【課題を解決するための手段】
【0017】
それ故、本発明は、トリメチロールプロパンの蒸留での精製の時に生ずる前留出フラクションから、トリメチロールプロパンが富化された生成物流を得るための方法に関する。この方法は、
(a)各前留出フラクションを、別々にまたは一緒にまとめて、160〜280℃の温度及び1〜30MPaの圧力下に、
水素化触媒及び酸性化合物の存在下に水素で処理し; そして
(b)ステップ(a)の後に得られた反応混合物を、蒸留して、トリメチロールプロパンが富化された触媒不含の生成物流と触媒含有生成物流とに分離
し、
ここで、トリメチロールプロパンは、Cannizzaro法に従ってアルカリ金属もしくはアルカリ土類金属化合物または化学理論量のトリアルキルアミンを使用して製造されたものであるか、あるいは水素化法に従って触媒量のトリアルキルアミンまたはアルカリ金属もしくはアルカリ土類金属化合物の存在下に製造されたものである、
ことを特徴とする。
【0018】
本発明の方法のための原料は、トリメチロールプロパンの蒸留による精製の際に生じ、トリメチロールプロパンよりも低い沸点を有し、そして前留出フラクションと記載することができる、物質流である。一般的に、この前留出フラクションは室温で液状である。
【0019】
トリメチロールプロパンの蒸留による仕上げ処理からの個々の前留出フラクションは、一緒にまとめてそして本発明方法の原料として処理することができる。これは、蒸留条件に依存して、それぞれこの原料を基準にして、物理的に混入したトリメチロールプロパンを一般的に2〜60重量%の範囲で、トリメチロールプロパンの単環式ホルマール(式I)を一般的に2〜70重量%の範囲で、トリメチロールプロパンのメチル(モノ線状)ホルマール(式II)並びにトリメチロールプロパンのメチル(ビス線状)ホルマールを一般的に0.5〜30重量%の範囲でなおも含む。上記前留出フラクション中の更なる成分は、低沸点物、例えば水またはホルムアルデヒドを介して持ち込まれたメタノール、2−メチルブタノール、2,2−ジメチルプロパン−1,3−ジオール、2−エチル−2−メチルプロパン−1,3−ジオール並びに2−エチルプロパン−1,3−ジオール、またはCAS番号58878−16−3、115392−09−1、10441−87−9の痕跡量のトリメチロールプロパンアセタール類である。
【0020】
トリメチロールプロパンが、Cannizzaro法に従ってアルカリ金属もしくはアルカリ土類金属化合物または化学理論量のトリアルキルアミンを使用して製造されたものであるか、あるいは水素化法に従って触媒量のトリアルキルアミンまたはアルカリ金属もしくはアルカリ土類金属化合物の存在下に製造されたものかには関係なく、各々の製造法の後にトリメチロールプロパンの蒸留による精製の時に生じる前留出フラクションは、本発明の手順に従い仕上げ処理することができる。
【0021】
トリメチロールプロパンよりも低い沸点を有する個々の前留出フラクションは室温で液状であるため、極性溶剤の添加は必ずしも必要ではなく、各前留出フラクションを、直接及び溶剤の添加無しに、別々にまたは一緒にまとめて、触媒作用により水素化することができる。しかし、各前留出フラクションを、別々にまたは一緒にまとめて、極性溶剤と混合することもできる。極性溶剤としては、低級C
1〜C
5脂肪族アルコールまたはC
2〜C
10ジアルキルエーテル、例えばメタノール、エタノール、プロパノールまたはジエチルエーテル、あるいは特に水が適している。一般的に、極性溶剤は考慮せずに、有機成分を、全材料を基準に30〜90重量%、好ましくは50〜90重量%含む溶液を調製する。有機成分の含有量がこれより低いと、高い溶剤割合の故に合目的的ではない。通常は、溶液は室温で調製される。
【0022】
前留出フラクションまたはそれから得られた溶液は、次いで、高められた温度及び高められた圧力で、
水素化触媒及び酸性化合物の存在下に水素で処理する。160〜280℃、好ましくは180〜230℃の範囲の温度及び1〜30MPa、好ましくは5〜20MPaの範囲の圧力で作業される。存在する酸性化合物は、プロトン性無機酸、有機酸または酸性固形物であることができる。プロトン性無機酸としては、例えばリン酸または硫酸が考慮され、有機酸としては低級カルボン酸、例えばギ酸、酢酸、プロピオン酸または酪酸の各種異性体が考慮される。
【0023】
それの量は、水素化に供される溶液が1〜5、好ましくは2〜5の範囲のpH値を有するように算定される。
【0024】
しかし、簡単な分離可能性の故に、酸性化合物として酸性反応性固形物質を用いた作業が好ましい。このような固形物質としては、例えば酸化物化合物、例えば酸性酸化アルミニウム、天然もしくはシリケート系物質、例えばモルデナイト、モンモリロナイトまたは酸性ゼオライト、例えばYタイプゼオライトが適しており、これらは、工業的な量で入手可能であり、そして例えば原油の接触分解に工業的に使用されている。それらの添加は、それらの酸性度に依存し、そして100重量部の溶液当たりで、一般的に0.5〜2、好ましくは0.5〜1.0重量部の量で使用され、この際、使用量は、固形物質の酸性度が高くなるほど少なくなる。この際、溶液中に一般的に1〜6、好ましくは2〜4のpH値が調節される。
【0025】
商業的に入手可能な酸性イオン交換体、例えば強酸性イオン交換体、例えばAmberlyst 15、Amberlite IR120、Amberlyst DPT−1、Dowex Marathon−C、Dowex HCR、Lewatit S100またはNaphion、あるいは弱酸性イオン交換体、例えばAmberlite ICR86またはLewatit CNPも使用することができる。それらの添加は、それらの酸性度に依存し、一般的に100重量部の溶液あたりで1〜20、好ましくは5〜10重量部の量で使用され、この際、使用量は、固形物の酸性度が高いほど少なくなる。
【0026】
水素化ステップのための触媒としては、慣用の水素化触媒が使用され、この際、不均一系水素化触媒が好ましい、というのもこれらは反応混合物から簡単に分離でき、例えば懸濁水素化の場合には簡単な濾過によって分離できるからである。固定配置型触媒、例えば流通式(Riesel)またはバッチ式(Sumpf)でも、反応混合物は水素化触媒から簡単に分離できる。
【0027】
慣用の水素化触媒は、有効成分として、Ru、Rh、PdまたはPtの群からの貴金属あるいはCu、Cr、Co、Ni、Feの群からの遷移金属を、その中でも非担持型純触媒(Vollkatalysatoren)、例えばニッケル触媒、及び特にラネー触媒、例えばラネーニッケル、またはクロマイト触媒を含む。非担持型触媒の他に、担持型触媒も使用され、特に、Ru、Rh、PdまたはPtに適した担体材料は活性炭、酸化アルミニウム、SiO
2、TiO
2、ZrO
2、並びにシリケートである。担持型触媒における金属負荷量は、通常は、0.1〜15、好ましくは0.5〜10、特に1〜5重量%の範囲である。活性炭上に担持されたRu、Pd及びPtが特に適していることが分かった。
【0028】
担持型ニッケル触媒においては、触媒活性金属としてのニッケルは、それぞれ触媒の全重量を基準にして一般的に約5〜70重量%、好ましくは約10〜約65重量%、特に約20〜60重量%の量で使用される。触媒担体としては、全ての慣用の担体材料、例えば酸化アルミニウム、様々な形態での酸化アルミニウム水和物類、二酸化ケイ素、珪藻土も含めてのポリケイ酸(シリカゲル)、シリカキセロゲル、酸化マグネシウム、酸化亜鉛、酸化ジルコニウム及び活性炭が適している。主成分であるニッケル及び担体材料の他に、この触媒は更に副次的な量で添加物質を含むことができ、これは、例えば触媒の水素化活性及び/または寿命及び/または選択性の向上に役立つものである。このような添加物質は既知であり、これには、例えば、ナトリウム、カリウム、マグネシウム、カルシウム、バリウム、亜鉛、アルミニウム、ジルコニウム及びクロムの酸化物などが挙げられる。これらは、ニッケル100重量部に対し一般的に全部で0.1〜50重量部の割合で触媒に加えられる。
【0029】
水性ホルマール含有溶液の水素化に対する固形ニッケル触媒の適性は予期できなかった、というのも例えばUS5,210,337(特許文献10)から、ニッケル触媒がホルマール類の水素化において、存在するホルムアルデヒドによってダメージを受け得ることが知られているからである。
【0030】
水素化ステップは、例えば無機酸もしくは低級有機カルボン酸が添加される場合には溶解した状態で存在するか、または溶液中に懸濁した固形物質として存在する、酸性化合物の存在下に、連続的にまたは非連続的に、例えば流通式もしくはバッチ式の固形配置型触媒上で、並びに懸濁水素化の後に攪拌しながら、行われる。
【0031】
連続的な方法の場合には、触媒体積及び時間当たりの処理体積で表した触媒負荷量V/Vhが0.1〜1h
−1、好ましくは0.2〜0.5h
−1であることが有利であることが判明した。非連続的な方法の実行の場合には、酸性化合物は考慮しないで原料溶液100重量部あたり、0.1〜10、好ましくは0.25〜5重量部の触媒が使用される。
【0032】
水素化が完了した後、液状の水素化物を、場合により塩基で中和した後に、蒸留して仕上げ処理する。先ず、第一の蒸留装置において、(水素化の前に添加されている場合には)極性溶剤、及びアセタール解裂の際に遊離したホルムアルデヒドの水素化によって生じた低沸点物、特に水及びメタノールを、塔頂フラクションとして分離する。極性溶剤及び低沸点物の分離のためには、
塔底ボイラーを備えた例えば2〜50の理論棚数を有する蒸留塔、塔付属部品を備えたまたは備えていない薄膜式蒸発器、短径路蒸発器または蒸発容器などの通常の蒸留装置が適しており、これらは、通常は、100〜180℃の塔底温度及び常圧または有利には40hPaまでの負圧で操業される。また同様に、蒸留中の圧力を常圧から出発して3hPaの非常に低い圧力まで段階的に下げていくことも可能である。第一の蒸留装置からの塔底フラクションは、次いで第二の蒸留装置に供給される。
【0033】
第二の蒸留装置では、塔頂フラクションとして、トリメチロールプロパンが富化された触媒不含の生成物流を得ることが出来、これは、96%を超えるトリメチロールプロパンの純度を示し得、そしてそれに加えてなおも少量の中間留出物及び低沸点物を含む。この生成物流は、トリメチロールプロパンの製造のために全プロセスの精製ステップ中に循環することができ、有利にはトリメチロールプロパンを得るための精製蒸留ステップに循環することができる。トリメチロールプロパンリッチな塔頂フラクションの分離は、同様に、通常の蒸留装置中で、例えば塔底ボイラーを備えた適当な理論棚段数を有する蒸留塔中で、塔付属部品を備えたまたは備えていない薄膜式蒸発器中で、短径路蒸発器中でまたは蒸発容器中で行われ、これらは、通常は、180〜280℃の塔底温度及び3〜50、好ましくは10〜25hPaの圧力で操業される。塔底を介して排出される塔底フラクションは、触媒、場合により及び(特に、酸性反応性固形物質の存在下に水素化された時に、または溶解した酸性化合物を使用した場合には、水素化の後に塩基を用いた中和が行われなかった場合に)酸性化合物を含む。この触媒含有塔底フラクションは、場合により新鮮な触媒及び新鮮な酸性化合物を添加した後に、本発明方法の水素化ステップa)に循環できるか、またはトリメチロールプロパン製造からの高沸点フラクション及び残留物の水素化のために使用することができ、例えばまだ公開されていないドイツ特許出願102011118993.2号または102011118956.8号の方法においてジ−トリメチロールプロパンを及びトリメチロールプロパンが富化された生成物流を得るために使用することができる。
【0034】
本発明の方法の他の形態の一つでは、水素化ステップa)の後に得られた反応混合物から、
水素化触媒及び存在する場合には他の固形物を例えば濾過によって分離することができる。
水素化触媒、場合により及び他の固形物が除去されたこの水素化物は次いで、上述のように蒸留により仕上げ処理する。それ故、本発明は、同様に、トリメチロールプロパンの蒸留による精製の際に生ずる前留出フラクションからトリメチロールプロパンが富化された生成物流を得る方法にも関する。この方法は、
(a)各前留出フラクションを、別々にまたは一緒にまとめて、160〜280℃の温度で及び1〜30MPaの圧力で、
水素化触媒及び酸性化合物の存在下に水素で処理し;
(b)ステップa)の後に得られた反応混合物から、
水素化触媒、及び存在する場合には他の固形物を分離し; 及び
(c)ステップb)の後に得られた生成物から、トリメチロールプロパンが富化された生成物流を蒸留により得、
ここで、トリメチロールプロパンは、Cannizzaro法に従ってアルカリ金属もしくはアルカリ土類金属化合物または化学理論量のトリアルキルアミンを使用して製造されたものであるか、あるいは水素化法に従って触媒量のトリアルキルアミンまたはアルカリ金属もしくはアルカリ土類金属化合物の存在下に製造されたものである、
ことを特徴とする。
【0035】
水素化が溶解した酸性化合物の存在下に行われた場合には、水素化物を更に仕上げ処理する前に、塩基で中和することが勧められる。上述したように、第一の蒸留装置では、塔頂フラクションとして低沸点物の分離が行われる。得られる塔底フラクションは次いで第二の蒸留装置に供給され、そこで、トリメチロールプロパンが富化された塔頂フラクションが引き抜かれる。塔底を介して排出された塔底フラクションは、次いで、トリメチロールプロパン製造からの高沸点フラクション及び残留物と混合することができ、これは、該方法の後に、まだ公開されていないドイツ特許出願102011118953.3号の方法で仕上げ処理することができる。この際、第一及び第二蒸留装置中で使用される蒸留条件は、触媒含有水素化物の仕上げ処理の際に調節される条件に相当する。
【0036】
本発明方法の更に別の形態の一つでは、固形物が除去された水素化物の蒸留による仕上げ処理の前に、場合によりイオン交換体を用いた処理、例えば塩基性または酸性イオン交換体のみをまたは任意の順序でこれらの組み合わせを用いた処理を行うことができる。1〜100℃、好ましくは20〜60℃の範囲の通常の温度及び常圧で作業される。
【0037】
水素化が溶解した無機酸または低級有機カルボン酸の存在下に行われる場合には、水素化触媒を分離した後に溶液を塩基の添加によって中性に調節する。この場合も、その後にイオン交換体での処理、詳しくは1〜100℃の範囲、好ましくは20〜60℃の範囲の通常の温度及び常圧下にイオン交換体処理を行うことができる。このイオン交換体処理によって、塩基添加の後に形成する塩ばかりでなく、更には他の不純物もが分離される。
【0038】
塩基性イオン交換体としては、第一、第二、第三もしくは第四アミノ基を含むものが挙げられる。第三アミノ基または第四アミノ基を塩基の形で含むポリスチレンベースのイオン交換体が格別な重要性を獲得した。弱乃至強塩基性イオン交換体の例は、Amberlit IR45、Dowex 4またはDowex Marathon−Aである。マクロ網状型のもの、例えばAmberlyst A21、Lewatit MP62、Lewatit MP64、Imac A20、Zerolit G、Amberlit IRA93またはAmberlyst A26が格別な重要性を獲得した。
【0039】
弱または強酸性イオン交換体は、例えば、スチレン−ジビニルベンゼンコポリマーをベースとしたポリマーマトリックスに結合したカルボキシレート基またはスルホン酸基を含む。このカルボキシレート基は、例えば、芳香族カルボン酸または脂肪族カルボン酸から誘導することができ、そしてスルホン酸基は、芳香族または脂肪族スルホン酸から誘導することができる。強酸性イオン交換体は、例えばAmberlyst 15、Amberlyst DPT−1またはDowex Marathon−Cである。
【0040】
溶液は適当な反応器中でイオン交換体と接触させる。このイオン交換体は、例えば、溶液が流通する管状反応器中に固定床として配置することができる。固定床の体積及びイオン交換体粒子の大きさは広い範囲で変えることができ、そのため、選択された反応条件及びプロセスの状態、例えば所望の流速に合わせて適合させることができる。1〜10、特に5〜8の範囲の空間速度(V
溶液/[V
イオン交換体 h])を保持することが有利であることが判明した。これは、有利に選択するべき基準である。
【0041】
本発明方法の他の実施形態の一つでは、イオン交換体(これはこの場合は非常に微細なものであることができる)を溶液中に懸濁させる。懸濁液を、例えば攪拌またはガスの導入、例えば空気もしくは窒素の導入によって絶えず動かして、液体相とイオン交換体との緊密な接触を達成することが有利である。イオン交換体に対する液体相の質量比は、ほぼ自由に、それゆえ個々の場合の要求に合わせて調節することができる。溶液100重量部あたり、1〜10、好ましくは3〜8重量部のイオン交換体を使用することが有利であることがわかった。この変法を実施するためには、例えば攪拌タンクまたはオートクレーブが適している。
【0042】
しかし、このやり方では、イオン交換体は機械的負荷に曝され、そして液体相とイオン交換体との混合のためには、粒子の表面上の摩耗または粒子の機械的なダメージさえも避けられるような条件が選択されるべきである。
【0043】
溶液は、液体相を複数回処理することにより、不純物の分離を完全なものとするために再循環することができる。同様に、吸着を複数の段階で実施することも可能であり、またバッチ式にも連続式にも反応を実施することができる。任意選択のイオン交換処理は、特に水性水素化物の仕上げ処理の時に適している。
【0044】
任意選択の液状水素化物のイオン交換処理の後は、得られた溶出液は上述したように蒸留装置の二段階接続において蒸留により仕上げ処理される。
【0045】
本発明の方法は、トリメチロールプロパンの蒸留による精製において生ずる前留出フラクションを経済的に利用することを可能にする。これから得られたトリメチロールプロパンリッチな生成物流を全製造プロセスに循環することによって、トリメチロールプロパンの蒸留からの前留出フラクションが仕上げされず及び循環されない方法の実行に対して、プラント効率及びトリメチロールプロパンの収量を向上することができる。
【0046】
以下の例において、本発明の方法をより詳しく説明する。本発明が、記載の実施形態に限定されないことは自明である。