【国等の委託研究の成果に係る記載事項】(出願人による申告)平成24年度 独立行政法人新エネルギー・産業技術総合開発機構 固体酸化物形燃料電池を用いた事業用発電システム要素技術開発の研究開発共同研究、産業技術力強化法第19条の適用を受ける特許出願
(58)【調査した分野】(Int.Cl.,DB名)
前記排出空気を、前記圧縮部の昇圧過程における前記第一中間段よりも後段側の第二中間段に供給する過程において、排熱回収装置を設けることを特徴とする請求項1に記載の発電システム。
【発明を実施するための形態】
【0022】
以下、本発明に係る発電システム(燃料電池ガスタービン複合システム)の各実施形態及び各変形例について、図面を参照して詳細に説明する。
【0023】
「第一実施形態」
まず、本発明に係る燃料電池ガスタービン複合システムの第一実施形態について、
図1を参照して説明する。
図1は、本実施形態に係る燃料電池ガスタービン複合システム1の概略構成を示す模式図である。
【0024】
本実施形態の燃料電池ガスタービン複合システム1は、
図1に示すように、ガスタービンシステム10による発電と、燃料電池システム20による発電とを主に組み合わせて、高い発電効率を得るように構成したものである。以下においては、燃料電池システム20の燃料電池として、固体酸化物形燃料電池(SOFC;Solid Oxcide Fuel Cell)を一例に挙げて説明するが、これに限らず作動温度が高い燃料電池として溶融炭酸塩形燃料電池が知られており、SOFCと同様にガスタービンとの連携が可能である。
【0025】
ガスタービンシステム10による発電は、ガスタービンシステム10の出力を駆動源として、回転軸16を介して同軸に連結された発電機(不図示)を回転駆動することによってなされる。ガスタービンシステム10は、酸化性ガスを含む作動流体である空気(外気)Agを吸入及び圧縮して圧縮空気Acを生成する圧縮部(圧縮機)11と、圧縮部11で生成された圧縮空気Acと別途供給される燃料Fgとを燃焼させて燃焼ガスGを生成する燃焼部(燃焼器)14と、燃焼部14で生成された燃焼ガスGを膨張させることで回転駆動するタービン部(タービン)15とを備えている。また、少なくとも圧縮部11とタービン部15とは回転軸16によって同軸に連結されている。また、本実施形態における圧縮部11は、低圧圧縮機12と高圧圧縮機13の2つの圧縮機を有している。なお、ガスタービンシステム10の燃料Fgとしては、例えば、天然ガスなど後述する燃料電池システム20の電池用燃料Fcと同じものを使用することもできる。
【0026】
燃料電池システム20による発電は、例えば発電モジュールの発電部において700〜1000℃程度の作動温度であり、電池用燃料Fcと空気に含まれる酸化性ガスが電解質を介して電気化学的に反応することによってなされる。燃料電池システム20は、耐圧容器21と、この耐圧容器21内に配置されている発電モジュール22とを備えている。発電モジュール22は、その内部に発電を行うセルスタックが複数集積されているカートリッジ(不図示)が複数収納されたものである。なお、発電モジュール22はその内部と外部との間、換言すれば、発電モジュール22の内部空間と該発電モジュール22及び耐圧容器21間の空間との間を気密に仕切るものではなく、両空間の間を所定の流量で作動流体が流通可能とするものである。また、発電モジュール22やその発電部の構成としては公知の構成を用いることができ、特に限定するものではない。
【0027】
さらに、発電モジュール22には、ガスタービンシステム10の圧縮部11の昇圧過程における第一の中間圧となる低圧圧縮機12で圧縮された中間圧縮空気Ai(酸化性ガスを含む作動流体)の一部または全部を、低圧圧縮機12の最終段の出口(第一中間段)から抽気して供給する第一供給配管(中間圧縮空気供給配管)40が接続されている。
また、電池用燃料供給部30から電池用燃料Fcを燃料電池システム20の発電モジュール22内へ供給する第二供給配管(電池用燃料供給配管)41が接続されている。
【0028】
さらに、中間圧縮空気Aiが発電モジュール22における発電に用いられた後、発電モジュール22から排出される排出空気Aoを、ガスタービンシステム10の圧縮部11の昇圧過程における第二の中間圧となる高圧圧縮機13の入口(第二中間段)に供給する第一排出配管(排出空気排出配管)42が接続されている。
また、燃料電池システム20での発電に用いられた電池用燃料Fcの排燃料ガス、及び、発電に用いられなかった電池用燃料Fcの未燃燃料(以下、これらを総じて「排出燃料Fo」と表記する。)を、ガスタービンシステム10の燃焼部14に供給する第二排出配管(排出燃料排出配管)43が接続されている。
【0029】
第一供給配管40の一方の端部は低圧圧縮機12の出口(第一中間段)に接続され、他方の端部は発電モジュール22に接続されている。さらに、第一供給配管40には、低圧圧縮機12から発電モジュール22に向かって順に、分岐配管46との接続部、第一供給側調整弁50、第一供給側ブロワ51が耐圧容器21の外部に設けられている。
【0030】
第一供給側調整弁50は、後述する第一排出側調整弁53とともに、ガスタービンシステム10と燃料電池システム20との間の中間圧縮空気Aiの流通を制御する弁である。換言すれば、ガスタービンシステム10と燃料電池システム20との接続や切り離しを制御するものである。また、発電モジュール22内に導かれる中間圧縮空気Aiの流量を制御することも可能である。
【0031】
第一供給側ブロワ51は、低圧圧縮機12の出口と燃料電池20との間の圧力バランスに応じて、中間圧縮空気Aiの圧力が燃料電池システム20に送り込むために必要な圧力となるように、中間圧縮空気Aiの昇圧を行うものである。よって、第一供給側ブロワ51は必要に応じて設ければよい。なお、第一供給側ブロワ51としては、公知のブロワを用いることができ、特に限定するものではない。
【0032】
第二供給配管41の一方の端部は電池用燃料供給部30に接続され、他方の端部は発電モジュール22に接続されている。さらに、第二供給配管41には、電池用燃料供給部30から発電モジュール22に向かって順に、第二供給側調整弁52、再循環配管(電池用燃料再循環配管)44との接続部が耐圧容器21の外部に設けられている。
【0033】
第二供給側調整弁52は、電池用燃料供給部30と燃料電池システム20との間の電池用燃料Fcの流通を制御する弁である。換言すれば、電池用燃料供給部30と燃料電池システム20との接続や切り離しを制御するものである。また、発電モジュール22内に導かれる電池用燃料Fcの流量を制御することも可能である。
【0034】
再循環配管44は、燃料電池システム20での発電に用いられた後の排出燃料Foの一部を、第二供給配管41に戻すことで、発電モジュール22に再循環させる配管である。換言すれば、再循環配管44の一方の端部は第二供給配管41に接続され、他方の端部は後述する第二排出配管43に接続されている。
排出燃料Foは、前述の通り、燃料電池システム20での発電に用いられた後の電池用燃料Fcの排燃料ガス、及び、発電に用いられなかった電池用燃料Fcの未燃燃料からなる。即ち、まだ燃料電池システム20での発電に用いることのできる電池用燃料Fcの未燃分が残存している。
【0035】
また、燃料電池システム20での発電によって燃料電池における燃料極側に水蒸気が生じるが、この水蒸気は第二排出配管43を流れる排出燃料Foとともに燃料電池システム20から排出されてしまう。一方、電池用燃料Fcを燃料電池システム20での発電に用いるためには電池用燃料Fcと水蒸気を燃料極の触媒で反応させることによって改質する必要がある。
再循環配管44は、排出燃料Foの一部、及び、それに含まれる水蒸気を、第二供給配管41に再循環させて、燃料電池システム20での発電に用いる電池用燃料Fc、及び、電池用燃料Fcの改質に必要な水蒸気を供給するために設けられている。
【0036】
さらに、再循環配管44には、再循環配管44を流れる排出燃料Foの流量を制御する再循環ブロワ(排出燃料再循環ブロワ)58が設けられている。
なお、再循環ブロワ58としては、公知のブロワを用いることができ、特に限定するものではない。
【0037】
第一排出配管42は、燃料電池システム20での発電に用いられた後の排出空気Aoを、ガスタービンシステム10の高圧圧縮機13の入口(第二中間段)に導く配管である。換言すれば、第一排出配管42の一方の端部は発電モジュール22に接続され、他方の端部は高圧圧縮機13の入口に接続されている。さらに、第一排出配管42には、発電モジュール22から高圧圧縮機13の入口に向かって順に、第一排出側調整弁53、第一排出側ブロワ54が耐圧容器21の外部に設けられている。また、第一排出管42に、排出空気Aoの排熱を回収する排熱回収装置60を設けてもよい。なお、排熱回収装置は排熱の使用用途に応じ公知の排熱回収装置を用いることができ、特に限定するものではない。
【0038】
第一排出側調整弁53は、前述の第一供給側調整弁51とともに、ガスタービンシステム10と燃料電池システム20との間の排出空気Aoの流通を制御する弁である。換言すれば、ガスタービンシステム10と燃料電池システム20との接続や切り離しを制御するものである。また、発電モジュール22から排出される排出空気Aoの流量を制御することも可能である。
【0039】
第一排出側ブロワ54は、燃料電池システム20と高圧圧縮機13の入口との間の圧力バランスに応じて、排出空気Aoの圧力が高圧圧縮機13に送り込むために必要な圧力となるように、排出空気Aoの昇圧を行うものである。よって、第一排出側ブロワ54は必要に応じて設ければよい。なお、第一排出側ブロワ54としては、公知のブロワを用いることができ、特に限定するものではない。
【0040】
第二排出配管43は、燃料電池システム20での発電に用いられた後の排出燃料Foを、ガスタービンシステム10の燃焼部14に導く配管である。換言すれば、第二排出配管43の一方の端部は発電モジュール22に接続され、他方の端部は燃焼部14に接続されている。さらに、第二排出配管43には、発電モジュール22から燃焼部14に向かって順に、再循環配管44との接続部、第二排出側ブロワ55、ベント配管(排出燃料ベント配管)45との接続部、第二排出側調整弁56が耐圧容器21の外部に設けられている。
【0041】
第二排出側ブロワ55は、燃料電池システム20と燃焼部14の入口との間の圧力バランスに応じて、排出燃料Foの圧力が燃焼部14に送り込むために必要な圧力となるように、排出燃料Foの昇圧を行うものである。なお、第二排出側ブロワ55としては、公知のブロワを用いることができ、特に限定するものではない。
【0042】
ベント配管45は、第二排出配管43を流れる排出燃料Foの少なくとも一部を、必要に応じて外部に放出するための配管である。ベント配管45には、第二排出側調整弁56とともにベント配管45から外部に放出される排出燃料Foの流量または圧力を制御するベント調整弁57が設けられている。
【0043】
第二排出側調整弁56及びベント調整弁57により、第二排出配管43を流れる排出燃料Foの流通を制御できる。詳述すれば、ベント調整弁57が開かれ、第二排出側調整弁56が閉じられた状態の場合、第二排出配管43を流れる排出燃料Foはベント配管45から外部へ放出される。一方、ベント調整弁57が閉じられ、第二排出側調整弁56が開かれた状態の場合、第二排出配管43を流れる排出燃料Foは燃焼部14に供給される。
【0044】
耐圧容器21は、内部に発電モジュール22などを収納する容器である。また、耐圧容器21は、耐圧性を考慮して、例えば、円筒形状の胴部と、胴部の中心軸方向における両端部に形成されている半球状の鏡部とを有している。この耐圧容器21は、全体として円筒形状を成し、その容器中心軸が上下方向に延びるよう設置されている。また、この耐圧容器21は、耐圧性と共に、酸化性ガス中に含まれる酸素などの酸化剤に対する耐食性も要求されるため、例えば、SUS304などのステンレス系材で形成されている。
なお、耐圧容器21としては、公知の耐圧性を有する容器であればよく、特に限定するものではない。
【0045】
電池用燃料Fcとしては、例えば、水素、一酸化炭素、メタン等の炭化水素系ガス、天然ガス、石炭等の炭素質原料のガス化により得られたガス、又は、これらの2以上の成分を含むガス等が利用される。また、酸化性ガスとしては、例えば、酸素を15〜30vol%含むガス等が利用される。代表的な酸化性ガスとしては、空気Agが好適であるが、燃焼ガスG(排気ガス)と空気Agとの混合ガスや、酸素と空気Agとの混合ガスなどを利用してもよい。
【0046】
ガスタービンシステム10は、
図1に示すように、少なくとも燃料電池システム20の発電モジュール22に圧縮された空気を導くものである。圧縮部11の低圧圧縮機12は、回転軸16により回転駆動されることで、その入口から吸入した空気Agを圧縮する。また、低圧圧縮機12は、圧縮部11の昇圧過程における第一の中間圧である中間圧縮空気Aiの一部または全部を、低圧圧縮機12の出口(第一中間段)から第一供給配管40を介して発電モジュール22に、また、第一供給配管40及び分岐配管46を介して、低圧圧縮機12の下流側かつ高圧側に設けられた高圧圧縮機13の入口に供給するものである。
【0047】
分岐配管46は、低圧圧縮機12の出口から送り出された中間圧縮空気Aiの一部または全部を、高圧圧縮機13の入口に導く配管である。換言すれば、分岐配管46の一方の端部は、第一供給配管40における低圧圧縮機12の出口と第一供給側調整弁50との間に接続され、他方の端部は、高圧圧縮機13の入口に接続されている。なお、第一供給配管40に設けられた第一供給側調整弁50により、第一供給配管40及び分岐配管46を流れる圧縮された空気の流量を調整することができる。
【0048】
圧縮部11の高圧圧縮機13は、回転軸16により回転駆動されることで、低圧圧縮機12の出口から第一供給配管40及び分岐配管46を介して、その入口に供給された中間圧縮空気Aiと、燃料電池システム20での発電に用いられた後、発電モジュール22から第一排出配管42を介して、その入口に供給された排出空気Aoとを昇圧して圧縮空気Acを生成する。また、高圧圧縮機13は、その最終段出口、即ち、圧縮部11の出口から圧縮空気供給通路47を介して昇圧した圧縮空気Acを燃焼部14に供給する。
なお、圧縮部11の低圧圧縮機12及び高圧圧縮機13としては、公知の構成を用いることができ、特に限定するものではない。
【0049】
圧縮空気供給通路47は、高圧圧縮機13の出口から送り出された圧縮空気Acを燃焼部14に導く通路または配管である。換言すれば、圧縮空気供給通路47の一方の端部は高圧圧縮機13の出口に接続され、他方の端部は燃焼部14の入口に接続されている。
【0050】
燃焼部14は、
図1に示すように、圧縮部11とタービン部15との間に設けられる。また、燃焼部14は、燃料電池システム20での発電に用いられた後の排出燃料Foと、燃料Fgと、高圧圧縮機13の出口から送り出された圧縮空気Acとが供給され、排出燃料Foに含まれる未燃燃料及び排燃料ガスと燃料Fgとを燃焼させるものである。
【0051】
燃焼部14には、燃料電池システム20での発電に用いられた後の排出燃料Foが流れる第二排出配管43と、燃料Fgが流れる燃料供給配管48と、高圧圧縮機13の出口から送り出された圧縮空気Acが流れる圧縮空気供給通路47が接続されている。更に、燃焼部14における燃焼により生成された高温高圧の燃焼ガスGをタービン部15に導く燃焼ガス排出通路49が接続されている。
なお、燃焼部14としては、公知の構成を用いることができ、特に限定するものではない。
【0052】
燃焼ガス排出通路49は、燃焼部14の出口から排出された燃焼ガスGをタービン部15の入口に導く通路または配管である。換言すれば、燃焼ガス排出通路49の一方の端部は燃焼部14の出口に接続され、他方の端部はタービン部15の入口に接続されている。
【0053】
タービン部15は、
図1に示すように、燃焼部14の下流側に設けられるとともに、燃焼部14により生成された燃焼ガスGの供給を受けて回転駆動力を発生させ、回転軸16を介して、この回転駆動力を圧縮部11及び発電機に伝達するものである。タービン部15には、タービン部15を回転駆動した後の燃焼ガスG、つまり、排気ガスが流入するタービン排気部17が接続されている。タービン排気部17は、排気ガスを外部に導く通路または配管である。または、タービン排気部17の下流側に設けられた廃熱回収ボイラ(不図示)や煙突(不図示)を介して、排気ガスを外部に導いてもよい。
なお、タービン部15としては、公知の構成を用いることができ、特に限定するものではない。
【0054】
次に、上記の構成からなる燃料電池ガスタービン複合システム1における発電方法について説明する。
【0055】
ガスタービンシステム10の運転により、圧縮部11の低圧圧縮機12は外部から空気Agを吸入して圧縮することで中間圧縮空気Aiを生成する。中間圧縮空気Aiとは、圧縮部11の昇圧過程、即ち、低圧圧縮機12の入口から高圧圧縮機13の出口までの昇圧過程における中間の圧力(第一の中間圧)にまで圧縮された状態である。この生成された中間圧縮空気Aiは低圧圧縮機12の出口から第一供給配管40に流入する。このとき、第一供給側調整弁50の開度に応じて、中間圧縮空気Aiのうち燃料電池システム20の発電に必要な量の中間圧縮空気Aiが第一供給側調整弁50及び第一供給側ブロワ51を通過して発電モジュール22内に収納された発電セルに供給される。残りの中間圧縮空気Aiが存在する場合は、分岐配管46を通過して高圧圧縮機13に供給される。
【0056】
その一方で、電池用燃料供給部30から供給された電池用燃料Fcは、第二供給配管41を発電モジュール22に向かって流れ、発電モジュール22内に収納された発電セルに供給される。
【0057】
発電モジュール22の発電セルは、中間圧縮空気Ai及び電池用燃料Fcを用いて発熱を伴って発電を行う。排出空気Aoは、発電により発生した熱を吸収して昇温された後、発電モジュール22から第一排出配管42に流入する。第一排出配管42に流入した排出空気Aoは、第一排出側調整弁53及び第一排出側ブロワ54を通過して高圧圧縮機13に供給され、分岐配管46を介して高圧圧縮機13の入口に供給された中間圧縮空気Aiとともに更に高圧な状態へと圧縮される。
【0058】
その一方で、排出燃料Foは、第二排出配管43に流入し、燃焼部14に向かって流れる。このとき、必要に応じて再循環ブロワ58を駆動することで、第二排出配管43に流入した排出燃料Foの一部、及び、排出燃料Foに含まれる水蒸気が、再循環配管44を介して第二供給配管41に戻される。
【0059】
残りの排出燃料Foは、第二排出配管43を介して燃焼部14に流入する。燃焼部14では、排出燃料Fo及び燃料Fgが燃焼され、高温高圧の燃焼ガスGが生成される。燃焼ガスGは、燃焼部14からタービン部15に流入し、タービン部15を回転駆動させる。
【0060】
タービン部15では、流入した燃焼ガスGから回転駆動力を発生させ、発生した回転駆動力を回転軸16に伝達する。回転軸16は、伝達された回転駆動力を圧縮部11に伝達して圧縮部11を回転駆動するとともに、発電機に伝達して発電機を回転駆動することで発電を行う。
【0061】
タービン部15を回転駆動した後の燃焼ガスGは、排気ガスとしてタービン排気部17に流入した後、外部へ煙突などを介して排出される。または、タービン排気部17から廃熱回収ボイラなどを通過させることで熱回収してから外部へ排出してもよい。この場合、廃熱回収ボイラにて回収した熱エネルギーを利用して蒸気を発生させ、その蒸気によって蒸気タービン(不図示)及び発電機を回転駆動させることで、更に発電効率を向上させることができる。
【0062】
なお、ガスタービンシステム10は、必ずしも、圧縮部11、燃焼部14及びタービン部15を有するガスタービン単体のみに限られる必要はなく、圧縮部11、燃焼部14及びタービン部14を有するガスタービンと、蒸気タービンと、廃熱回収ボイラとを組み合わせたガスタービン蒸気タービン複合システムとしてもよい。この場合、ガスタービンと蒸気タービンとは、回転軸や減速装置等を介して連結されてもよいし、連結されていなくてもよい。また、連結されない場合は、それぞれに発電機を接続することができる。
なお、廃熱回収ボイラ、蒸気タービン及び発電機としては、公知の構成を用いることができ、特に限定するものではない。
【0063】
本実施形態によれば、圧縮部11の昇圧過程における第一中間段で抽気された第一の中間圧の中間圧縮空気Aiを、燃料電池システム20での発電に用いる酸化性ガスとして供給するため、圧縮部の最終段出口で取り出された高圧の圧縮空気を燃料電池システムに供給し、高圧の圧縮空気で燃焼することで最適化されたガスタービンシステムの燃焼器に燃料電池システムでの圧力損失を考慮した排出空気を供給する必要がある従来の燃料電池ガスタービン複合システムに比較して、燃料電池システム20側に供給される圧縮空気の圧力を低くすることができる。これにより、耐圧容器21や、発電モジュール22に接続される配管40〜42、該配管40〜42に設けられた弁及びブロワ等の周辺機器50〜54に要求される耐圧性能を低くすることができる。これにより、設計の自由度の向上を図ることが可能となる。
【0064】
ここで、従来においては、燃料供給部から燃料電池の発電モジュールへ電池用燃料を供給する配管容積が大きく、かつ、ガスタービンシステムと連携するのに求められる圧力まで昇圧するために、電池用燃料(燃料ガス)の流量が多く、燃料電池システムの起動や停止に多大な時間を要していた。また、それに伴い燃料電池の運転速度や負荷変化速度の鈍化を招くという問題があった。
これに対して本実施形態では、燃料電池システム20側の運転圧力を下げることにより、電池用燃料供給部30から発電室22への第二供給配管41内に内封される電池用燃料Fcの流量を低下することができる。よって、燃料電池システム20の運転速度や負荷変化速度の鈍化を抑制することができる。
【0065】
また、排出空気Aoをガスタービンシステム10の圧縮部11の昇圧過程における第二中間段に供給するため、従来よりも運転圧力を緩和することができる。よって、燃料電池ガスタービン複合システム1全体での効率を向上させることができる。
【0066】
また、本実施形態によれば、第二供給配管41と第二排出配管43とを接続する再循環配管44を設けたため、燃料電池システム20での発電により生じた水蒸気を捨てることなく、電池用燃料Fcの改質に必要な水蒸気として再利用することができる。また、発電に用いられなかった電池用燃料Fcの未燃分を再循環させることで何度も発電用として再利用することによって、燃料電池システム20での発電に用いられる電池用燃料Fcの発電効率を向上させることができる。
【0067】
「第二実施形態」
次に、本発明に係る燃料電池ガスタービン複合システムの第二実施形態について、
図2を参照して説明する。
【0068】
本実施形態の燃料電池ガスタービン複合システムは、第一実施形態とは、ガスタービンシステムの燃焼部及びタービン部と第二排出配管の構成が異なっている。よって、本実施形態においては、
図2を用いて燃焼部、タービン部及び第二排出配管の周辺のみを説明することとし、第一実施形態と同一の構成要素には、同一の符号を付してその説明を省略する。
【0069】
図2は、本実施形態に係る燃料電池ガスタービン複合システム101の概略構成を示す模式図である。
【0070】
燃料電池ガスタービン複合システム101におけるガスタービンシステム110には、
図2に示すように、燃焼部114及びタービン部115が設けられている。
燃焼部114には、高圧燃焼器114a及び低圧燃焼器114bが設けられている。また、タービン部115には、高圧タービン115a及び低圧タービン115bが設けられている。
なお、燃焼部114の高圧燃焼器114a及び低圧燃焼器114bと、タービン部115の高圧タービン115a及び低圧タービン115bとしては、公知の構成を用いることができ、特に限定するものではない。
【0071】
高圧燃焼器114aは、圧縮部11(高圧圧縮機13)の出口とタービン部115(高圧タービン115a)の入口との間に設けられている。また、高圧燃焼器114aには、燃料Fgを供給する燃料供給配管148aと、高圧圧縮機13の出口から送り出された高圧の圧縮空気Acを供給する圧縮空気供給通路47が接続されている。また、高圧燃焼器114aには、供給された燃料Fgと圧縮空気Acが、高圧燃焼器114aにおいて燃焼することにより生成された高圧の燃焼ガスGを、高圧タービン115aの入口に向けて供給する第一燃焼ガス排出通路149aが接続されている。
【0072】
低圧燃焼器114bは、高圧燃焼器114aよりも下流側かつ低圧側となる、高圧タービン115aの出口と低圧タービン115bの入口との間に設けられている。また、低圧燃焼器114bには、燃料電池システム20での発電に用いられた後の排出燃料Foを供給する第二排出配管143と、燃料Fgを供給する燃料供給配管148bと、高圧タービン115aの出口から送り出された燃焼ガスGを供給する第二燃焼ガス排出通路149bが接続されている。また、低圧燃焼器114bには、供給された排出燃料Foと燃料Fgと高圧燃焼器114aで生成され、高圧ガスタービン115aにより膨張した燃焼ガスGとが、低圧燃焼器114bにおいて燃焼することにより生成された燃焼ガスGを、低圧タービン115bの入口に向けて供給する第三燃焼ガス排出通路149cが接続されている。
【0073】
高圧タービン115aは、第一燃焼ガス排出通路149aを通じて高圧燃焼器114aにより生成された燃焼ガスGの供給を受けて回転駆動力を発生させ、回転軸16を介して、この回転駆動力を圧縮部11及び発電機に伝達するものである。また、高圧タービン115aには、高圧タービン115aを回転駆動した後の燃焼ガスGが流入する第二燃焼ガス排出通路149bが接続されている。
【0074】
低圧タービン115bは、高圧タービン115aよりも下流側かつ低圧側に設けられるとともに、第三燃焼ガス排出通路149cを通じて低圧燃焼器114bにより生成された燃焼ガスGの供給を受けて回転駆動力を発生させ、回転軸16を介して、この回転駆動力を圧縮部11及び発電機に伝達するものである。また、低圧タービン115bには、低圧タービン115bを回転駆動した後の燃焼ガスG、つまり、排気ガスが流入するタービン排気部17が接続されている。
【0075】
本実施形態によれば、第一実施形態において得られる作用効果に加えて、高圧燃焼器114aよりも低圧側となる低圧燃焼器114bに排出燃料Foを供給するため、排出燃料Foを低圧燃焼器114bに送り込むために必要な圧力を低くすることができる。
これにより、排出燃料Foの昇圧を行う第二排出側ブロワ55を、動力の小さな安価なものに変更することができる。また、第二排出配管143での圧力損失を考慮しても、燃料電池システム20側の圧力の方が低圧燃焼器114b側の圧力よりも高ければ、排出燃料Foの昇圧が不要となるので、第二排出側ブロワ55を省略することも可能となる。
【0076】
あるいは、
図3に示す「第二実施形態の変形例」のように、第二排出側ブロワ55を省略するとともに、再循環配管44に設けられていた再循環ブロワ58を、第二排出配管143の再循環配管44との接続部よりも上流側に設けた燃料電池ガスタービン複合システム102としてもよい。こうすることで、第二排出側ブロワ55を省略したうえで、一つの再循環ブロワ58によって、排出燃料Foの再循環と排出燃料Foの昇圧という二つの機能を兼ねることができる。また、圧力バランス次第では、再循環ブロワ48を動力の小さな安価なものに変更することも可能となる。
【0077】
「第三実施形態」
次に、本発明に係る燃料電池ガスタービン複合システムの第三実施形態について、
図4を参照して説明する。
【0078】
本実施形態の燃料電池ガスタービン複合システムは、第一実施形態とは、ガスタービンシステムの圧縮部、燃焼部及びタービン部と、第一排出配管及び第二排出配管の構成が異なっている。よって、本実施形態においては、
図4を用いて、圧縮部、燃焼部、タービン部、第一排出配管及び第二排出配管の周辺のみを説明することとし、第一実施形態と同一の構成要素には、同一の符号を付してその説明を省略する。
【0079】
図4は、本実施形態に係る燃料電池ガスタービン複合システム201の概略構成を示す模式図である。
【0080】
燃料電池ガスタービン複合システム201におけるガスタービンシステム210には、
図4に示すように、圧縮部211、燃焼部214及びタービン部215が設けられている。
圧縮部211には、低圧圧縮機212及び高圧圧縮機213が設けられている。また、燃焼部214には、高圧燃焼器214a及び低圧燃焼器214bが設けられている。また、タービン部215には、高圧タービン215a及び低圧タービン215bが設けられている。
【0081】
なお、圧縮部211の低圧圧縮機212及び高圧圧縮機213と、燃焼部214の高圧燃焼器214a及び低圧燃焼器214bと、タービン部215の高圧タービン215a及び低圧タービン215bとしては、公知の構成を用いることができ、特に限定するものではない。
【0082】
低圧圧縮機212は、第一実施形態における低圧圧縮機12と基本構成は同じであり、その入口から吸入した空気Agを圧縮する。また、低圧圧縮機212は、圧縮部211の昇圧過程における第一の中間圧である中間圧縮空気Aiの一部または全部を、低圧圧縮機212の出口(第一中間段)から第一供給配管40を介して発電モジュール22に、また、第一供給配管40及び分岐配管46を介して高圧圧縮機213に供給するものである。なお、供給位置は高圧圧縮機213の圧縮過程において、低圧圧縮機212の出口圧力より低い位置とする。
【0083】
高圧圧縮機213は、第一実施形態における高圧圧縮機13と基本構成はほぼ同じであるが、空気の供給源が異なっている。即ち、低圧圧縮機212の出口から第一供給配管40及び分岐配管46を介して、その入口に供給された中間圧縮空気Aiと、その入口を介して外部から吸入した空気Agとが供給される。なお、図示しないが、高圧圧縮機213の外部から吸入する経路にブロワ等の昇圧機器を設けても良い。よって、第一実施形態のように、燃料電池システム20の発電モジュール22からの排出空気Aoは吸入しない。また、高圧圧縮機213は、その最終段出口、即ち、圧縮部211の出口から圧縮空気供給通路47を介して昇圧した圧縮空気Acを燃焼部214(高圧燃焼器214a)に供給する。
【0084】
高圧燃焼器214aは、第二実施形態における高圧燃焼器114aと基本構成は同じであり、圧縮部211(高圧圧縮機213)の出口とタービン部215(高圧タービン215a)の入口との間に設けられている。また、高圧燃焼器214aには、燃料Fgを供給する燃料供給配管148aと、高圧圧縮機213の出口から送り出された高圧の圧縮空気Acを供給する圧縮空気供給通路47が接続されている。また、高圧燃焼器214aには、供給された燃料Fgと圧縮空気Acが、高圧燃焼器214aにおいて燃焼することにより生成された高温高圧の燃焼ガスGを、高圧タービン215aの入口に向けて供給する第一燃焼ガス排出通路149aが接続されている。
【0085】
一方、低圧燃焼器214bは、高圧燃焼器214aよりも低圧側で、かつ、低圧タービン215bの入口よりも上流側に設けられている。また、低圧燃焼器214bには、燃料電池システム20での発電に用いられた後の排出空気Ao及び排出燃料Foをそれぞれ供給する第一排出配管242及び第二排出配管243と、燃料Fgを供給する燃料供給配管148bとが接続されている。また、低圧燃焼器214bには、供給された排出空気Aoと排出燃料Foと燃料Fgとが、低圧燃焼器214bにおいて燃焼することにより生成された燃焼ガスGを、低圧タービン215bの入口に向けて供給する第三燃焼ガス排出通路149cが接続されている。
【0086】
高圧タービン215aは、第一燃焼ガス排出通路149aを通じて高圧燃焼器214aにより生成された燃焼ガスGの供給を受けて回転駆動力を発生させ、回転軸16を介して、この回転駆動力を圧縮部211及び発電機に伝達するものである。また、高圧タービン215aには、高圧タービン215aを回転駆動した後の燃焼ガスGが流入するタービン排気部17aが接続されている。
【0087】
低圧タービン215bは、高圧タービン215aよりも低圧側に設けられるとともに、第三燃焼ガス排出通路149cを通じて低圧燃焼器214bにより生成された燃焼ガスGの供給を受けて回転駆動力を発生させ、回転軸16を介して、この回転駆動力を圧縮部211及び発電機に伝達するものである。また、低圧タービン215bには、低圧タービン215bを回転駆動した後の燃焼ガスGが流入するタービン排気部17bが接続されている。タービン排気部17a,17bに流入した燃焼ガスGは、互いに合流しながらタービン排気部17に流入した後、排気ガスとして廃熱回収ボイラに供給されるか、または、外部に放出される。
【0088】
本実施形態によれば、高圧燃焼器214aよりも低圧側となる低圧燃焼器214bに排出空気Ao及び排出燃料Foを供給するため、中間圧縮空気Aiからの圧力損失分を考慮せずに、排出空気Aoを低圧燃焼器214bに送り込むことができる。これにより、また、中間圧縮空気Ai及び排出空気Aoの昇圧が不要となる燃料電池ガスタービン複合システムを提供することができる。
【0089】
「第四実施形態」
次に、本発明に係る燃料電池ガスタービン複合システムの第四実施形態について、
図5を参照して説明する。
【0090】
本実施形態の燃料電池ガスタービン複合システムは、第一実施形態とは、ガスタービンシステムの圧縮部、燃焼部及びタービン部と、第一排出配管及び第二排出配管の構成が異なっている。よって、本実施形態においては、
図5を用いて、圧縮部、燃焼部、タービン部、第一排出配管及び第二排出配管の周辺のみを説明することとし、第一実施形態と同一の構成要素には、同一の符号を付してその説明を省略する。
【0091】
図5は、本実施形態に係る燃料電池ガスタービン複合システム301の概略構成を示す模式図である。
【0092】
燃料電池ガスタービン複合システム301におけるガスタービンシステム310には、
図5に示すように、圧縮部311、燃焼部314及びタービン部315が設けられている。
圧縮部311には、低圧圧縮機312及び高圧圧縮機313が設けられている。また、燃焼部314には、高圧燃焼器314a及び低圧燃焼器314bが設けられている。また、タービン部315には、高圧タービン315a及び低圧タービン315bが設けられている。
【0093】
なお、圧縮部311の低圧圧縮機312及び高圧圧縮機313と、燃焼部314の高圧燃焼器314a及び低圧燃焼器314bと、タービン部315の高圧タービン315a及び低圧タービン315bとしては、公知の構成を用いることができ、特に限定するものではない。
【0094】
低圧圧縮機312、高圧圧縮機313、高圧燃焼器314a及び高圧タービン315aは、第三実施形態における低圧圧縮機212、高圧圧縮機213、高圧燃焼器214a及び高圧タービン215aと同じ構成であるため、その説明は省略する。
【0095】
一方、低圧燃焼器314bは、高圧燃焼器314aよりも低圧側で、かつ、低圧タービン315bの最終段出口、即ち、タービン部315の最終段出口よりも下流側に設けられている。また、低圧燃焼器314bには、高圧タービン315aから排出された燃焼ガスGと低圧タービン315bから排出された排出空気Aoとの混合流体を供給するタービン排気部17cと、燃料電池システム20での発電に用いられた後の排出燃料Foを供給する第二排出配管343と、燃料Fgを供給する燃料供給配管148bとが接続されている。また、低圧燃焼器314bには、供給された燃焼ガスG、排出空気Ao、排出燃料Fo及び燃料Fgが、低圧燃焼器314bにおいて燃焼することにより生成された燃焼ガスGを、排気ガスとして下流側に設けられた廃熱回収ボイラに向けて供給するタービン排気部17が接続されている。また、廃熱回収ボイラにて熱回収された燃焼ガスGは、その後、煙突などを介して外部に放出される。
【0096】
本実施形態の場合、低圧燃焼器314bでの燃焼により生成された燃焼ガスG(排気ガス)の熱エネルギーは、下流側に設けられた廃熱回収ボイラにより熱回収されるが、ガスタービンシステム310の回転駆動には寄与しない。しかし、前述のように、廃熱回収ボイラにて回収した熱エネルギーを利用して蒸気を発生させ、その蒸気によって蒸気タービン及び発電機を回転駆動させることで、更に発電効率を向上させることができる。
【0097】
また、低圧タービン315bは、高圧タービン315aよりも低圧側に設けられるとともに、第一排出配管342を通じて燃料電池システム20での発電に用いられた後の排出空気Aoの供給を受けて回転駆動力を発生させ、回転軸16を介して、この回転駆動力を圧縮部311及び発電機に伝達するものである。また、低圧タービン315bには、低圧タービン315bを回転駆動した後の排出空気Aoが流入するタービン排気部17bが接続されている。
【0098】
高圧タービン315aからタービン排気部17aに流入した燃焼ガスGと、低圧タービン315bからタービン排気部17bに流入した排出空気Aoは、互いに合流しながらタービン排気部17cに流入した後、低圧燃焼器314bに供給される。タービン排気部17cは、燃焼ガスGと排出空気Aoとの混合流体、所謂、排気ガスを低圧燃焼器314bに導く配管または通路である。
【0099】
本実施形態によれば、高圧タービン315aよりも低圧側となる低圧タービン315bに排出空気Aoを供給するため、第三実施形態において得られる作用効果と同様に、中間圧縮空気Aiからの圧力損失分を考慮せずに、排出空気Aoを低圧タービン315bに送り込むことができる。これにより、中間圧縮空気Ai及び排出空気Aoの昇圧が不要となる燃料電池ガスタービン複合システムを提供することができる。
【0100】
また、本実施形態によれば、低圧タービン315bの最終段出口よりも下流側に設けられた低圧燃焼器314bに排出燃料Foを供給するため、排出燃料Foを低圧燃焼器314bに送り込むために必要な圧力の制約が小さくなり、圧力をより低くすることができる。これにより、排出燃料Foを昇圧を必要とせず低圧燃焼器31に直接供給することができる。
【0101】
なお、本発明の技術範囲は上記の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更や組合せを加えることが可能である。
例えば、上記実施形態では、燃料電池システム20に用いる燃料電池として、固体酸化物形燃料電池(SOFC;Solid Oxcide Fuel Cell)を一例に挙げて説明したが、必ずしもこの限りである必要はなく、他の形式の燃料電池システム及び燃料電池であってもよい。
【0102】
また、上記実施形態では、中間圧縮空気Aiが抽気される圧縮部11,211,311の昇圧過程における第一の中間圧(第一中間段)の位置を、低圧圧縮機12,212,312の出口として説明したが、必ずしもこの限りである必要はなく、圧縮部11,211,311の途中、即ち、圧縮部11,211,311の入口よりも下流側で、かつ、出口よりも上流側の中間圧(中間段)の位置であればどこでもよい。例えば、第一中間段は低圧圧縮機または高圧圧縮機の中間圧位置、即ち、入口より下流で出口より上流の位置であればどこでもよい。
【0103】
同様に、第一実施形態及び第二実施形態のように、排出空気Aoが供給される圧縮部11の昇圧過程における第二の中間圧(第二中間段)の位置は、必ずしも高圧圧縮機13の入口である必要はなく、圧縮部11の入口よりも下流側で、かつ、出口よりも上流側の中間圧(中間段)の位置であればどこでもよい。例えば、第二中間段は低圧圧縮機または高圧圧縮機の中間圧位置、即ち、入口より下流で出口より上流の位置であればどこでもよい。
【0104】
なお、この場合の流体の流れ方向における第一中間段と第二中間段との前後関係、換言すれば、第一の中間圧と第二の中間圧との大小関係は、圧力の低い方が圧縮部11のうちの上流側(低圧側)に、圧力の高い方が圧縮部11のうちの下流側(高圧側)に位置するように設定すればよい。また、必要に応じて、ブロワ51,54等により中間圧縮空気Aiや排出空気Aoを昇圧してもよい。例えば、燃料電池システム20から排出された排出空気Aoが中間圧縮空気Aiよりも圧力が低い場合は、ブロワを設けずに第一中間段よりも上流の低圧側に設けた第二中間段にて排出空気Aoを供給してもよいし、あるいは、ブロワ54によって中間圧縮空気Aiよりも高い圧力に昇圧した排出空気Aoを、第一中間段よりも下流の高圧側に設けた第二中間段にて供給してもよい。一方、燃料電池システム20から排出された排出空気Aoが中間圧縮空気Aiよりも圧力が高い場合は、ブロワを設けずに第一中間段よりも下流の高圧側に設けた第二中間段にて排出空気Aoを供給すればよい。
【0105】
また、上記実施形態では、圧縮部11,211,311は、低圧圧縮機12,212,312及び高圧圧縮機13,213,313の2つの圧縮機によって構成されていると説明したが、必ずしもこの限りである必要はなく、1つの圧縮機、または、3つ以上の圧縮機によって圧縮部11,211,311を構成してもよい。また、低圧圧縮機及び高圧圧縮機のそれぞれが更に複数の圧縮機によって構成されていてもよい。
【0106】
同様に、上記実施形態では、燃焼部14,114,214,314は、1つの燃焼器14、または、2つの高圧燃焼器114a,214a,314a及び低圧燃焼器114b,214b,314bによって構成されていると説明したが、必ずしもこの限りである必要はなく、3つ以上の燃焼器によって燃焼部14,114,214,314を構成してもよい。また、低圧燃焼器及び高圧燃焼器のそれぞれが更に複数の燃焼器によって構成されていてもよい。
【0107】
同様に、上記実施形態では、タービン部15,115,215,315は、1つのタービン15、または、2つの高圧タービン115a,215a,315a及び低圧タービン115b,215b,315bによって構成されていると説明したが、必ずしもこの限りである必要はなく、3つ以上のタービンによってタービン部15,115,215,315を構成してもよい。また、低圧タービン及び高圧タービンのそれぞれが更に複数のタービンによって構成されていてもよい。
【0108】
例えば、
図6に示す「第四実施形態の変形例」のように、3つの燃焼器によって燃焼部414を構成してもよい。即ち、本変形例の燃料電池ガスタービン複合システム401では、ガスタービンシステム410の燃焼部414として、第四実施形態における高圧燃焼器314a及び低圧燃焼器314bと同じ構成である高圧燃焼器414a及び低圧燃焼器414bに加えて、中圧燃焼器414cを更に設けることができる。詳述すれば、中圧燃焼器414cを、高圧燃焼器414aよりも低圧側、かつ、低圧燃焼器414bよりも高圧側の中圧位置であり、低圧タービン315bの入口よりも上流側の位置に設けることができる。また、中圧燃焼器414cには、燃料電池システム20での発電に用いられた後の排出空気Aoを供給する第一排出配管342と、燃料Fgを供給する燃料供給配管148cとを接続できる。また、中圧燃焼器414cには、供給された排出空気Ao及び燃料Fgが、中圧燃焼器414cにおいて燃焼することにより生成された燃焼ガスGを、低圧タービン315bの入口に向けて供給する第四燃焼ガス排出通路149dを接続できる。
【0109】
また、上記の第二実施形態乃至第四実施形態(変形例を含む)では、圧縮部11,211,311及びタービン部115,215,315が、それぞれ低圧側と高圧側の2つに分けられているのに対して、これらは1つの回転軸16によって連結されていた。しかしながら、必ずしもこの限りである必要はなく、2つの回転軸、即ち、低圧回転軸及び高圧回転軸によって各々を連結させてもよい。詳述すれば、低圧圧縮機と低圧タービンとを低圧回転軸により連結するとともに、高圧圧縮機と高圧タービンとを高圧回転軸により連結することができる。
更には、圧縮部及びタービン部のそれぞれが、例えば、高圧側、中圧側、低圧側の3つに分けられている場合は、1つの回転軸で全てを連結してもよいし、2つまたは3つの回転軸で各々を連結してもよい。
なお、これら1つまたは複数の回転軸の構成としては、公知の構成を用いることができ、特に限定するものではない。