(58)【調査した分野】(Int.Cl.,DB名)
生体試料が包埋された包埋ブロックの表面を切削刃で予備切削して前記生体試料を所望露出状態とした後、前記包埋ブロックを本切削して薄切片を切り出す薄切片作製装置であって、
落射照明を照射して前記包埋ブロックの表面に向かって撮像を行い撮像データを取得する落射撮像データ取得手段と、
拡散照明を照射して前記包埋ブロックの表面に向かって撮像を行い撮像データを取得する拡散撮像データ取得手段と、
前記落射撮像データ取得手段で取得した撮像データを基にして、前記包埋ブロックの表面から露出している前記生体試料の露出部の露出形態を抽出する露出形態抽出手段と、
前記拡散撮像データ取得手段で取得した撮像データを基にして、前記包埋ブロックに埋設されている前記生体試料の埋設部の埋設形態を抽出する埋設形態抽出手段と、
前記予備切削の動作を制御する制御手段と、を備え、
前記制御手段は、前記露出形態抽出手段で抽出した前記露出形態と、前記埋設形態抽出手段で抽出した前記埋設形態とを比較して、前記予備切削の終了を判定し、
前記落射撮像データ取得手段で取得した撮像データを基にして、前記生体試料の露出部の中心を求めるとともに、前記拡散撮像データ取得手段で取得した撮像データを基にして、前記生体試料の埋設部の中心を求め、前記露出部の中心から前記埋設部の中心に向かうベクトルの向きと大きさを算出するベクトル算出手段をさらに備え、
前記制御手段は、前記ベクトル算出手段で算出したベクトルの大きさが第2所定値よりも大きいときに、前記ベクトルが小さくなるように前記ベクトルの向きに基づいて前記包埋ブロックと前記切削刃との相対姿勢を制御して、前記予備切削を行わせることを特徴する薄切片作製装置。
前記制御手段は、前記露出形態抽出手段で抽出した前記露出形態が、前記埋設形態抽出手段で抽出した前記埋設形態に近づくにつれて、前記予備切削の切削量が小さくなるように、前記予備切削を行わせることを特徴とする請求項1または2に記載の薄切片作製装置。
生体試料が包埋された包埋ブロックの表面を切削刃で予備切削して前記生体試料を所望露出状態とした後、前記包埋ブロックを本切削して薄切片を切り出す薄切片作製方法であって、
落射照明を照射して前記包埋ブロックの表面に向かって撮像を行い撮像データを取得する落射撮像データ取得工程と、
拡散照明を照射して前記包埋ブロックの表面に向かって撮像を行い撮像データを取得する拡散撮像データ取得工程と、
前記落射撮像データ取得工程で取得した撮像データを基にして、前記包埋ブロックの表面から露出している前記生体試料の露出部の露出形態を抽出するとともに、前記露出部の中心を求める露出形態抽出工程と、
前記拡散撮像データ取得工程で取得した撮像データを基にして、前記包埋ブロックに埋設されている前記生体試料の埋設部の埋設形態を抽出するとともに、前記埋設部の中心を求める埋設形態抽出工程と、
前記露出部の中心から前記埋設部の中心に向かうベクトルの向きと大きさを算出するベクトル算出工程と、
前記包埋ブロックの表面に対して切削刃による予備切削を実行する予備切削実行工程と、
前記露出形態抽出工程で抽出した前記露出形態と、前記埋設形態抽出工程で抽出した前記埋設形態とを比較して、前記予備切削の終了を判定する予備切削終了判定工程と、を備え、
前記予備切削実行工程では、前記ベクトル算出工程で算出したベクトルの大きさが第2所定値よりも大きいときに、前記ベクトルが小さくなるように前記ベクトルの向きに基づいて前記包埋ブロックと前記切削刃との相対姿勢を制御して、前記予備切削を行うことを特徴とする薄切片作製方法。
【背景技術】
【0002】
疾病にかかった動物や人の組織等を病理検査する場合には、通常これらの組織を2μmから5μmの厚さに薄切りして各種の染色を施した後、顕微鏡観察して検査を行っている。
この際、過去に取得された知識ベースに基づいて診断が行われている。特に病理学は、疾病と組織の形態変化とに関する膨大な知識の上に成り立っているので、過去の知識を有効に利用するために、検査対象となる試料を特定の断面で切断し、診断に必要な組織が表面に現れるように薄切する必要がある。
【0003】
一般的には、軟らかい組織や細胞の形態を壊さないように薄切りするために、試料を予めパラフィンに包埋して包埋ブロックとしている。そして、この包埋ブロックを2μmから5μmの厚さに薄くスライス(薄切り)することで、薄切片を作製している。こうすることで、検査対象物が軟らかい組織等であっても、形態を破壊せずに極薄にスライスすることができる。そして、この薄切片をスライドガラス等の基板上に固定することで、薄切片標本を作製している。通常作業者は、この薄切片標本を顕微鏡観察することで、上述した病理検査を行っている。
【0004】
ところで、薄切片を作製する際には、予備切削工程(粗削り工程)と本切削工程という2つの工程を行って、包埋ブロックから薄切片を切り出している。予備切削では、包埋ブロックを徐々に薄切りして表面を平滑面にすると共に、パラフィンに包埋されている試料を表面に露出させる。また、本切削では、試料が確実に露出している包埋ブロックの表面に対し、所定厚みの薄切片の切り出しを行う。
特に、上述した病理学からの要求によって、作製された薄切片には、試料が観察に好適な所望露出状態となっていることが望まれている。そのため、予備切削が重要であり、慎重に行う必要がある。
【0005】
しかしながら試料を包埋しているパラフィンは、固化した際に結晶化して白濁してしまうので、包埋ブロックとなった後に、試料がどのような姿勢でパラフィン内に包埋されているか包埋ブロックの外部から予め確認することができるものではなかった。そのため、予備切削を行う際に、作業者がパラフィンから顔を出した試料の面を常に観察しながら、切削刃の切り込み量や、包埋ブロックを載置している支持台の角度等を適宜調節して、生体試料が所望露出状態となるように調整する必要があった。この作業は、やり直しができない上、所望の面が出るまで切削を数十回以上繰り返さなければならないものであった。
したがって、熟練と長時間に亘る注意力が必要とされ、作業者への負担が大きくかかる大変な作業であった。
【0006】
そこで、包埋ブロック内の生体試料が確実に所望露出状態となるように、包埋ブロックに対して効率良く予備切削を行えるようにした薄切片作製装置が案出されている(例えば、特許文献1参照)。
【0007】
特許文献1に記載の薄切片作製装置は、包埋ブロックに対して落射照明光を照射する落射照明系と、包埋ブロックに対して拡散照明光を照射する拡散照明系と、落射照明光下と拡散照明光下で包埋ブロックを撮像する撮像部とが設けられ、落射照明光下で撮像した包埋ブロックの撮像データと、拡散照明光下で撮像した包埋ブロックの撮像データを重ね合せた状態でモニターに表示することにより、作業者がモニターの表示を確認しながら、予備切削の際の包埋ブロックの切削量や傾斜角度等を容易に設定できるようになっている。
【0008】
包埋ブロックに落射照明光を照射したときには、パラフィン等の包埋剤の部分と生体試料の露出している部分とで輝度の差が生じ、一方、包埋ブロックに拡散照明光を照射したときには、光が包埋ブロックの内部にまで入り込んで、切削面上に露出していない生体試料に当たって反射する。
特許文献1に記載の薄切片作製装置は、これらのことに着目し、落射照明光下で得た撮像データと拡散照明光下で得た撮像データをモニター上で重ね合せて表示することにより、作業者が包埋ブロックの表面の状態と包埋ブロック内の生体試料の状態を正確に把握できるようにしたものである。
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかし、この従来の薄切片作製装置においては、落射照明光下で得た撮像データと拡散照明光下で得た撮像データをモニター上で重ね合せて表示することにより、作業者が包埋ブロックの表面と内部の状態を正確に把握できるようになるものの、その後に行われる生体試料が所望露出状態であるか否かの判断と、所望露出状態に近づけるための切削量等の指示は作業者が勘に頼ってその都度行わなければならなかった。
【0011】
そこでこの発明は、包埋ブロック内の生体試料を、予備切削の段階で自動的に、かつ確実に所望露出状態とすることのできる薄切片作製装置及び薄切片作製方法を提供しようとするものである。
【課題を解決するための手段】
【0012】
この発明は、前記課題を解決するために以下の手段を採用した。
請求項1に係る薄切片作製装置の発明は、生体試料が包埋された包埋ブロックの表面を切削刃で予備切削して前記生体試料を所望露出状態とした後、前記包埋ブロックを本切削して薄切片を切り出す薄切片作製装置であって、落射照明を照射して前記包埋ブロックの表面に向かって撮像を行い撮像データを取得する落射撮像データ取得手段と、拡散照明を照射して前記包埋ブロックの表面に向かって撮像を行い撮像データを取得する拡散撮像データ取得手段と、前記落射撮像データ取得手段で取得した撮像データを基にして、前記包埋ブロックの表面から露出している前記生体試料の露出部の露出形態を抽出する露出形態抽出手段と、前記拡散撮像データ取得手段で取得した撮像データを基にして、前記包埋ブロックに埋設されている前記生体試料の埋設部の埋設形態を抽出する埋設形態抽出手段と、前記予備切削の動作を制御する制御手段と、を備え、前記制御手段は、前記露出形態抽出手段で抽出した前記露出形態と、前記埋設形態抽出手段で抽出した前記埋設形態とを比較して、前記予備切削の終了を判定
し、前記落射撮像データ取得手段で取得した撮像データを基にして、前記生体試料の露出部の中心を求めるとともに、前記拡散撮像データ取得手段で取得した撮像データを基にして、前記生体試料の埋設部の中心を求め、前記露出部の中心から前記埋設部の中心に向かうベクトルの向きと大きさを算出するベクトル算出手段をさらに備え、前記制御手段は、前記ベクトル算出手段で算出したベクトルの大きさが第2所定値よりも大きいときに、前記ベクトルが小さくなるように前記ベクトルの向きに基づいて前記包埋ブロックと前記切削刃との相対姿勢を制御して、前記予備切削を行わせることを特徴するものである。
この場合、生体試料の露出形態が埋設形態に対して所定の条件を満たしたとき、生体試料が所望露出状態であると判断することができる。そこで、制御手段が露出形態と埋設形態とを比較して予備切削の終了を判定することにより、包埋ブロック内の生体試料を自動的かつ確実に所望露出状態とすることができる。
また、露出部の中心から埋設部の中心に向かうベクトルの大きさが大きい場合には、埋設部の中心から離れた位置に露出部が存在するので、生体試料が大きく傾いた状態で包埋ブロック内に埋設されていると考えられる。この状態で予備切削を進めても、生体試料を大きく露出させることができない。一方、前記ベクトルの大きさが小さい場合には、埋設部の中心と近い位置に露出部が存在するので、生体試料が傾きの少ない状態で埋設しているものと考えられる。この状態で予備切削を行えば、生体試料を大きく露出させて所望露出状態とすることができる。そこで、前記ベクトルが第2所定値より大きい場合には、制御手段により前記ベクトルが小さくなるように予備切削を行わせることで、包埋ブロック内の生体試料を自動的かつ確実に所望露出状態とすることができる。しかも、前記ベクトルの向きに基づいて包埋ブロックと切削刃との相対姿勢を制御することで、前記ベクトルの大きさを迅速かつ確実に小さくすることができる。
なお、「露出部の中心」とは、生体試料の露出部の重心位置であっても、露出部の最大幅部分の中心であっても良い。また、同様に、「埋設部の中心」とは、生体試料の埋設部の重心位置であっても、埋設部の最大幅部分の中心であっても良い。
【0013】
請求項2に係る発明は、請求項1に係る薄切片作製装置において、前記露出形態抽出手段は、前記露出形態として、前記包埋ブロックの表面から露出している前記生体試料の露出面積を求め、前記埋設形態抽出手段は、前記埋設形態として、前記包埋ブロックに埋設されている前記生体試料の投影面積を求め、前記制御手段は、前記露出形態抽出手段で求めた前記露出面積と前記埋設形態抽出手段で求めた投影面積との比率が第1所定値よりも大きくなったときに、前記予備切削を終了させることを特徴とするものである。
この場合、生体試料の露出面積と投影面積との比率が第1所定値よりも大きくなったとき、露出面積が最大値である投影面積に接近したことになるので、生体試料が所望露出状態であると判断することができる。この時点で制御手段が予備切削を終了させることにより、包埋ブロック内の生体試料を自動的かつ確実に所望露出状態とすることができる。
【0015】
請求項
3に係る発明は、請求項1
または2に係る薄切片作製装置において、前記制御手段は、前記露出形態抽出手段で抽出した前記露出形態が、前記埋設形態抽出手段で抽出した前記埋設形態に近づくにつれて、前記予備切削の切削量が小さくなるように、前記予備切削を行わせることを特徴とするものである。
この場合、包埋ブロックの予備切削工程において、包埋ブロック上の生体試料の露出部が生体試料の埋設部の所望領域と大きく離れている間は、予備切削の一回当たりの切削量を大きくして包埋ブロックを効率良く切削することができる。また、包埋ブロック上の生体試料の露出部が生体試料の埋設部の所望領域に近づくと、予備切削の一回当たりの切削量を小さくすることにより、所望露出状態を通り過ぎることなく、生体試料を確実に所望露出状態とすることができる。また、包埋ブロックの表面をより平滑化することができる。
【0016】
請求項5に係る薄切片作製方法の発明は、生体試料が包埋された包埋ブロックの表面を切削刃で予備切削して前記生体試料を所望露出形態とした後、前記包埋ブロックを本切削して薄切片を切り出す薄切片作製方法であって、落射照明を照射して前記包埋ブロックの表面に向かって撮像を行い撮像データを取得する落射撮像データ取得工程と、拡散照明を照射して前記包埋ブロックの表面に向かって撮像を行い撮像データを取得する拡散撮像データ取得工程と、前記落射撮像データ取得工程で取得した撮像データを基にして、前記包埋ブロックの表面から露出している前記生体試料の露出部の露出形態を抽出する
とともに、前記露出部の中心を求める露出形態抽出工程と、前記拡散撮像データ取得工程で取得した撮像データを基にして、前記包埋ブロックに埋設されている前記生体試料の埋設部の埋設形態を抽出する
とともに、前記埋設部の中心を求める埋設形態抽出工程と、
前記露出部の中心から前記埋設部の中心に向かうベクトルの向きと大きさを算出するベクトル算出工程と、前記包埋ブロックの表面に対して切削刃による予備切削を実行する予備切削実行工程と、前記露出形態抽出工程で抽出した前記露出形態と、前記埋設形態抽出工程で抽出した前記埋設形態とを比較して、前記予備切削の終了を判定する予備切削終了判定工程と、を備え
、前記予備切削実行工程では、前記ベクトル算出工程で算出したベクトルの大きさが第2所定値よりも大きいときに、前記ベクトルが小さくなるように前記ベクトルの向きに基づいて前記包埋ブロックと前記切削刃との相対姿勢を制御して、前記予備切削を行うことを特徴とするものである。
【発明の効果】
【0017】
この発明によれば、落射撮像データ取得手段と拡散撮像データ取得手段とで取得した撮像データに基づいて、包埋ブロックにおける生体試料の露出形態と埋設形態とを抽出した後に、抽出した露出形態と埋設形態とを比較して予備切削の終了を判断するため、包埋ブロック内の生体試料を、予備切削の段階で自動的に、かつ確実に所望露出状態とすることができる。
【発明を実施するための形態】
【0019】
以下、この発明の一実施形態を図面に基づいて説明する。
この薄切片作製装置1は、
図1に示すように、生体試料Sがパラフィン(包埋剤)Pに包埋された包埋ブロックBを予備切削した後に、包埋ブロックBを本切削することで薄切片を作製する装置である。なお、生体試料Sとは、例えば、人体や実験動物等から取り出した臓器等の組織であり、医療分野、製薬分野、食品分野、生物分野等で適時選択されたものである。
【0020】
本実施形態の薄切片作製装置1は、
図1に示すように、包埋ブロックBが固定される台部2と、一仮想平面Hに沿って移動する切削刃3と、包埋ブロックBに対して落射照明光を照射する落射照明系4と、包埋ブロックBに対して拡散照明光を照射する拡散照明系5と、落射照明系4又は拡散照明系5による照明光下において台部2上の包埋ブロックBを撮像する撮像部30と、撮像部30で撮像された画像やその画像に処理を施した画像を表示するモニター33と、これら各構成品を総合的に制御するコントロールユニット8とを備えている。
【0021】
台部2は、包埋ブロックBが載置される支持台10と、一仮想平面H上で互いに直交するX軸及びY軸の2軸回りにそれぞれ支持台10を回動させる回動機構11と、一仮想平面Hに直交するZ軸方向に支持台10を移動させる移動機構12とを有している。また、この台部2は、落射照明系4の光軸C上に配置されている。
【0022】
回動機構11は、支持台10をY軸回りに回動させるY軸回動機構11aと、支持台10をX軸回りに回動させるX軸回動機構11bとから構成されており、コントロールユニット8からの指示に基づいて作動するようになっている。
移動機構12は、回動機構11及び支持台10をZ軸方向に移動させるものであり、回動機構11と同様にコントロールユニット8からの指示に基づいて作動するようになっている。
【0023】
切削刃3は、X軸方向に移動する切削刃移動機構15に接続されている。これにより、切削刃3は、一仮想平面Hに沿って移動するようになっている。この切削刃移動機構15は、コントロールユニット8からの指示を受けて作動するようになっており、移動速度(切削速度)や切削タイミング等が制御される。
また、コントロールユニット8は、台部2の移動機構12を制御する高さ調整部43と、台部2の回動機構11を制御する角度調整部44と、を含む制御部45(制御手段)を備えている。
制御部45は、包埋ブロックBの予備切削工程においては、包埋ブロックBの表面に生体試料Sの断面の大きい特定領域を露出させるように、高さ調整部43で移動機構12を制御して包埋ブロックBを適宜上昇させて切削量を調整するとともに、切削刃移動機構15を制御して切削刃3による包埋ブロックBの切削を実行するようになっている。
【0024】
落射照明系4は、一仮想平面Hに直交し支持台10上の包埋ブロックBの表面(切削面)に向かう光軸Cを有している。この落射照明系4は、複数のLED20が面状に配された面光源21と、面光源21から照射された光を平行光にするための図示しない光学系と、平行光を支持台10上の包埋ブロックBの表面に向かうように反射させると共に包埋ブロックBからの反射光を透過させるハーフミラー22と、を有している。なお、光源としては、面光源21ではなく、点光源からの光をピンホール及びコリメートレンズを通過させて平行光にするものであっても構わない。また、この実施形態では、光源(面光源21)から照射された光をハーフミラー22で反射させて包埋ブロックBの表面に向かう光軸Cを得るようにしているが、ハーフミラー22を設けずに、光源を包埋ブロックBの表面と直接対向するように配置して光軸Cを得るようにしても良い。
また、拡散照明系5は、拡散照明光を照射する光源25を有している。
【0025】
撮像部30は、図示しない撮像素子を備え、撮像軸が光軸Cと合致するように設定されている。また、撮像部30は、落射照明系4の照明光下と、拡散照明系5の照明光下において、それぞれ包埋ブロックBを鉛直上方側から撮像する。この撮像部30で撮像された各撮像データは、図示しない画像記憶部に一旦記憶され、後に詳述するコントロールユニット8に出力される。
なお、以下では、落射照明系4の照明光下で撮像された包埋ブロックBの撮像データを落射撮像データと呼び、拡散照明系5の照明光下で撮像された包埋ブロックBの撮像データを拡散撮像データと呼ぶものとする。
また、この実施形態においは、落射照明系4と撮像部30とが落射撮像データ取得手段を構成し、拡散照明系5と撮像部30とが拡散撮像データ取得手段を構成している。
【0026】
ところで、
図2は、台部2の回動機構11を初期角度にして包埋ブロックBの予備切削を開始した直後における、拡散照明光下での包埋ブロックBの撮像データ(A)と、落射照明光下での包埋ブロックBの撮像データ(B)を示している。
拡散照明光は、
図2(A)に示すように、包埋ブロックBの内部にまで入り込んで、包埋ブロックBの表面に露出していない生体試料S部分に当たって反射するため、生体試料Sの光軸C方向の投影部分の全体の輝度が周域部分と異なることになる。
これに対して、落射照明光は、パラフィンPが存在する部分では鏡面反射するのに対して、生体試料Sがある部分では散乱するため、
図2(B)に示すように、包埋ブロックBの表面(切削面)に生体試料Sが露出している場合には、生体試料Sの部分とパラフィンPの部分とで反射光の強度に差が生じる。つまり、包埋ブロックBの露出している部分は周囲の部分と輝度が異なることになる。
【0027】
コントロールユニット8は、撮像部30から入力された落射撮像データを基にして、包埋ブロックBの表面から光軸C方向に露出している生体試料Sの露出面積S1(露出形態。
図5参照。)を算出する露出面積算出部40(露出形態抽出手段)と、撮像部30から入力された拡散撮像データを基にして、包埋ブロックBに埋設されている生体試料Sの光軸C方向の投影面積S0(埋設形態。
図5参照。)を算出する投影面積算出部41(埋設形態抽出手段)と、撮像部30から入力された落射撮像データと拡散撮像データとを基にして、生体試料Sの露出面積S1部分(露出部)の中心G1(例えば、重心位置)から生体試料Sの投影面積S0部分(埋設部)の中心G0(例えば、重心位置)に向かうベクトルVの向きと大きさを算出するベクトル算出部42(ベクトル算出手段)と、を備えている。
なお、上記の中心G1,G0は、露出面積S1部分(露出部)と投影面積S0部分(埋設部)の各重心位置に限らず、露出面積S1部分と投影面積S0部分のX方向の最大幅部分の中心線と、Y方向の最大幅部分の中心線とが交わる点であっても良い。
【0028】
コントロールユニット8の露出面積算出部40や投影面積算出部41、ベクトル算出部42においては、上記の事項に着目して、撮像部30から入力される落射撮像データと拡散撮像データを基にして、生体試料Sの露出部分の輪郭と埋設部分の輪郭を求めようにしている。
図3は、生体試料Sの露出部や埋設部の輪郭の求め方の一例を示す包埋ブロックBの撮像データである。
撮像データから生体試料Sの存在領域を抽出する場合には、輝度による二値化により生体試料Sの存在領域を抽出することもできるが、
図3中の矢印で示すように、画像の外側から中心に向かって輝度の微分を行い、微分値が閾値を超える最初の点をエッジとして検出し、これらの点を結ぶことによって生体試料Sの輪郭を効率良く抽出することができる。なお、このようにして物体の輪郭を抽出するに際しては、必要に応じて画像のスムージング(ぼかし処理)を前処理として行うようにしても良い。スムージングを行った場合には、微分による雑音を低減することができる。
【0029】
図4は、包埋ブロックB内の生体試料Sの埋設部の投影面積S0を示す図(A)と、包埋ブロックB上の生体試料Sの露出部の露出面積S1を示す図(B)を併せて記載した図である。
生体試料Sの埋設部の投影面積S0と露出部の露出面積S1とは、例えば、上述のようにして抽出した埋設部の輪郭と露出部の輪郭を基にして、投影面積算出部41と露出面積算出部40で算出することができる。
【0030】
図5は、
図4の(A)と(B)の画像を重ね合わせて、包埋ブロックB内の生体試料Sの投影面積S0部分の中心G0から露出面積S1部分の中心G1に向かうベクトルVを示した図である。このベクトルVは、ベクトル算出部42において、投影面積S0部分の中心G0の座標から露出面積S1部分の中心G1の座標を減算することによって求めることができる。
なお、ベクトルVを求めるに際しては、落射照明光下の撮像データと拡散照明光下の撮像データを直接重ね合せる必要はなく、数値データのみによって処理を行うようにしても良い。
【0031】
また、コントロールユニット8の制御部45は、露出面積算出部40で算出した露出面積S1と投影面積算出部41で算出した投影面積S0とを比較し、投影面積S0に対する露出面積S1の比率R(S1/S0)が第1所定値Re(例えば、80%)よりも大きくなったとき、つまり、生体試料Sの露出状態が所望露出状態となったときに、移動機構12,15の作動を停止させる(包埋ブロックBの予備切削を完了する)ようになっている。
【0032】
さらに、制御部45は、包埋ブロックBの予備切削中に、露出面積算出部40で算出した露出面積S1が、投影面積算出部41で算出した投影面積S0に近づくと、その近接具合に応じて支持台10のZ方向の移動量(切削刃3による切削量)が小さくなるように台部2の移動機構12を制御するようになっている。
【0033】
また、制御部45は、ベクトル算出部42で算出したベクトルVの大きさが第2所定値(例えば、包埋ブロックBの各辺の平均長さの5%)よりも大きいときには、算出されるベクトルVの絶対値が小さくなるように(現在算出されたベクトルVを打ち消すように)、ベクトルVの向きに基づいて台部2の回動機構11を制御して、切削刃3に対する包埋ブロックBの相対姿勢を調整し、切削刃3による予備切削を実行させるようになっている。
【0034】
また、
図6は、ベクトル算出部42で求めたベクトルVを0に近づけるように(包埋ブロックBの切削面を一仮想平面Hに対して平行にするように)台部2の回動機構11の傾斜角度を変化させて包埋ブロックBの予備切削を行ったときの、重ね合せた撮像データの変化の様子を(A)〜(E)で順次示す図である。
この図に示すように、ベクトルVを0に近づけるように回動機構11の傾斜角度を変化させて包埋ブロックBの切削を進めた場合、切削の進行とともに一仮想平面Hに近接した側から離間した側へと切削ラインLが移動する。そして、この切削ラインLの進行とともに切削面全体の傾斜角度が修正される。この結果、ベクトルVは、
図6(A)と
図6(E)を比較して小さくなる。
【0035】
ここで、この薄切片作製装置1のコントロールユニット8による制御を、
図7,
図8に示すフローチャートに沿って説明する。
図7に示すように、ステップS101において、包埋ブロックBを台部2の支持台10上にセットし、ステップS102において、回動機構11を初期状態にして、支持台10を水平にする。
ステップS103においては、切削刃3による包埋ブロックBの一回当たりの切削量(移動機構12の上昇量)を初期値Tsにセットして、切削刃3による包埋ブロックBの予備切削を開始する。なお、初期値Tsはユーザーが適宜設定する。
ステップS104では、撮像部30によって落射照明光下で包埋ブロックBの撮像を行って落射撮像データを取得し、ステップS105においては、例えば、落射撮像データに基づいて生体試料Sの露出部の領域抽出を行い、抽出領域の面積が予め設定した値よりも大きいか否かによって包埋ブロックBの外面から生体試料Sが露出したか否かを判定する。
ステップS105において、Noの場合(露出しない場合)には、ステップS103に戻って再度切削を行い、Yesになった(露出した)時点で、ステップS106へと進む。
【0036】
ステップS106においては、撮像部30によって拡散照明光下で包埋ブロックBの撮像を行い、拡散撮像データに基づいて生体試料Sの埋設部の領域抽出を行った後に、投影面積S0と、その投影面積S0部分の中心G0を算出する。
ステップS107においては、撮像部30によって落射照明光下で包埋ブロックBの撮像を行い、落射撮像データに基づいて生体試料Sの露出部の領域抽出を行った後に、露出面積S1と、その露出面積S1部分の中心G1を算出する。
つづくステップS108においては、投影面積S0と露出面積S1との比率R(R=S1/S0)を算出する。
【0037】
次のステップS109においては、面積の比率Rが、ユーザーが適宜設定する第1所定値Re(例えば、80%)よりも大きいか否かを判定し、ここでYesの場合には、包埋ブロックBの表面が所望露出状態となっているものとして予備切削を完了する。また、ステップS109での判定がNoの場合には、包埋ブロックBの表面が所望露出状態となっていないものとしてステップS110に進む。なお、初めてステップS109に進んだ場合には、包埋ブロックBの表面からの生体試料Sの露出は僅かであるため、ステップS110に進むことになる。
【0038】
ステップS110では、露出面積S1部分の中心G1から投影面積S0部分の中心G0に向かうベクトルVの向きと大きさを算出し、次のステップS111では、ステップS110で求めたベクトルVの絶対値が、ユーザーが適宜設定する第2所定値V0よりも大きいか否かを判定する。
ここで、Yesの場合(第2所定値V0よりも大きい場合)には、包埋ブロックBの表面を効率良く所望露出状態にするように切削するのに、包埋ブロックBの傾斜姿勢が適正でないものとして後に詳述する角度補正切削処理S112へと進み、Noの場合(ベクトルV0以下の場合)には、包埋ブロックBの傾斜姿勢が適正であるものとしてステップS113に進む。
【0039】
ステップS113においては、ステップS108で求めた面積の比率Rに応じた切削刃3による切削厚みt(=支持台10の上昇量)を後に詳述する方法で算出し、ステップS114においては、ステップS113で算出した切削厚みt(=支持台10の上昇量)で、切削刃3による予備切削を継続する。ステップS114の次にはステップS106に戻り、ステップS109で面積の比率Rが第1所定値Reよりも大きくなるまで同様のループを繰り返す。
【0040】
ここで、ステップS113の切削厚みtは、例えば、以下の式(1)に基づいて算出する。
t=Te+β×Ts …(1)
Te:最終切削厚み(本切削での切削厚み),β:加速係数,Ts:初期値(予備切削開始時の厚み)
なお、Te及びTsは、ユーザーが適宜設定する値である。
また、加速係数βは、面積の比率Rの到達度を、r(r=R/Re)としたときに、rの単調減少関数であるfによって、β=f(r)として求めることができる。ただし、関数f(r)は、r=0でβ=1となり、r=1でβ=0となる。
したがって、ステップS113で算出される切削厚みtは、面積の比率Rの到達度r(=R/Re)が1に近づくにつれて次第に小さくなる。このとき当然のことながら、支持台10の移動量も、面積の比率の到達度r(=R/Re)が1に近づくにつれて次第に小さくなる。
【0041】
また、上記の単調減少関数β=f(r)は、
図9に示すように、rの増加に応じて上に凸の円弧を描いて値が減少する関数であることがさらに望ましい。この場合、到達度rが0から1に近づくにしたがって加速係数βがより速いペースで0に近づき、切削厚みtも急激に小さくなる。したがって、この場合より迅速に最終切削厚みTeに近づけることができる。
【0042】
図8に示すフローチャートは、角度補正切削処理S112の具体的な処理の流れを示すものである。
同図に示すステップS201においては、直前にステップS110で求めたベクトルVのX,Y成分(Vx,Vy)を算出し、次のステップS202においては、ベクトルVを0に近づけるように、ベクトルVの向きに基づいて台部2のX軸回動機構11bとY軸回動機構11aの傾斜角度を調整する。つまり、ステップS202においては、X軸回動機構11bとY軸回動機構11aに対してX=Vx×α,Y=Vy×αの指示値を出力する。なお、αは、実験によって求めた係数である。
【0043】
ステップS203では、ステップS202で回動機構11(X軸回動機構11b及びY軸回動機構11a)の傾斜角度を調整して予備切削を行った場合に、包埋ブロックBの表面(切削面)の全域が平坦になるまでの総切削量(移動機構12の上昇量)を算出して決定する。この総切削量は、包埋ブロックBの傾斜角度とサイズ等から算出することができる。
【0044】
ステップS204では、傾斜角度を調整した包埋ブロックBに対して、予め設定した切削厚みで予備切削を行う。こうして切削予備切削を進めると、
図6(A)〜(E)に示すように、傾斜角度調整当初に切削刃3に近接していた領域から離間していた領域に切削ラインLが次第に移動する。
次の、ステップS205では、総切削量がステップS203で決定した値に達したか否かを判定し、ここでYesの場合には、角度補正切削処理S112を終了し、Noの場合には、ステップS204に戻って予備切削を継続する。
角度補正切削処理S112を終了した後には、
図7のステップS106に戻り、ステップS109で面積の比率Rが第1所定値Reよりも大きくなるまで、前述のループを繰り返す。
【0045】
以上で制御の流れを説明したように、この実施形態の薄切片作製装置1は、薄切片の本切削の前段階の予備切削において、以下の工程から成る方法を採用している。
(a)落射撮像データ取得工程(ステップS107)
落射照明光を包埋ブロックBの表面と直角に照射して、その状態で包埋ブロックBの表面に向かって撮像を行い、落射撮像データを取得する工程。
(b)拡散撮像データ取得工程(ステップS106)
拡散照明光を包埋ブロックBに照射して、その状態で包埋ブロックBの表面に向かって撮像を行い、拡散撮像データを取得する工程。
(c)露出形態抽出工程(ステップS107)
落射撮像データ取得工程で取得した落射撮像データを基にして、包埋ブロックBの表面から露出している生体試料Sの露出部の露出面積(露出形態)を算出(抽出)する工程。
(d)埋設形態抽出工程(ステップS106)
拡散撮像データ取得工程で取得した拡散撮像データを基にして、包埋ブロックBに埋設されている生体試料Sの埋設部の投影面積(埋設形態)を算出(抽出)する工程。
(e)予備切削実行工程(ステップS114)
包埋ブロックBの表面に対して切削刃3による予備切削を実行する工程。
(f)予備切削終了判定工程(ステップS109)
露出形態抽出工程で算出(抽出)した露出面積(露出形態)と、埋設形態抽出工程で算出(抽出)した投影面積(埋設形態)とを比較して、包埋ブロックBに対する予備切削の終了を判定する工程。
【0046】
以上のように、この実施形態の薄切片作製装置1においては、包埋ブロックBの予備切削の工程において、包埋ブロックBに対して落射照明光下と拡散照明光下でそれぞれ撮像部30で撮像を行う(撮像データを取得する)とともに、ここで取得した撮像データ(落射撮像データ及び拡散撮像データ)を基にして生体試料Sの露出面積S1と投影面積S0とを算出し、投影面積S0に対する露出面積S1の比率Rが第1所定値Reよりも大きくなった場合に、包埋ブロックBの切削を自動的に停止するため、包埋ブロックB内の生体試料Sの断面積の大きい所望領域を自動的に、かつ確実に表面に露出させることができる。
したがって、この薄切片作製装置1を採用した場合には、包埋ブロックBの予備切削の工程において、包埋ブロックBの切削量の判断と指示を作業者が勘に頼ってその都度行う必要がないため、作業者の負担を大幅に軽減することができる。
【0047】
また、この実施形態の薄切片作製装置1は、包埋ブロックBの予備切削において、包埋ブロックB上の生体試料Sの露出面積S1が包埋ブロックB内の生体試料Sの投影面積S0に近づくにつれて、包埋ブロックBに対する切削量が小さくなるように移動機構12が制御されるため、包埋ブロックBの表面(切削面)が生体試料Sの所望領域に近づくまでは、一回当たりの切削量を大きくして包埋ブロックBを効率良く切削することができ、しかも、生体試料Sの所望領域に近づくにつれて一回当たりの切削量を次第に小さくして、包埋ブロックBの切削面の表面の荒れを少なくすることができる。
したがって、この薄切片作製装置1を採用することにより、包埋ブロックBの予備切削において、切削効率の向上(作業の迅速化)と包埋ブロックBの最終切削面の平滑化を図ることができる。
【0048】
さらに、この実施形態の薄切片作製装置1においては、包埋ブロックBの落射撮像データと拡散撮像データを取得するとともに、これらの撮像データに基づいてベクトル算出部42によって生体試料Sの露出面積S1部分の中心G1から投影面積S0部分の中心G0に向かうベクトルVの大きさと向きを算出し、ベクトル算出部42で算出したベクトルVの絶対値が第2所定値V0よりも大きいときに、ベクトルVが0に近づくように回動機構11を制御して切削刃3による予備切削を行うため、包埋ブロックBの現在の表面(切削面)の傾斜角度が生体試料Sの所望領域を通る面と角度的に大きくずれているときに、包埋ブロックBの角度を適正に補正して包埋ブロックBの予備切削を行うことができる。
したがって、この薄切片作製装置1を採用することにより、包埋ブロックBの表面が生体試料Sの所望領域を通る面とが角度的に大きくずれている場合に、生体試料Sの所望領域を適正角度で効率良く削り出すことができる。
【0049】
なお、この発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。
上記の実施形態においては、取得した落射撮像データと拡散撮像データを基にして、生体試料の露出部の面積と埋設部の面積をそれぞれ算出するとともに、その算出結果を比較して予備切削の終了を判定するようにしているが、例えば、取得した落射撮像データと拡散撮像データを基にして、生体試料の露出部の輪郭と埋設部の輪郭を抽出し、ここで抽出した露出部と埋設部の輪郭が相似形状であるか、または両者の周長差が所定値以下であるときに、予備切削を終了するようにしても良い。
つまり、露出形態抽出手段と埋設形態抽出手段は、生体試料の露出部と埋設部の面積を算出して求めるものばかりでなく、露出部と埋設部の輪郭形状や輪郭長さ等のその他の形態的な特性を抽出するものであっても良い。