(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は前記問題点に鑑みなされたものであり、その目的は、二酸化炭素の大幅な排出削減を可能にする被燃焼物のガス化燃焼方法を提供することにある。
【課題を解決するための手段】
【0006】
本願発明者等は、前記問題点を解決すべく、被燃焼物のガス化燃焼方法について検討した。その結果、予め800℃以上にした一次燃焼炉内に、被燃焼物が完全燃焼する場合の理論比よりも少ない量の酸素又は酸素を含む気体を供給して、被燃焼物を熱分解させることにより、一酸化炭素及び二酸化炭素の発生を一層抑制することが可能なことを見出して、本発明を完成させるに至った。
【0007】
即ち、本発明に係る被燃焼物のガス化燃焼方法は、前記の課題を解決する為に、一次燃焼炉を用いて被燃焼物を燃焼させる被燃焼物のガス化燃焼方法であって、前記一次燃焼炉内の初期温度を800℃以上に調節する工程と、800℃以上の前記一次燃焼炉内に、前記被燃焼物が完全燃焼する場合の理論比よりも少ない量の酸素又は酸素を含む気体を供給する工程と、800℃以上の前記一次燃焼炉内に前記被燃焼物を供給して、当該被燃焼物を熱分解させることにより未燃ガスを発生させると共に、不完全燃焼させて煤煙を発生させる工程とを含み、前記酸素又は酸素を含む気体の供給は、前記一次燃焼炉内を強制排気し減圧しながら、連続的に又は間欠的に行うことにより、前記未燃ガス及び煤煙として1000℃以上のものを発生させると共に、前記被燃焼物の熱分解により生じた不揮発成分の少なくとも一部を更に熱分解させて減少させることを特徴とする。
【0008】
前記の構成によれば、被燃焼物を燃焼させる前に、まず一次燃焼炉内の温度を800℃以上の極めて高い温度状態に調節する。その後、一次燃焼炉内に酸素又は酸素を含む気体を供給する。また、被燃焼物も一次燃焼炉内に供給する。被燃焼物が一次燃焼炉内に供給されると、一次燃焼炉内は800℃以上の高温の状態にあるため、被燃焼物は熱分解される。これにより、被燃焼物の分解生成物のうち、ガス化した揮発成分が未燃ガスとして発生する。また、被燃焼物の一部は、一次燃焼炉内に供給される酸素等が、被燃焼物の完全燃焼を可能にする理論比よりも少ない量であるため、不完全燃焼する。これにより、高温の煤煙が多量に発生する。
【0009】
ここで、酸素等の供給は、前記未燃ガス等を一次燃焼炉から強制排気し減圧しながら、連続的に又は間欠的に行うため、被燃焼物の熱分解及び不完全燃焼は1000℃以上の高温状態で起こるようになる。その結果、1000℃以上の未燃ガスと煤煙が発生し、一次燃焼炉内の温度も1000℃以上となる。これにより、被燃焼物の熱分解により生じる不揮発成分の少なくとも一部も、更に熱分解させることが可能になり、当該不揮発成分の発生量の抑制が図れる。また、一酸化炭素の発生量を抑制することができ、煤煙中に一酸化炭素が含まれる場合にも、一次燃焼炉内に供給される酸素等は、被燃焼物を完全燃焼させる理論比よりも少ない量であるため、二酸化炭素に変化するのが抑制される。しかも、一次燃焼炉内は1000℃以上の高温状態になるため、一酸化炭素も熱分解することができ、二酸化炭素の発生を一層抑制することができる。
【0010】
前記の構成に於いては、前記一次燃焼炉で発生した1000℃以上の前記未燃ガス及び煤煙を予備燃焼炉に供給し、当該予備燃焼炉に於いて、前記未燃ガス及び煤煙が完全燃焼する場合の理論比よりも少ない量の酸素又は酸素を含む気体であって、50℃〜300℃のものと接触させることにより、当該未燃ガス及び煤煙を熱分解させる工程を含むことが好ましい。
【0011】
前記の構成によれば、一次燃焼炉で発生した未燃ガス等を、予備燃焼炉に於いて酸素又は酸素を含む気体に接触させることにより、煤煙及び未燃ガス等を熱分解することができる。ここで、前記酸素等は50℃〜300℃の高温のものであるため、煤煙及び未燃ガス等の熱分解はより高温の雰囲気下で行われる。そのため、前記熱分解を一層効率的に行うことができる。但し、予備燃焼炉に供給される酸素等の量は、前記未燃ガス等が完全燃焼する場合の理論比よりも少ない量であるので、煤煙や未燃ガス等に含まれる一酸化炭素や本工程で発生する一酸化炭素が二酸化炭素に変化するのを抑制することができる。即ち、前記の構成であると、二酸化炭素の発生を抑制しつつ未燃ガス等を更に熱分解することができる。
【0012】
また、前記の構成に於いては、二次燃焼炉内の初期温度を800℃以上に調節する工程と、800℃以上の前記二次燃焼炉内に、前記未燃ガス又は煤煙が完全燃焼する場合の理論比よりも少ない量の酸素又は酸素を含む気体を供給する工程と、800℃以上の前記二次燃焼炉内に、前記一次燃焼炉又は予備燃焼炉から排出される未燃ガス及び煤煙を供給して、当該未燃ガス及び煤煙を熱分解させる工程とを含むことが好ましい。
【0013】
前記の構成によれば、一次燃焼炉又は予備燃焼炉に於いて発生した未燃ガス及び煤煙を燃焼させる前に、まず二次燃焼炉内の温度を800℃以上の極めて高い温度状態に調節する。その後、二次燃焼炉内に酸素又は酸素を含む気体を供給する。また、未燃ガス等も二次燃焼炉内に供給する。未燃ガス等が二次燃焼炉内に供給されると、二次燃焼炉内は800℃以上の高温の状態にあるため、未燃ガス等は完全に熱分解され、一酸化炭素の発生量も少ない。また、一酸化炭素が含まれている場合にも、二次燃焼炉内に供給される酸素等が、未燃ガス等を完全燃焼させる理論比よりも少ない量であるため、二酸化炭素に変化するのが抑制される。しかも、二次燃焼炉内は800℃の初期温度よりも更に高温状態にあるため、一酸化炭素も熱分解することができ、二酸化炭素の発生を一層抑制することができる。
【0014】
また、前記の構成に於いて、前記被燃焼物として微粉末状及び/又は液体状の化石燃料を用い、当該微粉末状及び/又は液体状の化石燃料を霧状に噴霧して、前記一次燃焼炉内に供給することが好ましい。被燃焼物として微粉末状及び/又は液体状の化石燃料を噴霧して一次燃焼炉内に供給することにより、被燃焼物の高温でのガス化を一層効率的に行うことができる。
【発明の効果】
【0015】
本発明は、前記に説明した構成により、以下に述べるような効果を奏する。
即ち、本発明によれば、被燃焼物は初期温度が800℃以上に調節された一次燃焼炉内に供給されるので、当該被燃焼物を熱分解して未燃ガスを発生させることができる。また、一次燃焼炉内に供給される酸素又は酸素を含む気体は、被燃焼物の完全燃焼を可能にする理論比よりも少ない量であるので、被燃焼物を不完全燃焼させて煤煙を発生させることができる。ここで、煤煙中には一酸化炭素も含まれるが、一次燃焼炉内は酸素が不足した状態にあるので、一酸化炭素が二酸化炭素に変化するのを抑制することができる。また、一次燃焼炉内は1000℃以上の高温の状態になるので、一酸化炭素は熱分解される。その結果、本発明であると、二酸化炭素の大幅な排出削減が可能な被燃焼物のガス化燃焼方法を提供することができる。
【発明を実施するための形態】
【0017】
本実施の形態の被燃焼物のガス化燃焼方法について、
図1〜
図2に基づき以下に説明する。
図1は、本実施の形態に係るガス化燃焼装置の概略を示す説明図である。
図2は、前記ガス化燃焼装置に於ける予備燃焼炉の空気路を示す斜視図である。
【0018】
先ず、本実施の形態のガス化燃焼方法に用いるガス化燃焼装置について説明する。ガス化燃焼装置13は、
図1に示すように、二酸化炭素の排出を大幅に削減して被燃焼物の燃焼を可能にするものであり、一次燃焼炉10、予備燃焼炉11、二次燃焼炉12及びサイクロン15を少なくとも備える。予備燃焼炉11は、一次燃焼炉10と二次燃焼炉12との間に介在して設けられている。一次燃焼炉10は第1連通管5を介して予備燃焼炉11と接続されている。また、予備燃焼炉11は第2連通管8を介して二次燃焼炉12と接続されている。更に、サイクロン15は排出管32を介して二次燃焼炉12と接続されている。
【0019】
前記被燃焼物としては特に限定されず、例えば、一般廃棄物又は産業廃棄物等の廃棄物や化石燃料、バイオマス燃料、家畜の糞尿等が挙げられる。前記化石燃料としては特に限定されず、例えば、石炭の他、微粉末状の微粉炭や天然ガス、液体状の石油、重油、灯油等が挙げられる。
【0020】
一次燃焼炉10は、前記被燃焼物を熱分解及び不完全燃焼することにより未燃ガス及び煤煙を発生させる。一次燃焼炉10の炉体1に於いては、その内部の中央より下部側に、被燃焼物を載置するための炉床2が設けられている。炉床2は通気性を有しているものが好ましい。これにより、被燃焼物に効率良く酸素の供給が可能になる。炉床2としては、例えば、上桟と下桟を有し、かつ両者の間に耐熱金属(例えば、ステンレス鋼製等)又はセラミックスからなり、メッシュ状、多孔状、ハニカム状、ファイバ状、ウィスカ状又はこれらを2種類以上組み合わせた形状の部材が設けられているものを用いることができる。尚、炉床2は複数設けることも可能である。この場合、各炉床は任意の距離を有して上下に配置することができる。また、炉体1には、炉床2上に被燃焼物を供給するための被燃焼物供給手段としてのシューター3が設けられている。更に、一次燃焼炉10内部の初期温度を調節するために温度調節手段としてのバーナー4が炉体1の任意の位置に設けられている。バーナー4は複数設けられていてもよい。
【0021】
炉体1は耐熱性を備えた直方体状であり、その頂部の一部は、例えば傾斜面を有しているのが好ましい。傾斜面は、第1連通管5が設けられている壁面とは反対側の壁面に向かって傾斜している。これにより、一次燃焼炉10内部で発生した未燃ガス及び煤煙が第1連通管5に向かって排出され易くしている。第1連通管5は炉体1の上部に設けられており、これにより、炉体1の上部に向かって上昇する未燃ガス及び煤煙が第1連通管5に向かって排出され易くしている。尚、炉床2の下方には、被燃焼物の燃焼後に発生する焼却灰を排出するための排出口14が設けられている。更に、炉体1の底部には耐火煉瓦6が設けられている。
【0022】
また、シューター3には電動蓋7が設けられており、当該電動蓋7は、電動巻き上げ装置(図示しない)により矢印で示す上下方向に昇降可能となっている。更に、一次燃焼炉10に於いては、被燃焼物を一次燃焼炉10内に供給するための電動プッシャー9が設けられている。電動プッシャー9は、電動蓋7が開状態のときに矢印で示す方向に移動することにより、被燃焼物を押しやり、シューター3を介して一次燃焼炉10内に当該被燃焼物を供給する。
【0023】
尚、被燃焼物供給手段としては、シューター3の態様に限定されるものではない。例えば、被燃焼物として、微粉炭等の微粉末状の化石燃料や、石油等の液体状の化石燃料を用い、これらを一次燃焼炉10の上部から下方に向かって噴霧してもよい。このような方法で被燃焼物を一次燃焼炉10内に供給することにより、被燃焼物の効率的な熱分解を図ることができる。
【0024】
バーナー4は、一次燃焼炉10の内部の初期温度を調節する温度調節手段である。バーナー4の種類としては特に限定されず、例えば、灯油や重油、天然ガス等を燃料とするものを用いることができる。
【0025】
また、バーナー4は、本実施の形態に於いては、酸素又は酸素を含む気体を一次燃焼炉10内部に供給する供給手段としての機能も有する。具体的には、バーナー4を燃焼させて、一次燃焼炉10の内部の初期温度が800℃以上に達すると、バーナー4用の燃料の供給を停止し、酸素又は酸素を含む気体のみを供給し続ける。これにより、酸素又は酸素を含む気体を一次燃焼炉10内部に供給する供給手段としての機能を果たす。被燃焼物の供給は、バーナー4用の燃料の供給停止後、酸素又は酸素を含む気体を供給する前に行うことができる。
【0026】
ここで、バーナー4による酸素又は酸素を含む気体の供給量は、前記被燃焼物の完全燃焼を可能にする理論比よりも少ない量とする。これにより、被燃焼物を高温で熱分解及び不完全燃焼させることができる。また、十分な量の酸素を供給しないことにより、一酸化炭素及び二酸化炭素の発生を抑制することができる。酸素又は酸素を含む気体の供給量の具体的な値については、被燃焼物の種類等により適宜設定することができる。尚、前記酸素を含む気体としては特に限定されず、例えば、空気等が挙げられる。
【0027】
予備燃焼炉11は、一次燃焼炉10で発生した未燃ガス及び煤煙に、酸素又は酸素を含む気体を接触させることにより、当該未燃ガス等を燃焼させる。
図1に示すように、予備燃焼炉11には、一次燃焼炉10と接続するための第1連通管5が接続されている。一次燃焼炉10から排出される煤煙及び未燃ガス等は、この第1連通管5から第1連通管入口5aを介して、内部の煙道21に導入される。
【0028】
また、予備燃焼炉11の上部には、内部に酸素又は酸素を含む気体を導入するための空気路23が設けられている。空気路23は空気取り込み管22と接続されており、当該空気取り込み管22は空気を取り込むためのブロア25に接続されている。また、空気路23には、冷却水を循環させて、当該空気路23を冷却するための冷却配管24が設けられている。空気路23の端部には有孔板11aが配置されており、有孔板11aの孔から酸素等が煤煙及び未燃ガス等の流動方向に向かって噴射される(
図2参照)。尚、予備燃焼炉11の底部には耐火煉瓦6が設けられている。
【0029】
二次燃焼炉12は、予備燃焼炉11に於いても燃焼されなかった未燃ガス及び煤煙を完全燃焼させる。二次燃焼炉12の炉体31には、予備燃焼炉11と連通するための第2連通管8が接続されている。これにより、予備燃焼炉11から排出される未燃ガス及び煤煙等を内部に導入することができる。また、二次燃焼炉12には、二次燃焼炉12の内部の初期温度を調節する温度調節手段であり、かつ酸素又は酸素を含む気体を二次燃焼炉12内部に供給する供給手段でもあるバーナー4が設けられている。更に、炉体31に於いては、その内部の中央より下部側に、一次燃焼炉10と同様に炉床2が設けられている。炉床2は通気性を有しているものが好ましい。炉床2を設けることにより、予備燃焼炉11から排出された高温の煤煙等を通過させることができ、更に熱分解を可能にする。また、炉床2は、一次燃焼炉10の場合と同様、複数設けることも可能である。更に、二次燃焼炉12の上部には、廃ガスを排出するための排出管32が設けられている。尚、二次燃焼炉12に於いても、炉床2の下方には、被燃焼物の燃焼後に発生する焼却灰を排出するための排出口14が設けられており、更に、炉体31の底部には耐火煉瓦6が設けられている。
【0030】
サイクロン15は、二次燃焼炉12から排出される煤煙等の排出ガスを集塵すると共に、高温状態にある当該排出ガスを200℃程度に冷却させる機能を有している。サイクロン15は円錐部28と、円錐部28の下方に設けられた集塵部29とを少なくとも有している。円錐部28は下方の集塵部29に向かって円錐状に収束する様に設けられている。集塵部29は、二次燃焼炉12から排出される排出ガスから分離された煤塵を集塵する。また、円錐部28の上部には排気筒27が設けられている。更に、排気筒27には、空気を供給するためのブロア26が設けられている。
【0031】
続いて、本実施の形態の被燃焼物のガス化燃焼方法について説明する。
本実施の形態のガス化燃焼方法に於いては、先ず一次燃焼炉10内部の初期温度を800℃以上に調節する工程が行われる。初期温度の調節は、バーナー4を燃焼させることにより行う。一次燃焼炉10の初期温度は800℃以上であれば特に限定されないが、好ましくは850℃以上である。初期温度は、被燃焼物の種類等に応じて、前記温度範囲内で適宜設定することができる。一次燃焼炉10の初期温度を800℃以上にすることにより、被燃焼物の熱分解反応を生じさせることが可能になる。初期温度の上限については、その後の炉内の温度上昇、及び一次燃焼炉10の耐熱性を考慮して適宜設定するのが好ましい。尚、一次燃焼炉10内部の初期温度は、当該一次燃焼炉10の天面の近傍に於いて測定した値である。
【0032】
次に、一次燃焼炉10内に酸素又は酸素を含む気体を供給する。酸素又は酸素を含む気体の供給は、一次燃焼炉10内を強制排気し減圧しながら行う。ここで、一次燃焼炉10内の強制排気は、予備燃焼炉11に設けられているブロア25、及び後述のサイクロン15に設けられているブロア26により行われる。本実施の形態に於いては、バーナー4を燃焼させて一次燃焼炉10内部の初期温度を800℃以上にした後に、バーナー4用の燃料の供給を停止し、酸素又は酸素を含む気体のみを供給し続ける。これにより、一次燃焼炉10内に酸素又は酸素を含む気体の供給が可能になる。酸素又は酸素を含む気体の供給は連続的に、又は間欠的に行うことができる。また、一次燃焼炉10内の強制排気についても、連続的に又は間欠的に行うことができる。酸素又は酸素を含む気体の供給量は、被燃焼物が完全燃焼する場合の理論比よりも少ない量である。
【0033】
続いて、一次燃焼炉10内に被燃焼物を供給する。被燃焼物の供給は、シューター3から投入されて、炉床2上に載置されることにより行われる。尚、被燃焼物の供給は、酸素又は酸素を含む気体を供給する前に行ってもよい。あるいは、酸素又は酸素を含む気体の供給と同時に、又は供給後に行ってもよい。更に、本工程に於いては、一次燃焼炉10内の強制排気も連続的に、又は間欠的に行うことができる。
【0034】
被燃焼物を、800℃以上の雰囲気下にある一次燃焼炉10内に投入すると、当該被燃焼物は熱分解反応を起こす。これにより、被燃焼物の分解生成物が生じる。この分解生成物のうち、揮発成分は未燃ガスとして発生する。未燃ガスには、炭化水素等の可燃性ガスが含まれる。更に、発生する未燃ガスは、後述する通り極めて高温(例えば、1000℃以上)の状態にある。また、一次燃焼炉10内は酸素が不足した状態であるため、被燃焼物は不完全燃焼となり、一酸化炭素を含む煤煙も発生する。しかし、一次燃焼炉10内の温度は1000℃以上の高温であり、また酸素も少ない状態にあるため、一酸化炭素は二酸化炭素に変化することなく熱分解される。その結果、1000℃以上の黒煙(煤煙)が大量に発生する。前記煤煙には、例えば、炭素の微粒子等が含まれている。
【0035】
ここで、本工程に於いては、上述の通り、一次燃焼炉10内の強制排気による減圧が行われる。そして、予備燃焼炉11及び二次燃焼炉12に高温の煤煙等を送り込む。そのため、一次燃焼炉10内で発生する大量の高温未燃ガスや高温煤煙の炉内に於ける滞留時間は短い。その一方、一次燃焼炉10内には酸素又は酸素を含む気体が連続的に又は間欠的に供給され続けているため、被燃焼物に対しては、完全燃焼させる場合の理論比よりも少ない量の酸素が常に供給される。その結果、被燃焼物の不完全燃焼も持続されるため、一次燃焼炉10内の温度は初期温度の800℃から、極めて短時間の間に1000℃〜1400℃程度に上昇する。
【0036】
また、前記分解生成物のうち不揮発成分(被燃焼物が、例えば、炭素化合物である場合は揮発性の低い固体の炭素分)に於いては、一次燃焼炉10内部の温度が1000℃以上の高温状態となるため、熱分解が生じる。これにより、本実施の形態に於いては、不揮発成分の減容、減量化も図れる。
【0037】
尚、一次燃焼炉10の炉内温度が、当該一次燃焼炉10の耐熱性能を超えて上昇するのを防止するために、炉内温度の制御を行ってもよい。炉内温度の制御方法としては、例えば、一次燃焼炉10内に供給する酸素又は酸素を含む気体の供給量の調節や、排気速度の調節等が挙げられる。
【0038】
続いて、一次燃焼炉10で発生し、排出された大量の未燃ガス及び煤煙は、第1連通管5を介して予備燃焼炉11に導入される。予備燃焼炉11に於いては、空気路23から、高温の酸素又は酸素を含む気体が導入される。酸素又は酸素を含む気体の温度としては、常温でもよいが、50℃〜300℃の範囲内にすることが好ましい。常温の酸素又は酸素を含む気体を導入することにより、予備燃焼炉11内に於いて未燃ガス及び煤煙を熱分解させることが可能になるが、酸素等の温度を前記数値範囲内にすることにより、予備燃焼炉11内を更に高温の状態、具体的には、900℃以上ないしは1100℃以上の高温の状態になる。そのため、未燃ガスや煤煙の熱分解を行うことが可能になる。また、一酸化炭素も熱分解させるため、二酸化炭素の発生も一層低減することができる。但し、予備燃焼炉11内に供給される酸素又は酸素を含む気体の供給量は、未燃ガス及び煤煙等が完全燃焼する場合の理論比よりも少ない量である。そのため、予備燃焼炉11内でも酸素は不足した状態にある。これにより、一酸化炭素から二酸化炭素への変化が抑制される。
【0039】
続いて、予備燃焼炉11から排出される高温の排出ガスは、強制排気により第2連通管8を介して二次燃焼炉12に供給される。強制排気は、予備燃焼炉11に設けられているブロア25、及び後述のサイクロン15に設けられているブロア26により行われる。二次燃焼炉12に於いては、排出ガスの供給前に、予め内部の初期温度(天面近傍に於ける温度)を800℃以上、より好ましくは850℃以上となる様に調節しておく。二次燃焼炉12内の温度を調節する温度調節手段としては、一次燃焼炉10に用いられるバーナー等が挙げられる。バーナー等の設置位置は特に限定されず、必要に応じて任意の位置に設けることができる。また、バーナー等の温度調節手段は複数設けられていてもよい。尚、二次燃焼炉12の初期温度の上限については、その後の炉内の温度上昇、及び二次燃焼炉の耐熱性を考慮して適宜設定するのが好ましい。
【0040】
二次燃焼炉12内には、酸素又は酸素を含む気体が供給される。酸素等の供給は、二次燃焼炉12内を強制排気しながら行う。本実施の形態に於いては、バーナーを燃焼させて二次燃焼炉12内部の初期温度を800℃以上にした後に、バーナー用の燃料の供給を停止し、酸素又は酸素を含む気体のみを供給し続ける。これにより、二次燃焼炉12内に酸素又は酸素を含む気体の供給が可能になる。酸素又は酸素を含む気体の供給は連続的に、又は間欠的に行うことができる。酸素又は酸素を含む気体の供給量は、未燃ガス及び煤煙等が完全燃焼する場合の理論比よりも少ない量である。
【0041】
二次燃焼炉12内で未燃ガス及び煤煙を不完全燃焼する際の炉内の温度は、1000℃〜1300℃の範囲内で維持されている。これにより、二次燃焼炉12に供給された未燃ガス等を完全に熱分解することができる。また、一酸化炭素が存在する場合にも、二次燃焼炉12内は酸素が不足した状態にあるため、二酸化炭素に変化することはない。更に、二次燃焼炉12内は1000℃以上の高温状態にあるため、一酸化炭素は熱分解される。二次燃焼炉12で生じる排出ガスは、その後排出管32から強制排気される。ここで、前記排出ガスの強制排気(一次燃焼炉10及び予備燃焼炉11に於ける強制排気を含む。)は、サイクロン15に於けるブロア26が、排気筒27に空気を送風していることによる行われるものである。即ち、ブロア26が排気筒27に空気を送風することにより、サイクロン15の円錐部28に於いては、負圧の状態となる。その結果、二次燃焼炉12で生じた高温の排出ガスが排出管32からサイクロン15の円錐部28に引き込まれることになる。
【0042】
次に、サイクロン15に引き込まれた排出ガスは、円錐部28の内壁面の接線方向に向かって吹き込まれる。排出ガスは、螺旋状の流れを形成する。排出ガス中の煤塵は重量を有しているため、この螺旋状の流れに捕らえられて円錐部28内で回転しながら下方へ流下していく。その後、煤塵は集塵部29に堆積する。一方、煤塵と分離した清浄排出ガスは、ブロア26から送られる空気と共に、円錐部28上部の排気筒27から外部に放出される。
【0043】
ここで、ブロア26から供給される空気は常温であるため、サイクロン15に供給される排出ガスは冷却される。具体的には、約1000℃〜1300℃の高温の排出ガスが200℃程度まで冷却される。これにより、ダイオキシン等の有害物質の発生を抑制可能にしている。
【0044】
尚、本実施の形態に於いては、予備燃焼炉11で未燃ガス等の未燃焼物を完全に燃焼させることができる場合には、二次燃焼炉12での処理を省略することができる。その場合、予備燃焼炉11から排出される廃ガスは直接サイクロン15等へ強制排気される。
【0045】
以上の様に、本実施の形態の被燃焼物のガス化燃焼方法に於いては、従来よりも二酸化炭素の排出を抑制して被燃焼物を燃焼させることができる。
【0046】
(その他の事項)
本実施の形態の被燃焼物のガス化燃焼方法に於いては、一次燃焼炉及び二次燃焼炉の炉内温度が極めて高温になるため、ボイラーや発電装置の熱エネルギー源として廃熱利用をすることができる。ボイラーの熱エネルギー源として利用する場合、一次燃焼炉又は二次燃焼炉に熱交換器(図示しない)を接続する等により廃熱利用が可能である。また、発電の熱エネルギー源として利用する場合、例えば、二次燃焼炉にガスタービンを接続し、当該ガスタービンに接続された発電機を駆動することにより発電させることが可能になる。
【0047】
従来のボイラーや発電装置に於いては、熱エネルギーを得るために化石燃料等を燃焼させる際に大量の二酸化炭素を発生させていたが、本実施の形態に於いては、酸素が不足した状態で被燃焼物の燃焼を行うため、一酸化炭素が発生しても二酸化炭素に変化するのを抑制することができる。その上、一次燃焼炉内等は1000℃の高温状態になるため、一酸化炭素を熱分解させることが可能である。その結果、従来のボイラーや発電装置と比較して、二酸化炭素の排出を低減することができる。
【0048】
更に、前記熱交換器により作製した高温水を用いて、炭化水素の合成を行ってもよい。この場合、炭化水素の合成のための反応室を、前記高温水を用いて220〜270℃の雰囲気下にし、一酸化炭素と水素の混合気体を、鉄系触媒、コバルト系触媒又はルテニウム系触媒に接触させ、フィッシャー・トロプシュ反応により炭化水素を合成することができる。得られた炭化水素は、本実施の形態のガス化燃焼方法の被燃焼物に再利用してもよい。また、前記の方法により発電させた電気を水の電気分解のエネルギー源に利用してもよい。水の電気分解により得られた水素は、前記炭化水素の合成に再利用することができる。