上下方向に揺動する。ブーム182の先端に、アーム185が取り付けられている。アーム185は、油圧駆動されるアームシリンダ196により、ブーム182に対して前後方向に揺動する。アーム185の先端にバケット1
86が取り付けられている。バケット186は、油圧駆動されるバケットシリンダ197により、アーム185に対して上下方向に揺動する。
【0068】
蓄電装置180が、蓄電装置用マウント190及びダンパ(防振装置)191を介して、旋回フレーム170Aに搭載されている。蓄電装置180は、例えばキャビン170Cの後方に配置される。カバー170Bが蓄電装置180を覆う。
【0069】
旋回フレーム170Aは、走行中及び作業中に、一般の運搬用車両に比べて大きく振動する。このため、旋回フレーム170Aに搭載されている蓄電装置180が大きな衝撃を受けやすい。実施例1による蓄電モジュール60が下部筐体110と上部筐体111内に強固に固定されるため、耐衝撃性を高めることができる。また、蓄電装置180に、上記実施例1による蓄電モジュールが用いられているため、セルユニット40(
図6)の積層作業の煩雑さを解消することができる。
【0070】
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。