(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5969711
(24)【登録日】2016年7月15日
(45)【発行日】2016年8月17日
(54)【発明の名称】化学センサデバイス
(51)【国際特許分類】
G01N 21/65 20060101AFI20160804BHJP
G01N 21/41 20060101ALI20160804BHJP
B82Y 15/00 20110101ALI20160804BHJP
B82Y 40/00 20110101ALI20160804BHJP
G01N 21/01 20060101ALI20160804BHJP
【FI】
G01N21/65
G01N21/41 102
B82Y15/00
B82Y40/00
G01N21/01 B
【請求項の数】15
【全頁数】13
(21)【出願番号】特願2015-555135(P2015-555135)
(86)(22)【出願日】2013年1月25日
(65)【公表番号】特表2016-510405(P2016-510405A)
(43)【公表日】2016年4月7日
(86)【国際出願番号】US2013023266
(87)【国際公開番号】WO2014116238
(87)【国際公開日】20140731
【審査請求日】2015年9月16日
【早期審査対象出願】
(73)【特許権者】
【識別番号】511076424
【氏名又は名称】ヒューレット−パッカード デベロップメント カンパニー エル.ピー.
【氏名又は名称原語表記】Hewlett‐Packard Development Company, L.P.
(74)【代理人】
【識別番号】100099623
【弁理士】
【氏名又は名称】奥山 尚一
(74)【代理人】
【識別番号】100096769
【弁理士】
【氏名又は名称】有原 幸一
(74)【代理人】
【識別番号】100107319
【弁理士】
【氏名又は名称】松島 鉄男
(74)【代理人】
【識別番号】100114591
【弁理士】
【氏名又は名称】河村 英文
(74)【代理人】
【識別番号】100125380
【弁理士】
【氏名又は名称】中村 綾子
(74)【代理人】
【識別番号】100142996
【弁理士】
【氏名又は名称】森本 聡二
(74)【代理人】
【識別番号】100166268
【弁理士】
【氏名又は名称】田中 祐
(74)【代理人】
【識別番号】100170379
【弁理士】
【氏名又は名称】徳本 浩一
(74)【代理人】
【識別番号】100179154
【弁理士】
【氏名又は名称】児玉 真衣
(74)【代理人】
【識別番号】100180231
【弁理士】
【氏名又は名称】水島 亜希子
(74)【代理人】
【識別番号】100184424
【弁理士】
【氏名又は名称】増屋 徹
(72)【発明者】
【氏名】ジョウ,ジャン‐リン
(72)【発明者】
【氏名】リー,ジーヨン
(72)【発明者】
【氏名】バーセロ,スティーヴン・ジェイ
【審査官】
横尾 雅一
(56)【参考文献】
【文献】
米国特許出願公開第2011/0166045(US,A1)
【文献】
米国特許出願公開第2008/0094621(US,A1)
【文献】
特開2010−230352(JP,A)
【文献】
国際公開第2006/073117(WO,A1)
【文献】
特開2011−033539(JP,A)
【文献】
国際公開第2011/114812(WO,A1)
【文献】
特表2007−530925(JP,A)
【文献】
米国特許出願公開第2012/0092660(US,A1)
【文献】
国際公開第2011/016382(WO,A1)
【文献】
国際公開第2005/093419(WO,A1)
【文献】
米国特許出願公開第2012/0130050(US,A1)
【文献】
米国特許出願公開第2009/0137411(US,A1)
【文献】
米国特許出願公開第2009/0279084(US,A1)
【文献】
欧州特許出願公開第01857810(EP,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/00−21/74
G01N 33/48−33/98
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
基板と、
付着端と該付着端の反対側に遊離端とを有する細長いナノ構造体であって、該付着端が前記基板に取り付けられており、該遊離端が金属を含む、細長いナノ構造体と、
前記細長いナノ構造体に施された金属酸化物被膜と、
共有結合を介して前記被膜に付着されている官能基と
を備え、
前記細長いナノ構造体はポリマーを含む柱状構造体と該柱状構造体の先端にコーティング又は堆積された前記金属とを含み、かつ前記細長いナノ構造体は屈曲可能であり、
前記官能基が、下記式(I)のように付着官能基(A)とスペーサ基(B)と標的官能基(FG)とを含む、
A−B−FG (I)
[式(I)中、Aは前記細長いナノ構造体に結合する有機官能基であり、Bは−(CF2)n−(式中、nは1〜15の範囲である)であり、FGは標的分子を吸着することが可能な有機官能基である]化学センサデバイス。
【請求項2】
前記柱状構造体が、10nm〜500nmの直径、及び、20nm〜2μmの高さを有する、請求項1に記載の化学センサデバイス。
【請求項3】
前記ポリマーが、ポリメチルメタクリレート(PMMA)、ポリカーボネート、シロキサン、ポリジメチルシロキサン(PDMS)、フォトレジスト、及びナノインプリント用レジストからなる群から選択される、請求項1に記載の化学センサデバイス。
【請求項4】
前記官能基が金属イオン、有機化合物又は水素イオンと選択的に結合するように構成されている、請求項1に記載の化学センサデバイス。
【請求項5】
前記金属酸化物が、酸化ケイ素、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ガリウム、酸化インジウム、酸化ジルコニウム、酸化ハフニウム、酸化タンタル及びそれらの混合物からなる群から選択される、請求項1に記載の化学センサデバイス。
【請求項6】
前記金属が前記遊離端における金属被膜又は金属キャップである、請求項1に記載の化学センサデバイス。
【請求項7】
前記金属が、金、銀、銅、アルミニウム、白金及びそれらの混合物からなる群から選択される、請求項1に記載の化学センサデバイス。
【請求項8】
前記金属イオン、前記有機化合物又は前記水素イオンを1pptの濃度で検出するのに十分な感度がある、請求項4に記載の化学センサデバイス。
【請求項9】
前記化学センサデバイスが、コーティングされた前記細長いナノ構造体と動作可能に接続された検出器を更に備え、該検出器が、比色計、反射率計、分光計、分光光度計、ラマン分光計、光学顕微鏡及び発光を測定する計器からなる群から選択される、請求項1に記載の化学センサデバイス。
【請求項10】
アレイを形成する複数の前記細長いナノ構造体を更に備える、請求項1に記載の化学センサデバイス。
【請求項11】
前記アレイがサブアレイを含み、該サブアレイが標的分子に対する個々の選択性を有し、該標的分子が金属イオン、有機化合物及び水素イオンからなる群から個々に選択される、請求項10に記載の化学センサデバイス。
【請求項12】
請求項1に記載の細長いナノ構造体を安定化させるための方法であって、
前記細長いナノ構造体を基板上に配置するステップであって、該細長いナノ構造体が、該基板に付着されている付着端と該付着端の反対側に遊離端とを有する、ステップと、
前記細長いナノ構造体の遊離端に金属キャップ又は金属被膜を形成するステップと、
前記細長いナノ構造体に金属酸化物被膜をコーティングするステップと、
を含む、方法。
【請求項13】
前記金属酸化物被膜が、酸化ケイ素、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ガリウム、酸化インジウム、酸化ジルコニウム、酸化ハフニウム、酸化タンタル及びそれらの混合物からなる群から選択される、請求項12に記載の方法。
【請求項14】
請求項1に記載の化学センサデバイスの作製方法であって、
前記細長いナノ構造体を基板に配置するステップであって、該細長いナノ構造体が、該基板に付着されている付着端と該付着端の反対側に遊離端とを有する、ステップと、
金属を前記細長いナノ構造体の遊離端に堆積させるステップと、
金属酸化物を前記細長いナノ構造体上に堆積させるステップと、
を含む、方法。
【請求項15】
前記細長いナノ構造体の遊離端上の金属酸化物に官能基を付着させるステップを更に含む、請求項14に記載の方法。
【発明の詳細な説明】
【背景技術】
【0001】
分子解析を行うシステムとしては特に、表面増強ラマン分光法(SERS)、増強蛍光、増強発光及びプラズモンセンシングの使用を挙げることができる。特にSERSに関して、ラマン分光法は分子系において様々な低周波モードを研究するために凝縮系理化学において用いられている分光学的技法である。更に詳細にはラマン分光器では、特定の波長範囲の光の略単色ビームが分子サンプルを通過し、散乱光のスペクトルが放出される。分子から放出された波長スペクトルは「ラマンスペクトル」と呼ばれ、放出された光は「ラマン散乱光」と呼ばれる。ラマンスペクトルから、分子の電気エネルギー準位、振動エネルギー準位、及び回転エネルギー準位を明らかにすることができる。異なる分子は異なるラマンスペクトルを生じ、そのラマンスペクトルを、分子を特定し、更には分子構造を決定するフィンガープリントのようなものとして使用することができる。こうしたセンシング技法を用いて、かかる機器において機器感度を高め、センサを単純化し、更なる柔軟性を与えること等が望まれている。
【発明の概要】
【0002】
本発明の更なる特徴及び利点は、添付の図面とともに以下の詳細な説明から明らかとなり、これらはともに本開示の特徴を例示的に説明するものである。
【図面の簡単な説明】
【0003】
【
図1】本開示の一例による化学センサデバイスの断面図である。
【
図2】本開示の別の例による化学センサデバイスの断面図である。
【
図3】本開示の一例による化学センサデバイスの斜視図である。
【
図4】本開示の一例による方法のフローチャートである。
【
図5】本開示の一例による方法のフローチャートである。
【発明を実施するための形態】
【0004】
これより図で示した例示的な実施形態に言及し、本明細書における実施形態の記載には特定の用語を使用する。しかしながら、それによって本開示の範囲を限定する意図はないことを理解されたい。
【0005】
ラマン分光法は、光子が分子と相互作用した結果、散乱した光子のエネルギーがシフトする場合における分子エネルギー状態間の遷移を研究するのに使用することができる。分子のラマン散乱は2つのプロセスとして見ることができる。或る特定のエネルギー状態にある分子が初めに、入射光子により励起して、通常光周波数領域にある別の(仮想又は実際のいずれかの)エネルギー状態となる。次いで励起された分子が環境の影響下において双極子源として放射される。ここでは励起された分子は励起光子と比較してその周波数が相対的に低いもの(すなわちストークス散乱)であり得るか、又は相対的に高いもの(すなわちアンチストークス散乱)であり得る。異なる分子又は物体のラマンスペクトルは種の特定に使用することができる特有のピークを有する。そのためラマン分光法は多様な化学的又は生物学的センシング用途に有用な技法である。しかしながら、本来のラマン散乱プロセスは極めて不十分なものであり、ラマン散乱プロセス(すなわち上記の励起及び/又は放射プロセス)を増強するのに、粗い金属表面、様々なタイプのナノアンテナ及び導波路構造が使用されている。
【0006】
数ナノメートルの構造化した金属表面上に又は金属表面内に吸着された化合物(又はイオン)により生じたラマン散乱光は、液相又は気相において同じ化合物により生じたラマン散乱光よりも100倍超大きいものであり得る。化合物を分析するこのプロセスは表面増強ラマン分光法(「SERS」)と呼ばれる。近年ではSERSが、分子構造を調べ、界面及び薄膜系の特性を決定し、更には単一分子の検出を可能にする、慣例の強力なツールとなっている。技術者、物理学者及び化学者はSERSを行うシステム及び方法の改善を求め続けている。
【0007】
殆どのSERSシステムは或る特定のホットスポットにおいて電磁場を増強するだけである。これが望ましい場合もあるが、多くの場合、分析物は単純吸着等によりSERS基板上に一様に広がる。実際は、分析物のほんの一部しかホットスポットに集まらない。
【0008】
これに従い、新たな構造体群に基づく化学センサデバイスを開発することが有益であると認識されている。これらの構造体は表面増強ラマン分光法(SERS)に特に有用であるが、他のセンシング技法にも有用であり得る。特に本デバイスは、金属被膜又は金属キャップを有する遊離端を含む、基板に取り付けられている複数の細長いナノ構造体を含有することができ、ここではナノ構造体に金属酸化物被膜がコーティングされている。本ナノ構造体は屈曲し、分子を捕捉することができ、その後SERS技法を用いて該分子を検知することができる。さらに幾つかの具体例では、本ナノ構造体は、金属被膜又は金属キャップに施された金属酸化物被膜に付着されている官能基(例えば官能基を含有するリガンド)を含むことができ、これによりこれまでに達成されていない更なる選択性及び感度がもたらされる。
【0009】
化学センサデバイス、ナノ構造体を安定化させる方法、又は化学センサデバイスの作製方法について述べる場合、これらの記述はそれぞれ、他の実施形態に関連して例示的に述べられているかどうかに関わらず、その実施形態に適用可能であるとみなすことができることに留意されたい。このため例えば、化学センサデバイス用の官能基について述べている場合、このような官能基は化学センサデバイスの作製方法にも使用することができ、逆もまた同様である。
【0010】
したがって、化学センサデバイスは、基板と、付着端と該付着端の反対側に遊離端とを有する細長いナノ構造体であって、付着端が基板に取り付けられており、遊離端が金属を含む、細長いナノ構造体と、細長いナノ構造体に施された金属酸化物被膜と、共有結合を介して被膜に付着されている官能基と、を含むことができる。
【0011】
本明細書中で使用する場合、「ナノ構造体」という用語は、幅又は直径の寸法が1ミクロン未満の任意の構造体を表す。そのようなものとして、細長いナノ構造体は、長さが最短の幅よりも少なくとも2倍長いアスペクト比を有する構造体を含み得る。例としては、ナノコーン、ナノピラミッド、ナノロッド、ナノバー、ナノフィンガー、ナノポール及びナノグラスを挙げることができるが、それらに限定されない。本明細書中で使用する場合、「ナノコーン」、「ナノピラミッド」、「ナノロッド」、「ナノバー」「ナノポール」及び「ナノグラス」という用語はそれぞれ、実質的に、円錐型(コーン型)、ピラミッド型、桿状(ロッド状)、棒状(バー状)、竿状(ポール状)及び草状(グラス状)の構造を表し、数十ナノメートル(nm)の高さ及び数ナノメートルの直径又は幅という、小さいナノ寸法を有するものである。例えば、柔軟な柱状体として下記の寸法を有するナノ柱状体を挙げることができる。10nm〜500nmの直径、20nm〜2マイクロメートル(μm)の高さ、及び20nm〜500nmの柔軟な柱状体間の間隔。「実質的に円錐型」、「実質的にピラミッド型」、「実質的に桿状」、「実質的に棒状」、「実質的に竿状」、及び「実質的に草状」という当該技術分野の用語はそれぞれ、ナノテクノロジーを用いた作製の範囲内において円錐、ピラミッド、桿、棒、竿及び草状のアスペリティ(asperities)に近い形状を有する構造体を表す。
【0012】
本明細書中で使用する場合、「金属キャップ」という用語は、幅又は直径が500nm以下の、ナノスフェア、偏長のナノ楕円体(nanoellipsoids)、偏円のナノ楕円体、ナノディスク及びナノプレートを含むナノ構造体を表す。一例では、金属キャップは形状誘導性磁気異方性を備えることができる。本明細書中で使用する場合、「ナノスフェア」、「偏長のナノ楕円体」、「偏円のナノ楕円体」、「ナノディスク」、及び「ナノプレート」という用語は、それぞれ、実質的に、球型、偏長の楕円型、偏円の楕円型、円板状(ディスク状)及び板状(プレート状)の構造を表し、数ナノメートルのサイズ、すなわち数ナノメートルの高さ、直径又は幅という、小さいナノ寸法を有するものである。加えて、「実質的に球型」、「実質的に偏長の楕円型」、「実質的に偏円の楕円型」、「実質的に円板状」、及び「実質的に板状」という用語はそれぞれ、ナノテクノロジーを用いた作製の範囲内において球、偏長の楕円、偏円の楕円、円板及び板に近い形状を有する構造体を表す。
【0013】
概して、細長いナノ構造体は、金属被膜又は金属キャップを有する非金属柱状体を含み得る。一例では、ナノ構造体として、レジスト等のポリマーに、金、銀、銅、白金、アルミニウム等のSERS活性金属又は合金形態のそれらの金属の組合せをコーティングしたものを挙げることができる。概して、SERS活性金属を非金属柱状体の先端に選択的にコーティングするか又は堆積させることができる。加えて、SERS活性金属は、多層構造体、例えば1nm〜50nmの金のオーバーコーティング(over-coating)を有する10nm〜100nmの銀層、又はその逆の構造のものとすることができる。また、SERS活性金属に誘電性の薄層を更にコーティングすることができる。
【0014】
概して、ポリマーの使用により、ナノ構造体を十分に柔軟なものにすることで、先端同士が構造体の最上部で交わるように曲げることができる。また、ナノ構造体を形成するのに使用されるポリマーは絶縁体であっても又は導体若しくは半導体であってもよいことに留意されたい。好適なポリマーの例としては、ポリメチルメタクリレート(PMMA)、ポリカーボネート、シロキサン、ポリジメチルシロキサン(PDMS)、フォトレジスト、ナノインプリント用レジスト、並びに1つ又は複数のモノマー/オリゴマー/ポリマーを含む他の熱可塑性ポリマー及びUV硬化性材料が挙げられるが、それらに限定されない。別の例では、ナノ構造体は、曲げるのに十分な柔軟性を備える無機材料を含むことができる。このような無機材料の例としては、酸化ケイ素、ケイ素、窒化ケイ素、アルミナ、ダイアモンド、ダイアモンド状炭素、アルミニウム、銅等が挙げられる。
【0015】
基礎となる細長いナノ構造体を、(堆積、成長、又はナノ構造体を基板上に施すのに当該技術分野において知られる任意の他の技法により)基板上に形成したら、細長いナノ構造体に金属酸化物被膜をコーティングすることができる。金属酸化物被膜は肯定的に(affirmatively)施されるコーティングであり、細長いナノ構造体の単なる酸化表面ではないことに留意されたい。一例では、金属酸化物として、酸化ケイ素、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ガリウム、酸化インジウム、酸化ジルコニウム、酸化ハフニウム、酸化タンタル及びそれらの混合物を挙げることができる。一態様では、金属酸化物は酸化ケイ素とすることができる。金属酸化物のコーティングはコーティング又は堆積等の様々な方法により行うことができる。このような方法として、原子層堆積(ALD)又は電子ビームスパッタリング法を挙げることができる。一例では、被膜の厚さは1nm〜200nmの範囲とすることができる。別の態様では、被膜は2nm〜50nmとすることができる。
【0016】
特にこのような被膜は幾つかの利点をもたらすことができる。第1にこの被膜は化学センサデバイスの寿命を延ばすことができる。一例では、この被膜は、金属酸化物被膜を有しないことを除いて本ナノ構造体と実質的に同一である同等のナノ構造体と比較してナノ構造体の保存寿命を100%増大させる。上述のように、このような保存寿命の増大を化学センサデバイスに適用することができる。本明細書で使用される場合、「保存寿命」は機器又は部品の作動寿命を表す。第2に、金属酸化物被膜は場合によっては、非コーティング金属表面よりも良好な選択性をもたらすことができる。第3に、金属酸化物被膜は下層の金属が酸化するのを防ぐことができる。第4に、金属酸化物被膜は本明細書に記載される官能基及びリガンドの付着により良好な表面をもたらすことができる。
【0017】
化学センサデバイスは概して、金属被膜又は金属キャップに付着されている官能基を含む。一例では、官能基は下記式(I)のように付着官能基(A)、スペーサ基(B)及び官能基(FG)を含むリガンド型構造体を有することができる。
A−B−FG (I)
(式中、Aはナノ構造体上の金属酸化物被膜に付着する付着官能基であり、Bは置換又は非置換の直鎖又は分岐のアルキル又はアリールであり、FGは標的分子と結合することが可能な標的有機官能基である)。
【0018】
付着官能基として、金属酸化物被膜に共有結合することが可能な任意の基を挙げることができ、これには酸化物被膜の表面上のヒドロキシル基が含まれる。このような付着官能基として、トリクロロシリル基、トリメトキシシリル基、トリエトキシシリル基、トリプロポキシシリル基等を挙げることができる。他の付着官能基として、カルボン酸塩化物、塩化スルホニル、イソシアネート及び活性カルボン酸エステルを挙げることができる。
【0019】
スペーサ基は概して、付着官能基を有機官能基に共有結合させる任意の原子群を含む。一態様では、スペーサ基は−(CF
2)
n−(式中、nは1〜15の範囲である)とすることができる。
【0020】
標的有機官能基としては、標的分子と相互作用(イオン結合、配位結合、共有結合を含む)することが可能な任意の部位を挙げることができる。標的有機官能基は本明細書中に述べられるような官能基を単独で又はより複雑な構造、例えばメチルレッド染料と組み合わせて含むことができる。一例では、有機官能基として、−OH、−SH、−COOH、−CSSH、−COSH、−SO
3H、−PO
3H、−OSO
3H、−OPO
3H等を含むが、それらに限定されない酸性官能基又はそれらの対応する塩形態を挙げることができる。別の例では、有機官能基として、トリアルキルアミンR
1R
2N−、ピリジン又は置換ピリジン、イミダゾール又は置換イミダゾールを含むが、それらに限定されない塩基性官能基又はそれらの対応する塩を挙げることができ、ここでR
1及びR
2は独立して、水素、又は、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、n−オクチル、n−デシル、n−ドデシル、n−テトラデシル等を含むが、それらに限定されない任意のアルキル基又は分岐アルキル基とすることができる。
【0021】
化学センサデバイスは概して、標的分子と選択的に結合するように配合された官能基を含む。標的分子は金属イオン、有機化合物又は水素イオンとすることができる。一例では、標的分子が金属イオンであり、官能基が金属イオンと選択的に結合するように構成されている。一例では金属イオンとして、クロム、鉛、水銀、亜鉛、カルシウム、ナトリウム、水素、カリウム、アルソニウム及びそれらの混合物を挙げることができる。また、標的分子は対象の有機化合物とすることができる。一例では、有機化合物はメラミン、駆除剤、ラクトパミン、可塑剤、ビスフェノールA、爆発危険物(potential explosives)、例えばジニトロトルエン、ジニトロフェノール、トリニトロトルエン、トリニトロフェノール及びそれらの混合物とすることができる。
【0022】
液体から分離する場合、標的分子は一般的な溶媒に可溶性のものとすることができる。このような一般的な溶媒として、メタノール、エタノール、イソプロパノール、ヘキサフルオロイソプロパノール、トルエン、クロロホルム、テトラヒドロフラン、アセトン、アセトニトリル、キシレン、酢酸エチル、ヘキサン、ジクロロメタン等を挙げることができる。
【0023】
本官能基を使用することにより、化学センサデバイスを、金属イオン、有機化合物又は水素イオンを含む標的分子を1パーツパーミリオン(ppm)と低い濃度で検出するのに十分な感度にすることができる。一態様では、感度を1パーツパービリオン(ppb)と低いもの、また特定の一態様では、1パーツパートリオン(ppt)と低いものとすることができる。
【0024】
感度に関して、本化学的機器は、アレイを形成する、基板に付着されている複数の細長いナノ構造体を含むことができる。一例では、アレイはサブアレイを含むことができる。別の態様では、サブアレイはそれぞれ、標的分子に対する個々の選択性を有することができる。そのため、1つのアレイは複数の標的分子に対する選択性を有することができる。化学センサデバイスは更に、液体又は気体から標的分子を検出するように構成することができる。
【0025】
また、化学センサデバイスはナノ構造体に動作可能に接続された検出器を更に含むことができる。一例では、検出器は比色計、反射率計、分光計、分光光度計、ラマン分光計、光学顕微鏡及び/又は発光を測定する計器とすることができる。
【0026】
図1を参照して、化学センサデバイス100は、細長いナノ構造体104が付着されている基板102を含むことができる。細長いナノ構造体は金属キャップ108が上に堆積されている柱状構造体106を有する。さらに、細長い構造体及び基板に金属酸化物被膜110をコーティングして、金属酸化物被膜に共有結合した官能基112を更に含ませることができる。挿入図に示されるように、一例では、官能基は概して、リガンド型構造体A−B−FG(式中、Aはリガンドを金属キャップに結合させる付着官能基であり、Bはスペーサ基であり、FGはスペーサ基を介して付着官能基に接続する標的有機官能基である)を含むことができる。本図は化学センサデバイスの特定の構造を提示しているが、図で示した構造は限定を意図するものではなく、本開示は本明細書で述べられる様々な要素の使用を企図するものであることが理解される。例えば、本標的有機官能基はスペーサ基及び/又は付着官能基を必要とせずに金属酸化物被膜に直接結合させることができる。
【0027】
図2を参照して、官能基が結合した単一の細長いナノ構造体の拡大図を説明する。
図2の要素は必ずしも正しい縮尺で描かれているわけでも、また
図2は本明細書での使用に利用可能なあらゆる化学センサデバイスを表しているものでもない、すなわち
図2は1つの特定組のリガンドを有する1つの化学センサデバイスの例示的な実施形態を提示するものにすぎないことに留意されたい。この例では、化学センサデバイス200は細長いナノ構造体104が付着されている基板102を含むことができる。細長いナノ構造体は金属キャップ108が上に堆積されている柱状構造体106を含むことができる。細長い構造体及び基板は上にコーティングされた金属酸化物被膜110を更に含むことができる。第四級アミン官能基112はトリメトキシシリル付着基とのペルフルオロアルキル結合を介して金属酸化物に付着する。
【0028】
図3を参照して、化学センサデバイス300は、細長いナノ構造体104が付着されている基板102を含むことができる。細長いナノ構造体は、金属キャップ108が上に堆積されている柱状構造体106を含むことができる。この機器は細長いナノ構造体及び基板にコーティングされている金属酸化物層(図示せず)を更に含むことができる。金属キャップは金属キャップに付着されている官能基(図示せず)を含むこともできる。複数のナノ構造体はサブアレイ116を含むアレイ114を形成することができる。化学センサデバイスはナノ構造体に動作可能に接続された検出器118を更に含むことができる。また、光源又はレーザ源等の励起エネルギー源120も示されている。
【0029】
使用の際にこれらの機器は当業者に認識されるような多様な機能を備えることができ、1つの特定用途が例として本明細書に提示されている。説明するように、標的分子を本明細書に記載の機器の1つのような化学センサデバイスに曝し、標的分子を化学センサデバイス内に捕捉することで、捕捉された標的分子を生成することができる。次いで励起エネルギーを捕捉された標的分子に印加して、捕捉された標的分子から放出されたエネルギーを測定することができる。一例では、励起エネルギー及び放出されたエネルギーは電磁エネルギーとすることができる。また、更なる技法として、化学センサデバイスから捕捉された金属標的分子を洗い流すことを挙げることができる。このようにして、本機器は再使用及び/又は再利用することができる。
【0030】
図4を参照して、ナノ構造体を安定化させる方法400は、細長いナノ構造体を基板上に配置するステップであって、ナノ構造体が、該基板に付着されている付着端と該付着端の反対側に遊離端とを有する、ステップ402と、金属キャップ又は金属被膜をナノ構造体の遊離端上に形成するステップ404と、ナノ構造体に金属酸化物被膜をコーティングするステップ406と、を含むことができる。
【0031】
図5を参照して、化学センサデバイスを作製する方法500は、ナノ構造体を基板に配置するステップであって、ナノ構造体が、基板に付着されている付着端と該付着端の反対側に遊離端とを有する、ステップ502と、金属をナノ構造体の遊離端上に堆積させるステップ504と、金属酸化物をナノ構造体上に堆積させるステップ506と、を含むことができる。1つの具体例では、金属酸化物被膜上に官能基を含むことが望まれる場合、ナノ構造体の遊離端の金属酸化物に官能基を付着させる追加のステップ508を行ってもよい。
【0032】
本明細書及び添付の特許請求の範囲で使用される場合、数量を特定していない単数形(「a」「an」及び「the」)は、別途文脈により明確に指示されない限り、複数の指示物を包含することに留意されたい。
【0033】
本明細書中で使用する場合、複数の項目、構造要素、組成要素、及び/又は材料は便宜上共通のリストにおいて提示することができる。しかしながら、これらのリストはリストの各成員が別個の固有の成員として個々に特定されているようなものとして解釈するものとする。そのためこのようなリストの個々の成員は、相反するものが示されていない限り、単に共通の群における提示に基づいて同じリストの任意の他の成員と事実上均等なものとして解釈されるものとする。
【0034】
濃度、量及び他の数値データは本明細書中では範囲形式で表すか又は提示することができる。このような範囲形式は単に便宜上及び簡略化のために使用されているにすぎず、そのため範囲の境界として例示的に挙げられている数値だけでなく、その範囲内に包含される個々の数値又は部分範囲も全て、各数値及び部分範囲が例示的に挙げられているかのように包含するとして柔軟に解釈されることを理解されたい。例示として、「約1wt%〜約5wt%」という数値範囲は約1wt%〜約5wt%の例示的に挙げられている値だけでなく、指定範囲内にある個々の値及び部分範囲も包含すると解釈されるものとする。そのためこの数値範囲には、2、3.5及び4等の個々の値、並びに1〜3、2〜4及び3〜5等の部分範囲等が包含される。この原則は1つの数値だけを挙げている範囲にも適用される。さらにこのような解釈は記載されている範囲幅又は特徴に関わらず適用されるものとする。
【実施例】
【0035】
下記実施例は現状で分かっている開示の実施形態を説明するものである。そのためこれらの実施例は、本開示を限定するものとして解釈されるものではなく、単に本開示の機器を作製する方法を教示するためにある。このようなものとして、機器及びその製造方法の中でも代表的なものを本明細書に開示する。
【0036】
実施例1−塩基性官能基を有するナノ構造体の調製
スキーム1に、金属酸化物がコーティングされているナノ構造体1と、第四級アンモニウム塩を有する反応性のフッ素化シラン試薬との反応により得られる、正に帯電した細長いナノ構造体2の一例を記載する。
【化1】
【0037】
頭字語MOCNは金属酸化物がコーティングされているナノ構造体を表し、R
1、R
2及びR
3は独立して、水素、又はメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、n−オクチル、n−デシル、n−ドデシル、n−テトラデシル等が挙げられるが、それらに限定されない任意のアルキル基若しくは分岐アルキル基とすることができ、Xはヒドロキシル基と反応することができる任意の官能基、例えばCl
−、MeO、EtO、PrO等を表し、nは1〜15の整数を表し、Yは負に帯電した基、例えばハロゲンアニオン、カルボン酸アニオン、リン酸アニオン、硫酸アニオン、ヘキサフルオロリン酸アニオン、テトラフェニルボロン酸アニオン等を表す。
【0038】
実施例2−ペルフルオロアルキル基を有するナノ構造体の調製
スキーム2に、ナノ構造体表面上でのペルフルオロアルキル基による表面処理の一例を記載する。金属酸化物がコーティングされているナノ構造体1と、反応性の全フッ素化シラン試薬とのカップリング反応により、ナノ構造体に付着されたペルフルオロアルキル基を得ることで、疎水性であるナノ構造体3を形成した。
【化2】
【0039】
頭字語MOCNは金属酸化物がコーティングされているナノ構造体を表し、nは1〜15の整数を表す。
【0040】
スキーム3に、顔料表面上のヒドロキシル基と反応することで、小分子、オリゴマー及びポリマーを含むフッ素化材料を導入することができる一連の潜在的に反応性であるフッ素化材料を挙げる。潜在的に反応性であるフッ素化材料は下記のスキーム3で述べられているような反応性官能基、例えば酸塩化物5、活性エステル6、イソチオシアネート7、トリメトキシシラン8及び9を含有する。トリメトキシシラン8及び9に関して、nは1〜15の範囲とすることができ、x及びyは1〜10000の範囲とすることができ、Rf
1〜Rf
5は1個〜10個の炭素を含有するペルフルオロアルキル基とすることができる。これらの反応性官能基は全てヒドロキシル基と反応することで、共有結合したフッ素化材料で処理された表面を形成することができる。
【化3】
【0041】
本開示を或る特定の実施例を参照して記載しているが、当業者であれば、本開示の趣旨から逸脱することなく様々な修正、変更、削除及び置換を行うことができると理解するであろう。したがって本開示は特許請求の範囲によってのみ限定されることが意図される。