(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0009】
ここで、本発明の好ましい実施形態を詳細に参照する。なお、実施形態の各例については、添付図面に図示されている。図中、同一または類似箇所を参照する場合、可能な限り同一または類似の番号及び記号を使用する。「上」、「下」等の用語は、本記載を容易にするために使用された相対的用語であり、本記載を厳密に限定することを意図するものではない。
【0010】
図1は、窒化ガリウム(GaN)発光ダイオード(LED)10の一構造例を示す概略断面図である。また、GaN LEDの一例は、米国特許第6,455,877号、米国特許第7,259,399号、米国特許第7,436,001号に記載されており、これらの特許は参照することにより本発明に援用される。GaN LED10は、例えばサファイア、SiC、GaN Si等で形成された基板20を有する。基板20上にはGaN多層構造30が配置されている。GaN多層構造30には、n型ドープGaN層(以下、「n型GaN層」と称す)40と、表面52を有するp型ドープGaN層(以下「p型GaN層」と称す)50とが設けられている。n型GaN層40とp型GaN層50とは、活性層60を挟んでいる。また、n型GaN層40は、基板20と隣接している。活性層60は、例えば、未ドープGaInN/GaN超格子等の多重量子井戸(MQW)構造を有する。このように、GaN多層構造30ではpn接合が形成されている。GaN多層構造30上には、表面72を有する透明コンタクト層(TCL)70が配置されている。TCL70の一例としては、インジウム錫酸化物(ITO)が挙げられる。TCL70は、電流を拡散させる役割を果たし、光出力を最適化する反射防止膜として機能する。
【0011】
GaN LED10は切り欠き80を有する。切り欠き80が形成されることにより、n型GaN層40の一部42が露出される。この露出部分は、n型コンタクト90nを支持するレッジ(窪み)として機能する。n型コンタクトの材料としては、例えば、Ti/Au、Ni/Au、Ti/Al、またはこれらの組み合せが挙げられる。p型コンタクト90pは、TCL表面72上の一部分に配置される。p型コンタクトの材料としては、例えば、Ni/AuおよびCr/Auが挙げられる。
【0012】
GaN LED10は、下記(a)から(c)のうち少なくとも一つの点で従来の窒化ガリウムLEDと異なる。
(a)p型GaN層50におけるドーパント活性化の程度が高い。
(b)n型コンタクト90nがレーザスパイクアニール(LSA)の使用により合金化されている。
(c)p型コンタクト90pがLSAの使用により合金化されている。
以下、上記相違点を実現するためのGaN LED10の処理方法を詳細に説明する。
【0013】
レーザスパイクアニール(LSA)
p型GaN層50における活性化を高めるためには、アニールを高温で短期間実施することが望ましい。従来の高速熱アニール(RTA)を採用した場合、適用可能な最高温度は、GaN材料の特性劣化により制限される。MOCVD成長過程において(例えば、Mgの使用により)ドープされたp型GaN層50が分解されることが、そのような劣化のメカニズムの一つとして挙げられる。Mgを効果的に活性化させるためには比較的高いアニール温度が必要となるが、高温で長期間アニールを実行した場合、窒素の外方拡散によりGaNが分解されると共に、p型GaN中の自由正孔濃度が減少する。典型的なRTPアニール過程では、基板が窒素雰囲気下700℃で数十秒から数分の間保持される。
【0014】
他の劣化のメカニズムとしては、p型GaN層50における歪み緩和及び転位の発生が挙げられる。格子不整合により、ヘテロエピタキシャル構造が、歪みを内包した準安定状態となっている。従来のRTAでは、熱膨張係数の不一致により過度の歪みが発生し、これにより転位の伝播及び増殖が促進する。
【0015】
本発明ではレーザスパイクアニール(LSA)が採用されており、当該LSAは、RTA等の従来の熱アニールと比較して高温且つ短時間で実施される。本発明に係る各方法の実行に適したLSAシステムの一例は、米国特許第6,747,245号、米国特許第7,154,066号、米国特許第7,399,945号に記載されており、当該特許は参照することにより本出願に援用される。本発明に係る各方法におけるLSAの応用例では、従来のRTAと比較してアニール処理時間が1,000〜10,000倍短縮されている。このため、窒素の外方拡散及び転位発生の悪影響が生じずに、より高いアニール温度T
A(例えば、T
A>1100℃)でアニール処理を行うことができる。
【0016】
LSAを使用してドープGaN層におけるドーパント活性化を高めることにより、接触抵抗が改善される。これは、高ドーパント濃度では、トンネル電流が大きくなり、障壁高さが低くなるからである。高ドーパント活性化濃度では、下記のように特定の接触抵抗ρ
cが求められる。
【0018】
ここで、障壁高さ変化量Δφ
Bは下記の数式により求められる。
【0020】
上記数式において、hはプランク定数であり、m
*は電子または正孔の有効質量であり、εは窒化物の誘電定数であり、Nは活性化ドーパント濃度であり、qは電気素量であり、k
Bはボルツマン定数であり、Tは絶対温度であり、V
0は接触電位である。
【0021】
活性化ドーパント濃度Nが高くなるとΔΦ
Bが大きくなり、数1の指数中の分子が小さくなる。Nが大きくなると、数1の指数中の分母が大きくなり、ρ
cが小さくなる。その結果、ドーパント活性化が高くなるに従って、接触抵抗ρ
cが低下する。本発明に係る各方法に関する実施形態の一例では、p型GaN中の活性化ドーパント濃度が約2.5倍(例えば、約5x10
17cm
−3から約1.25x10
18cm
−3)まで高められる。このため、全体の接触抵抗(拡がり抵抗を含む)を約60%小さくさせることになる。
【0022】
図2は、時間(ms)に対するアニール温度T
A(℃)のプロット図であり、例えば、
図3及び
図4に示すように、走査レーザ光120の3つの異なる滞留時間に対する各アニール温度プロファイル(曲線)の一例を示している。
図2の曲線は、任意の層の表面上(例えば、p型GaN層50の表面52上)の地点Pにおけるアニール温度プロファイルを示しており、図示しているように、レーザ光120がこの地点に接近し、通過する際のアニール温度プロファイルを示している。計算上、レーザ光120は、(選択した強度閾値で得られるように)表面52において長細い形状を有し、例えば、約10mmの長さL及び約100μmの幅W、若しくは、約100:1のアスペクト比を有する。レーザ光120は、速度V
Sで表面52上を走査する。滞留時間t
dは、ビーム幅Wと走査速度V
Sにより決定される。滞留時間が長い場合、地点Pは、レーザ光120の接近に伴い、接触するまで熱伝導により予熱される。このため、アニール温度は最大値T
AMとなる。滞留時間が短い場合、熱伝導によるシリコンの予熱が不十分となり、地点Pは非常に短時間だけ最大アニール温度T
AMとなる。このようにしてアニール温度プロファイルを調整することができる。
【0023】
窒化ガリウムLED構造に対するLSAの一方法例
図5は、GaN LED10の形成過程において形成されるGaN LED構造100に適用されるLSAの第1の方法例に関する模式図である。GaN LED構造100は、基板20及びGaN多層構造30を備えている。走査レーザ光120は、p型GaN層50の表面52上に入射される。レーザ光120の走査は、レーザ光の走査または窒化ガリウムLED構造100の走査、例えば、GaN LED10の形成過程で使用されるウエハ(図示せず)の走査により実現される。滞留時間t
d=W/V
Sは、例えば、約10マイクロ秒(μs)から約10ミリ秒(ms)の範囲である。最大アニール温度T
AMは、例えば、約900℃から約1500℃の範囲である。最大アニール温度T
AMは、GaN LED構造100におけるGaN解離量、格子不整合による歪み緩和及び転位によって決定される。アニールの深さは、滞留時間とレーザ光の強度とに依存する。レーザ光の強度は、例えば、400W/mm
2である。GaN多層構造30は、例えば、数μmから約10μmの厚みを有し、アニールは、典型的には10μmから100μmに達する(つまり、アニールは、一般的には、GaN多層構造の全厚みに施され、場合によっては基板20まで達する)。このようにしてp型GaN層50のドーパント活性化が高められるが、実施形態の一例では、下層のn型GaN層40のドーパント活性化も高められるという点でさらに有利である。
【0024】
GaN LED構造100のアニールが一旦実行されると、p型GaN層表面52にTCL70が形成される。そして、
図1に示されるように、切り欠き80が形成され、n型コンタクト90n及びp型コンタクト90pが形成(例えば、蒸着)され、その結果、GaN LED10が形成される。
【0025】
図6は、
図5と同様であり、さらにTCL70を有するGaN LED構造100を図示している。TCL70の蒸着後にLSAを実行すれば、TCLがキャップ層として機能してアニール中に窒素のガス抜けが生じないようになり、その結果、アニール温度T
Aをより高めても材料の分解を防ぐことができる。
【0026】
図7は、
図1と同様であり、TCL表面72(p型コンタクト90pを含む)に対してレーザ光120を走査することによりLSAが実行されるGaN LED10を図示している。RTA等の従来アニール技術と比較してLSAでは熱量が比較的低いため、p型コンタクト90p中の金属がpn接合に過渡するリスクを伴うことなく、上述のようにアニール温度を高めることができる。
【0027】
ここで開示されるアニール方法に関する実施形態の一例では、
図7のGaN LEDのp型コンタクト90pにおいてオーム抵抗合金を形成するためにLSAが使用される。典型的には、p型抵抗接点は、500℃から800℃で10から20分間、Ni/Auを合金化することにより実現される。合金化温度が高められると、合金化金属がpn接合を介して過拡散するため、形態の劣化や漏洩が生じる。p型濃度が低くなるので、接触抵抗は高い値(例えば、約1x10
−3Ωcm
2)になる。このため、電圧低下が大きくなるだけでなく、局所的加熱も生じ、結果として、高電流レベルでのGaN LEDの寿命が短くなるおそれがある。LSAを使用すれば、凝集を生じさせることなく、アニール温度をより高くすることができる。このため、p型コンタクト90pを形成したり、GaN LED10全体の信頼性を改善したりする新たな契機となる。一実施形態において、p型コンタクトの接触抵抗は、約4x10
−4Ωcm
2から約1x10
−5Ωcm
2の範囲にある。このように、本発明に係る方法に関する実施形態の一例では、p型コンタクトを合金化すると共にp型GaN層50におけるドーパント活性化を高めることにより、結果として得られるGaN LED10の性能をさらに向上させるという相乗効果が得られる。
【0028】
図8は、
図5と同様であり、垂直方向のGaN LED10の一例を示す。ここで、基板20は金属(例えば、銅合金)であり、GaN多層構造30はn型GaN層40及びp型GaN層50を有する。ただし、n型GaN層40及びp型GaN層50は、
図5に示す状態とは逆の配置になっている。即ち、表面43を有するn型GaN層40が活性層60上に配置され、p型GaN層50が活性層60下に配置されている。n型コンタクト90nは、n型GaN層の表面43上に配置される。また、p型コンタクト90pは、p型GaN層下に配置され、反射層として機能する。また、p型コンタクト90pに隣接して反射層(図示せず)を別途追加してもよい。
図8のGaN LED10では、n型GaN層の表面43上(n型コンタクト90n上を含む)に対してレーザ光120が走査され、LSAが実行されている。金属基板20は、GaN多層構造30に接合され、良好な熱伝導性を有し、熱放散を効率的に行う。上述を繰り返すが、アニールはp型GaN層の全厚みに施される。このため、一実施形態では、この層でもドーパント活性が高められ、結果として得られるGaN LED10の性能がさらに高められる。
【0029】
一般的にこの層のドーパント濃度は高いので、通常、n型GaN層40にn型コンタクト90nの抵抗接点が形成されても問題とはならない。特定の接触抵抗ρ
cを1x10
−6Ωcm
2以下にすることができる。しかし、先進のフリップチップLEDでは、n型コンタクトは、他の基板への結合後に形成される。この場合、GaN多層構造30と(金属)基板20との熱膨張係数の不一致により生じるストレス及び転位を回避するため、熱量を制限する必要がある。なお、熱量は、E
aを熱活性化エネルギーとし、k
Bをボルツマン定数とし、T
Aをアニール温度とした場合、熱活性exp{−E
a/k
BT
A}とアニール持続時間との積として定義される。この場合、抵抗接点の形成には300℃の低温RTAが採用され、その結果、接触抵抗ρ
cは7x10
−4Ωcm
2となった。なお、この接触抵抗ρ
cは、LSAにおいてアニール温度を高くし熱量を極めて低くすることにより達成される接触抵抗と比較しても随分高くなっている。一実施形態では、LSAアニールを使用することによりn型GaNにおいて1x10
−6Ωcm
2程度低い接触抵抗ρ
cが達成された。このため、350mAの駆動電流において、レーザアニールを採用しないLEDに比べ、窒化ガリウムLEDの性能が8%まで改善される。n型コンタクトの抵抗の範囲は、例えば、約1x10
−4から約1x10
−6である。
【0030】
GaN LEDの接触抵抗を低下させることによって性能が改善される。ダイオード電流が大きくなるに伴い、(nk
BT/qI)(ここで、nは理想因子であり、k
Bはボルツマン定数であり、Tは接合部温度であり、qは素電荷であり、Iはダイオード電流である)で与えられる固有抵抗は、直流抵抗R
SがGaN LEDの効率に対して支配的になる点まで低下する。
【0031】
図9は、モデルとなる電流I(ミリアンペア,mA)と電圧(V)の関係を示す曲線を示しており、LSAを使用して窒化ガリウムLED10の性能を向上させ、作動電圧での直列抵抗を低減したことを示す。このグラフは、異なる直列抵抗R
Sを有するGaN LEDに対するものであり、「ダイヤモンド(◆)」の曲線は従来のGaN LEDをモデル化しており、「正方形(■)」の曲線は、本発明に係るLSAに基づく方法を使用してp型GaNのドーパント活性化を2.5倍高くしたGaN LEDをモデル化している。なお、電圧変化ΔVは、ΔV=IΔR
Sの関係により、直列抵抗における変化と関連性がある。
【0032】
電流I=350mAにおいて、直列抵抗R
Sが40%低下すると(接触抵抗は60%の低下)、作動電圧Vが10%低下する。このため、LED効率は、ルーメン/ワット換算で10%増加することになる。直列抵抗は主に接触抵抗に起因している。
【0033】
将来的に主要なLED製造業者に採用されるであろう高駆動電流型では、さらなる改良が見込まれる。
図9の2つの曲線は、駆動電流が高くなるにつれて、電圧の落ち込みが大きくなるように分岐している。このように、本発明に係る方法を使用して形成されたGaN LEDは、駆動電流が700mAの場合、従来のドープGaN LEDに比べて15〜20%効率的であることが予想される。このため、従来の100ルーメン/ワットの出力を有するGaN LEDは、約120ルーメン/ワットの出力を有するように改善される。
【0034】
当業者には明白であるが、本発明の趣旨及び範囲を逸脱することなく、本発明に対して種々の改良を施したり変更を加えたりすることができる。したがって、本発明に対する改良や変更が添付の特許請求の範囲及びその等価物の範囲に含まれるのであれば、その改良や変更は、本発明に包含される。