【実施例】
【0036】
以下に実施例、比較例を挙げて本発明の特徴をより具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
【0037】
<セルロースファイバー水分散液>
以下の実施例及び比較例で使用したセルロースファイバー水分散液(固形分:0.8質量%)は、特許文献1に記載の手順に基づき、市販パルプ由来セルロース(セライト社製
BH−100)を用いて調製した。
【0038】
[実施例1:メタクリル酸メチルを用いたセルロースファイバーのグラフトポリマー修飾]
0.8質量%パルプ由来セルロースファイバー水分散液579質量部に、純水421質量部を加えて撹拌した。次いでメタクリル酸メチル(和光純薬工業(株)製 以下、MMA)を40質量部、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プ
ロピオンアミド](和光純薬工業(株)製 VA−086)を0.58質量部、ポリビニルピロリドン((株)日本触媒製 K−30)を7.5質量部加え、300rpmにて撹拌した。それから75℃に設定したオイルバスにて昇温し、5時間反応させた。
反応物を冷却後、ろ過を行い、ろ物をテトラヒドロフラン500質量部へ加え12時間撹拌した後、ろ過した。この操作を4回繰り返すことによって水溶性ラジカル発生剤、および重合性基を有する単量体の単独重合体を除去した。
以上の工程により、グラフトポリマー修飾セルロースファイバーの湿品290質量部(固形分含有量4.4質量%(=1g/(1g+THF21.5g)))を作製した。
【0039】
[実施例2:アクリル酸メチルを用いたセルロースファイバーのグラフトポリマー修飾]
0.8質量%パルプ由来セルロースファイバー水分散液67質量部に、純水23質量部を加えて撹拌した。次いでアクリル酸メチル(和光純薬工業(株)製)を3.1質量部、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド](和光純薬工業(株)製 VA−086)を0.052質量部、ポリビニルピロリドン((株)日本触媒製 K−30)を0.81質量部加え、300rpmにて撹拌した。それから75℃に設定したオイルバスにて昇温し、4.5時間反応させた。
反応物を冷却後、ろ過を行い、ろ物をテトラヒドロフラン100質量部へ加え12時間撹拌した後、ろ過した。この操作を3回繰り返すことによって水溶性ラジカル発生剤、および重合性基を有する単量体の単独重合体を除去した。以上の工程により、グラフトポリマー修飾セルロースファイバー1.09質量部が得られた。
【0040】
[実施例3:メタクリル酸グリシジルを用いたセルロースファイバーのグラフトポリマー修飾]
0.8質量%パルプ由来セルロースファイバー水分散液67質量部に、純水23質量部を加えて撹拌した。次いでメタクリル酸グリシジル(和光純薬工業(株)製)を5.1質量部、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミ
ド](和光純薬工業(株)製 VA−086)を0.052質量部、ポリビニルピロリドン((株)日本触媒製 K−30)を0.81質量部加え、300rpmにて撹拌した。
それから75℃に設定したオイルバスにて昇温し、4.5時間反応させた。
反応物を冷却後、ろ過を行い、ろ物をテトラヒドロフラン100質量部へ加え12時間撹拌した後、ろ過した。この操作を3回繰り返すことによって水溶性ラジカル発生剤、および重合性基を有する単量体の単独重合体を除去した。以上の工程により、グラフトポリマー修飾セルロースファイバー0.83質量部が得られた。
【0041】
[比較例1:分散剤を用いないセルロースファイバーのグラフトポリマー修飾]
分散剤としてポリビニルピロリドンを添加しない以外は、実施例1乃至実施例3と同様の手順にてグラフトポリマー修飾セルロースファイバーを作製した。
【0042】
<グラフト率>
実施例1乃至実施例3及び比較例1で調製したグラフトポリマー修飾セルロースファイバーについて、重合性基を有する単量体のグラフト重合前後のセルロースファイバーの乾燥質量をそれぞれ測定し、以下の計算式を用いてグラフト率を算出した。得られた結果を表1に示す。
グラフト率=[(W
Polymer−g−CF−W
CF)/(W
CF)]×100(%)
※W
CF:未修飾セルロースファイバー乾燥質量(グラフト重合前)
W
Polymer−g−CF:グラフトポリマー修飾セルロースファイバー乾燥質量(グラフト重合後)
【0043】
【表1】
【0044】
表1に示すように、反応系に分散剤を添加して調製した実施例1乃至実施例3のグラフトポリマー修飾セルロースファイバーは、分散剤を添加せずに調製した比較例1のグラフトポリマー修飾セルロースファイバーと比べ、格段にグラフト率が向上するとする結果が得られた。比較例1ではグラフト率がマイナスの値となったが、これは分散剤を使用していないために、重合反応中にグラフトポリマーがセルロースファイバーを修飾していく過程で、水中における分散状態を維持できなくなることによって凝集塊を形成し、次いで得られる生成物の収率が低下したことを示している。
【0045】
<元素組成比の測定>
実施例1及び比較例1で調製したグラフトポリマー修飾セルロースファイバー、並びに、グラフト修飾に用いた原料のパルプ由来セルロースファイバー(未修飾)について、XPS測定により元素組成を求めた。得られた結果を表2に示す。
【0046】
【表2】
【0047】
<走査型電子顕微鏡による観察結果>
グラフト修飾前後でのセルロースファイバーの外観の観察を走査型電子顕微鏡(JEOL(日本電子(株))製 JSM−7400F)を用いて、観察した。
図1に実施例1乃至実施例3及び比較例1で使用した、パルプ由来セルロースファイバー(グラフト修飾前)を観察した走査型電子顕微鏡写真を、
図2に実施例1より得られたグラフトポリマー修飾セルロースファイバーを観察した走査型電子顕微鏡写真を、それぞれ示す。
図1及び
図2に示すように、グラフト修飾後のセルロースファイバー(
図2)は、修飾前(
図1)と比べて、ファイバー表面がなめらかになっている様子が観察された。
【0048】
<XPS測定>
実施例1及び比較例1で調製したグラフトポリマー修飾セルロースファイバー、並びに、グラフト修飾に用いた原料のパルプ由来セルロースファイバー(未修飾)について、X線光電子分光測定(XPS)(PerkinElmer Inc.製 ESCA5600、X線源:MgKα、14.0kV、250W)を行った。
図3に、未修飾セルロースファイバー(1)、比較例1のグラフトポリマー修飾セルロースファイバー(2)及び実施例1のグラフトポリマー修飾セルロースファイバー(3)のXPS測定結果(C1s)をそれぞれ示す。
図3に示すように、実施例1のグラフトポリマー修飾セルロースファイバー(
図3(3))では、285eVの炭化水素のピーク、287eV付近にはカルボニル基炭素やエーテル炭素が見られるのに加え、未修飾セルロースファイバー(
図3(1))及び比較例1のグラフトポリマー修飾セルロースファイバー(
図3(2))では殆ど見られない289eV付近にカルボキシル基炭素に帰属されるピークが顕著に見られた。
以上、XPSの測定結果からも、実施例1のセルロースファイバーが、カルボニル基を有するPMMAからなるグラフトポリマーによって修飾されているものであることが確認された。
【0049】
<示差熱天秤測定>
実施例1で調製したグラフトポリマー修飾セルロースファイバー、グラフト修飾に用いた原料のパルプ由来セルロースファイバー(未修飾)、さらにポリメタクリル酸メチル(PMMA)について、TG−DTA(セイコーインスツル(株)製 TG/FTA6200)を用いて、空気雰囲気中にて30℃から500℃まで昇温し、質量変化を測定した。得られた結果を
図4に示す。
図4に示すように、実施例1で得られたグラフトポリマー修飾セルロースファイバーの昇温過程での質量減少は、未修飾セルロースファイバーのものと比較すると、質量減少温度が高温側へシフトしており、グラフトポリマー修飾により未修飾のセルロースファイバーと比べて耐熱性が向上したファイバーとなっていることが確認された。
【0050】
<赤外吸収スペクトル(FT−IR)測定>
実施例1乃至実施例3で調製したグラフトポリマー修飾セルロースファイバー、並びにグラフト修飾に用いた原料のパルプ由来セルロースファイバー(未修飾)について、FT
−IR(日本分光(株)製 FT/IR−8000、KBr法)を測定した。
図5に、未修飾セルロースファイバー(1)、実施例1のグラフトポリマー修飾セルロースファイバー(2)、実施例2のグラフトポリマー修飾セルロースファイバー(3)及び実施例3のグラフトポリマー修飾セルロースファイバー(4)のFT−IR測定結果をそれぞれ示す。
図5に示すように、未修飾セルロースファイバーの測定結果(
図5(1))に対して、実施例1:メタクリル酸メチルを用いたグラフトポリマー修飾セルロースファイバー(
図5(2))、実施例2:アクリル酸メチルを用いたグラフトポリマー修飾セルロースファイバー(
図5(3))、及び実施例3:メタクリル酸グリシジルを用いたグラフトポリマー修飾セルロースファイバー(
図5(4))の測定結果では、1733cm
−1にカルボニル基の伸縮振動に由来する吸収が現れており、いずれもグラフトポリマー修飾がなされている事が確認された。
【0051】
[複合樹脂材料の調製]
以下に示す実施例及び比較例にて調製した複合樹脂材料は、特許文献1に記載の手順に準じ、セルロースファイバーの有機溶媒分散液にマトリクス樹脂を溶解し、樹脂が均一に溶解した状態で溶媒を除去することにより、マトリクス樹脂中の分散性に優れる複合樹脂材料を製造した。
【0052】
[実施例4:実施例1のグラフトポリマー修飾セルロースファイバー−PLA−複合樹脂材料]
実施例1で作製したグラフトポリマー修飾セルロースファイバーのテトラヒドロフラン湿品68.2質量部(固形分含有量4.4質量%)を100℃に加熱したジメチルスルホキシド500質量部へ加え、300rpmの撹拌速度にて全体が均一になるように1時間撹拌した。ここへポリ乳酸樹脂(ネイチャーワークス社製 3001D)100質量部を徐々に添加し、2時間撹拌して完全にポリ乳酸樹脂を溶解させた。得られたポリ乳酸樹脂の溶解したスラリーを1,000質量部のメタノールへ滴下し、次いで沈殿物をろ過し、得られたろ物を80℃にて48時間乾燥させることにより、103質量部の複合樹脂材料を得た。
【0053】
[参考例1:PLA−樹脂材料]
グラフトポリマー修飾セルロースファイバーのテトラヒドロフラン湿品を配合しない、ポリ乳酸樹脂のみのものを参考例1の樹脂材料とした。
【0054】
[参考例2:PMMA−PLA−複合樹脂材料]
グラフトポリマー修飾セルロースファイバーのテトラヒドロフラン湿品の代わりに、ポリメタクリル酸メチル樹脂(和光純薬工業(株)製、以下、PMMA)3質量部を用いた以外は、実施例4と同様にして複合樹脂材料を作製した。
【0055】
[比較例2:未修飾セルロース粉−PMMA−PLA−複合樹脂材料]
グラフトポリマー修飾セルロースファイバーのテトラヒドロフラン湿品の代わりに、PMMA1.7質量部及び未修飾セルロース粉(セライト社製FIBRA−CEL BH−100)1.3質量部を用いた以外は、実施例4と同様にして複合樹脂材料を作製した。
【0056】
[比較例3:微細化したセルロースファイバー−PLA−複合樹脂材料]
グラフトポリマー修飾セルロースファイバーのテトラヒドロフラン湿品の代わりに、特許文献1を参考にして作製した微細化したセルロースファイバーのジメチルスルホキシド分散液72.2質量部(固形分:1.8質量%)を用いた以外は、実施例4と同様にして複合樹脂材料を作製した。
【0057】
[比較例4:微細化したセルロースファイバー−PMMA−PLA−複合樹脂材料]
グラフトポリマー修飾セルロースファイバーのテトラヒドロフラン湿品の代わりに、特許文献1を参考にして作製した微細化したセルロースファイバーのジメチルスルホキシド分散液72.2質量部(固形分:1.8質量%)及びPMMA1.7質量部を用いた以外は、実施例4と同様にして複合樹脂材料を作製した。
【0058】
実施例4、参考例1及び参考例2、並びに比較例2乃至比較例4の樹脂材料を用いて、下記手順によりフィルム状成形体を作製し、フィルム厚、ヘイズ及びYI値(以下参照)を測定した。得られた結果を表3に示す。また表3には、上記樹脂材料の組成比並びにセルロース含有量も併せて示す。
フィルム状成形体は、実施例4、参考例1及び参考例2、並びに比較例2乃至比較例4の樹脂材料を、200℃でホットプレス(テスター産業(株)製、SA−302卓上型テストプレス)を用いて5分間溶融させた後、5MPaに加圧して5分間保持し、次いで10MPaにて5分間保持した。この後、ホットプレスから樹脂材料を取り出し、水中へ投入し急冷することによりフィルム状成形体を作製した。
【0059】
[フィルム厚測定]
デジタルマイクロメーター((株)ミツトヨ製、MDQ−30M)を用いて、フィルム状成形体の異なる三点について厚さを測定し、その平均値を測定値とした。
【0060】
[ヘイズ測定]
ヘイズメーター(全光透過率及び濁度測定)(日本電色工業(株)製、NDH5000
)を用いて、フィルム状成形体の異なる三点についてヘイズ(HAZE値/%)を測定し、その平均値から、当該成形体の厚さを100μmとした場合の換算値としてヘイズ(%)を求めて透明性を評価した。測定値が小さいほど(0%に近いほど)、透明性が高いことを示す。換算式は下記のとおりである。
H100(%)=H×100/d
H100:フィルム状成形体の厚さを100μmに換算したヘイズ値(%)
H:フィルム状成形体のヘイズ平均値(%)
d:フィルム状成形体の平均厚さ(μm)
【0061】
[YI値]
黄色度を示すYI(イエローインデックス)値を分光式測色色差計[(有)東京電色製、オートマチックカラーアナライザー TC−1800 MK−II]を用いて測定した。なおYI値は、無色または白色から色相が黄色へ向かう度合いで、プラスの量として表示される。
【0062】
【表3】
【0063】
表3に示すように、実施例4の複合樹脂材料は、比較例2乃至比較例4の未修飾セルロース粉又は未修飾セルロースファイバーを含む複合樹脂材料と比較して、複合樹脂材料のヘイズが低く抑えられているとする結果となった。特に未修飾セルロースファイバーを含む比較例3及び比較例4の複合樹脂材料と比較して、ヘイズのみならずYI値が低く抑えられたとする結果が得られた。この結果は、比較例2乃至比較例4の複合樹脂材料は、未修飾のセルロース粉又はセルロースファイバーを含むため、複合樹脂材料におけるセルロースの分散状態が悪く、耐熱性に劣るためヘイズやYI値が高い結果となり、一方、実施例4の複合樹脂材料は、グラフトポリマー修飾によって複合樹脂材料中への分散性が高まったこと、及び耐熱性が向上したことによるものといえる。