(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5970060
(24)【登録日】2016年7月15日
(45)【発行日】2016年8月17日
(54)【発明の名称】固体電解質セラミックス材料及びその製造方法
(51)【国際特許分類】
C04B 35/50 20060101AFI20160804BHJP
H01B 1/06 20060101ALI20160804BHJP
H01B 1/08 20060101ALI20160804BHJP
H01B 13/00 20060101ALI20160804BHJP
【FI】
C04B35/50
H01B1/06 A
H01B1/08
H01B13/00 Z
【請求項の数】24
【全頁数】16
(21)【出願番号】特願2014-501972(P2014-501972)
(86)(22)【出願日】2012年12月17日
(86)【国際出願番号】JP2012082657
(87)【国際公開番号】WO2013128759
(87)【国際公開日】20130906
【審査請求日】2015年8月19日
(31)【優先権主張番号】特願2012-46590(P2012-46590)
(32)【優先日】2012年3月2日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000004064
【氏名又は名称】日本碍子株式会社
(74)【代理人】
【識別番号】100113365
【弁理士】
【氏名又は名称】高村 雅晴
(74)【代理人】
【識別番号】100131842
【弁理士】
【氏名又は名称】加島 広基
(72)【発明者】
【氏名】古川 昌宏
(72)【発明者】
【氏名】本多 昭彦
(72)【発明者】
【氏名】山本 一博
【審査官】
浅野 昭
(56)【参考文献】
【文献】
特開2011−051800(JP,A)
【文献】
特開2011−073962(JP,A)
【文献】
特開2011−073963(JP,A)
【文献】
特開2012−031025(JP,A)
【文献】
国際公開第2012/005296(WO,A1)
【文献】
中国特許出願公開第102769147(CN,A)
【文献】
中国特許出願公開第102780031(CN,A)
【文献】
NARAYANAN S.,et al.,Macroscopic and microscopic Li+ transport parameters in cubic garnet-type "Li6.5La2.5Ba0.5ZrTaO12" as probed by impedance spectroscopy and NMR,RSC Advances,2012年 2月 7日,vol.2,P.2553-2561
(58)【調査した分野】(Int.Cl.,DB名)
C04B 35/00−35/22
C04B 35/42−35/51
H01B 1/00− 1/24
H01M 10/05−10/0587
H01M 10/36−10/39
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
リチウムイオン伝導性を有する固体電解質セラミックス材料であって、
該セラミックス材料が、少なくともLi、La、Zr及びOで構成されるガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体であり、該酸化物焼結体が、添加元素としてAl及びMgをさらに含んでなり、そのAl含有量が1.2質量%以下、Mg含有量が1質量%以下である、セラミックス材料。
【請求項2】
前記添加元素としてのAl及びMgが、焼結助剤及び/又は粒子成長抑制剤として添加される、請求項1に記載のセラミックス材料。
【請求項3】
前記添加元素としてのAl及びMgが、前記焼結体の結晶格子内、及び前記焼結体を構成する粒子間の粒界の少なくとも一方に存在する、請求項1又は2に記載のセラミックス材料。
【請求項4】
Mgを、前記酸化物焼結体の総重量に対して、0.01〜1質量%の量で含む、請求項1〜3のいずれか一項に記載のセラミックス材料。
【請求項5】
Mgを、前記酸化物焼結体の総重量に対して、0.05〜0.30質量%の量で含む、請求項1〜4のいずれか一項に記載のセラミックス材料。
【請求項6】
Alを、前記酸化物焼結体に対して、0.01〜1質量%の量で含む、請求項1〜5のいずれか一項に記載のセラミックス材料。
【請求項7】
4.8g/cm3以上の密度を有する、請求項1〜6のいずれか一項に記載のセラミックス材料。
【請求項8】
JIS R1601(2008)に準拠して測定される4点曲げ強度が70MPa以上である、請求項1〜7のいずれか一項に記載のセラミックス材料。
【請求項9】
焼結体サイズとして20mm×20mmを超える大きさを有する、請求項1〜8のいずれか一項に記載のセラミックス材料。
【請求項10】
前記ガーネット型又はガーネット型類似の結晶構造が、Nb及び/又はTaをさらに含む、請求項1〜9のいずれか一項に記載のセラミックス材料。
【請求項11】
Laに対するNb及びTaの合計量のモル比(Nb+Ta)/Laが0.03〜0.20である、請求項10に記載のセラミックス材料。
【請求項12】
Laに対するLiのモル比Li/Laが2.0〜2.5である、請求項1〜11のいずれか一項に記載のセラミックス材料。
【請求項13】
Laに対するZrのモル比Zr/Laが0.5〜0.67である、請求項1〜12のいずれか一項に記載のセラミックス材料。
【請求項14】
リチウムイオン二次電池用の固体電解質として用いられる、請求項1〜13のいずれか一項に記載のセラミックス材料。
【請求項15】
リチウムイオン伝導性を有する固体電解質セラミックス材料の製造方法であって、
ガーネット型又はガーネット型類似の結晶構造を与えることが可能な配合比でLi、La及びZrを含む原料粉末を用意する工程と、
前記原料粉末を一段階又は多段階で焼成して、少なくともLi、La、Zr及びOで構成されるガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体を前記セラミックス材料として合成する工程と
を含み、
前記原料粉末を用意する工程及び/又は前記合成工程において、前記酸化物焼結体のAl含有量が1.2質量%以下、Mg含有量が1質量%以下となるようにAl及びMgが添加される、製造方法。
【請求項16】
前記Mgの添加が、前記原料粉末にMg含有粉末を含有させることにより行われる、請求項15に記載の方法。
【請求項17】
前記Mgの添加が、前記合成工程の少なくとも一つの段階において、前記原料粉末が充填されたMg含有材料製の焼成用容器中で焼成を行って、該容器からMgを拡散させることにより行われる、請求項15又は16に記載の方法。
【請求項18】
前記合成工程が、該原料粉末を焼成して前駆粉末を得る第一の焼成工程と、前記前駆粉末を粉砕及び焼成して前記酸化物焼結体を得る第二の焼成工程とを含んでなる、請求項15〜17のいずれか一項に記載の方法。
【請求項19】
前記Mgの添加が、前記粉砕時又はその前後に前記前駆粉末にMg含有粉末を添加することにより行われる、請求項18に記載の方法。
【請求項20】
前記Mgの添加が、前記第二の焼成工程において、前記前駆粉末が充填されたMg含有材料製の焼成用容器中で焼成を行って、該容器からMgを拡散させることにより行われる、請求項18又は19に記載の方法。
【請求項21】
Mgの添加が、前記酸化物焼結体がMgを0.01〜1質量%の量で含むように行われる、請求項15〜20のいずれか一項に記載の方法。
【請求項22】
Mgの添加が、前記酸化物焼結体がMgを0.05〜0.30質量%の量で含むように行われる、請求項15〜21のいずれか一項に記載の方法。
【請求項23】
前記Mg含有材料がMgOである、請求項15〜22のいずれか一項に記載の方法。
【請求項24】
前記原料粉末が、Nb及び/又はTaをさらに含んでなる、請求項15〜23のいずれか一項に記載の方法。
【発明の詳細な説明】
【0001】
この出願は、2012年3月2日に出願された日本国特許出願2012−46590号に基づく優先権を主張するものであり、その全体の開示内容が参照により本明細書に組み込まれる。
【技術分野】
【0002】
本発明は、リチウムイオン伝導性を有する固体電解質セラミックス材料及びその製造方法に関する。
【背景技術】
【0003】
近年、パーソナルコンピュータ、携帯電話等のポータブル機器、更にはハイブリッド車、電気自動車等の低公害車(エコカー)等の開発に伴い、それらの電源としての二次電池の需要が急速に拡大している。このような用途に用いられる二次電池においては、液状電解質(電解液)が広く用いられているが、安全性向上の観点から、液状電解質の代わりに固体電解質を用いて全ての電池要素を固体で構成した全固体二次電池等の開発が現在進められている。このような全固体二次電池は、電解質がセラミックス焼結体で構成されるため、発火や漏液の恐れが無い上、腐食による電池性能の劣化等の問題も生じにくいといった利点がある。特に、リチウム金属を電極に用いた全固体リチウム二次電池は、高エネルギー密度を実現しやすい二次電池として期待されている。
【0004】
二次電池の電池特性の向上には、正負極材料間の電位差拡大と、正負極に用いる各材料の容量密度の向上が重要となる。特に負極材料については、リチウム金属やリチウム合金類の使用が特性向上に大きく寄与することが知られている。しかしながら、リチウム金属を負極に用いると、充放電に伴い負極にデンドライト(樹枝状結晶)が析出して、最悪の場合はセパレータを突き破り、正負極間の短絡を引き起こす。その結果、短絡部に電流集中が起こり発熱することで電池の熱暴走の引き金になるため、安全性の問題が懸念されている。この点、電解質部分が固体電解質で形成される全固体電池は、析出物が固体電解質を突き破ることができないため、安全性がより高いものとして期待されている。
【0005】
一方で、電気自動車向けなど高容量電池への期待も高く、そのような候補の一つとしてリチウム空気電池が挙げられる。リチウム空気電池は、正極活物質として大気中の酸素を用い、負極活物質をリチウム金属とした、理論上最大容量が期待できる電池である。しかしながら、このような空気電池においても上記デンドライトの問題があり、上記同様、その解決が強く望まれている。
【0006】
固体電解質として、ガーネット型のセラミックス材料が注目されている。例えば、非特許文献1(Ramaswamy Murugan et al., Angew. Chem. Int. Ed.2007, 46, 1-5)には、Li
7La
3Zr
2O
12(以下、LLZという)が耐リチウム性に優れており、全固体リチウム二次電池の固体電解質として利用できる可能性が報告されている。
【0007】
また、特許文献1(特表2007−528108号公報)には、L
5+xA
yG
zM
2O
12の組成を有するガーネット型の固体イオン伝導体が開示されている。特許文献2(特開2011−051800号公報)には、LLZの基本元素であるLi,La及びZrに加えてAlを加えることで、緻密性やリチウムイオン伝導率を向上できることが開示されている。特許文献3(特開2011−073962号公報)には、LLZの基本元素であるLi,La及びZrに加えてNb及び/又はTaを加えることで、リチウムイオン伝導率を更に向上できることが開示されている。特許文献4(特開2011−073963号公報)には、Li、La、Zr及びAlを含み、Laに対するLiのモル比を2.0〜2.5とすることで、緻密性を更に向上できることが開示されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特表2007−528108号公報
【特許文献2】特開2011−051800号公報
【特許文献3】特開2011−073962号公報
【特許文献4】特開2011−073963号公報
【非特許文献】
【0009】
【非特許文献1】Ramaswamy Murugan et al.,Angew.Chem. Int. Ed.2007, 46, 1-5
【発明の概要】
【0010】
しかしながら、本発明者らの知見によれば、ガーネット型又はガーネット型類似のLLZ系固体電解質セラミックス材料を実用化に向けて大型化しようすると、焼成ムラ、クラック、空孔等の欠陥、異常粒成長等が発生して、緻密性や強度が低下しやすくなるとの問題がある。
【0011】
本発明者らは、今般、ガーネット型又はガーネット型類似のLLZ系固体電解質セラミックス材料に添加元素としてAl及びMgの両方を含有させることにより、焼成ムラ、クラック、空孔等の欠陥、異常粒成長等の発生が抑制又は回避された、高密度かつ高強度のLLZ系固体電解質セラミックス材料が得られるとの知見を得た。
【0012】
したがって、本発明の目的は、リチウムイオン伝導性を有する固体電解質セラミックス材料である、少なくともLi、La、Zr及びOで構成されるガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体において、焼成ムラ、クラック、空孔等の欠陥、異常粒成長等の発生を抑制又は回避して、高密度及び高強度を実現することにある。
【0013】
本発明の一態様によれば、リチウムイオン伝導性を有する固体電解質セラミックス材料であって、
該セラミックス材料が、少なくともLi、La、Zr及びOで構成されるガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体であり、該酸化物焼結体が、添加元素としてAl及びMgをさらに含んでなる、セラミックス材料が提供される。
【0014】
本発明の他の一態様によれば、リチウムイオン伝導性を有する固体電解質セラミックス材料の製造方法であって、
ガーネット型又はガーネット型類似の結晶構造を与えることが可能な配合比でLi、La及びZrを含む原料粉末を用意する工程と、
前記原料粉末を一段階又は多段階で焼成して、少なくともLi、La、Zr及びOで構成されるガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体を前記セラミックス材料として合成する工程と
を含み、
前記原料粉末を用意する工程及び/又は前記合成工程においてAl及びMgが添加される、製造方法が提供される。
【図面の簡単な説明】
【0015】
【
図1】例1において作製された試料3の外観を撮影した画像である。
【
図2】例1において作製された試料3の粒状組織を観察したSEM画像である。
【
図3】例1において作製された試料6の外観を撮影した画像である。
【
図4】例1において作製された試料6の外周部近傍を拡大して撮影した画像である。
【
図5】例1において作製された試料6の粒状組織を観察したSEM画像である。
【
図6】例1において作製された試料1〜6について測定された強度と密度との関係をプロットした図である。
【
図7A】例2において作製された焼結体を真上から撮影した写真である。
【
図7B】例2において作製された焼結体を斜め上から撮影した写真である。
【
図8】例2において作製された複数の箔板を並べて撮影した写真である。
【発明を実施するための形態】
【0016】
固体電解質セラミックス材料
本発明によるセラミックス材料は、リチウムイオン伝導性を有する固体電解質セラミックス材料である。このセラミックス材料は、少なくともLi、La、Zr及びOで構成されるガーネット型又はガーネット型類似の結晶構造(以下、LLZ結晶構造という)を有する酸化物焼結体である。したがって、このセラミック材料はガーネット型又はガーネット型類似のLLZ系固体電解質セラミックス材料であるということができるが、Li、La、Zr及びO以外の他の元素を結晶格子又はそれ以外の部分(例えば粒界)に含むものであってよい。特に、本発明においては、この酸化物焼結体は、添加元素としてAl及びMgをさらに含んでなる。このようにAl及びMgを複合添加することにより、焼成ムラ、クラック、空孔等の欠陥、異常粒成長等の発生を抑制又は回避して、高密度及び高強度を実現することができる。その意味で、Al及びMgは焼結助剤及び/又は粒子成長抑制剤として添加されているといえる。添加元素としてのAl及びMgは、焼結体の結晶格子内、及び焼結体を構成する粒子間の粒界の少なくとも一方に存在するのが典型的である。
【0017】
前述のとおり、ガーネット型又はガーネット型類似のLLZ系固体電解質セラミックス材料を実用化に向けて大型化しようすると、焼成ムラ、クラック、空孔等の欠陥、異常粒成長等が発生して、緻密性や強度が低下しやすくなるとの問題があったが、Al及びMgの複合添加によってこのような問題が解消される。したがって、本発明のセラミックス材料は、実験室レベルの小型のものに留まらず、実用化ないし量産化に適した大型のものであっても、焼成ムラ、クラック、空孔等の欠陥、異常粒成長等を低減又は回避して、高密度及び高強度を実現することができる。本発明のセラミックス材料は、焼結体サイズとして20mm×20mmを超える大きさを有するものが好ましく、より好ましくは25mm×25mmを超える大きさであり、さらに好ましくは50mm×50mmを超える大きさである。また、本発明のセラミックス材料の厚さは電池適用時の内部抵抗低減の観点から、1mm以下が好ましく、より好ましくは0.5mm以下であり、さらに好ましくは0.2mm以下である。
【0018】
本発明のセラミックス材料は、4.8g/cm
3以上の密度を有するのが好ましく、より好ましくは5.0g/cm
3以上であり、さらに好ましくは5.1g/cm
3以上である。特に5.0g/cm
3以上の密度であると、ハンドリング性が良好でかつ良好なリチウムイオン伝導率を得ることができる上に、薄板化した場合でも空孔等の欠陥に起因する貫通孔の生成が抑制でき、リチウムデンドライト短絡の抑制に効果的である。セラミックス材料の密度は、例えば、ペレットの重量と体積を測定し算出することができる。例えば円柱状のペレットの場合、重量を測定した後、マイクロメーターにてペレットの直径を数箇所測定して平均値とし、厚みも同様にマイクロメーターにて複数箇所測定して平均値として、これらの数値から体積を算出して、それぞれの値から密度を測定する方法又はそれと同等又はそれ以上の精度と正確性が得られる方法で測定することが好ましい。また、本発明のセラミックス材料は、JIS R1601(2008)に準拠して測定される4点曲げ強度が70MPa以上であるのが好ましく、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。
【0019】
本発明のセラミック材料は、ガーネット型又はガーネット型類似のLLZ系固体電解質セラミックス材料である。LLZ結晶構造の特徴としては、同じガーネット型結晶構造を有する材料の一例として、CSD(Cambridge Structural Database)のX線回折ファイルNo.422259(Li
7La
3Zr
2O
12)に類似のXRDパターンを有する点が挙げられる。なお、No.422259と比較すると構成元素が異なり、またセラミックス中のLi濃度などが異なる可能性があるため、回折角度や回折強度比が異なる場合もある。
【0020】
Laに対するLiのモル数の比Li/Laは2.0以上2.5以下であることが好ましい。この範囲であると良好な密度とリチウムイオン伝導性を得ることができる。特に、アルゴンなどの不活性ガス雰囲気での合成では、Li/La比が2.05以上2.5以下であるのがリチウムイオン伝導性に優れる点で好ましく(例えばリチウムイオン伝導率は0.1mS/cm以上)、より好ましくは2.15以上2.3以下であり、リチウムイオン伝導率は0.5mS/cm以上である。大気等の雰囲気下での合成でも、Li/La比が2.05以上2.5以下であるのがリチウムイオン伝導性に優れる点で好ましく、より好ましくはLi/La比が2.15以上2.3以下であり、リチウムイオン伝導率が0.5mS/cm以上である。更には酸素雰囲気下での合成でも、同様にLi/La比が2.05以上2.5以下であるのがリチウムイオン伝導性に優れる点で好ましく、より好ましくはLi/La比が2.15以上2.3以下であり、リチウムイオン伝導率が0.5mS/cm以上である。なお、Laは合成プロセスにおいて損失しにくい元素であるため、Liの添加量を、Laに対するモル比として適切に規定することができる。また、Laに対するZrのモル比Zr/Laは0.5以上0.67以下であるのが好ましい。
【0021】
Li、La及びZrの各含有量は、LLZ結晶構造が得られている限り特に限定されない。本発明のセラミックス材料におけるLiサイト、Laサイト及びZrサイトの各モル比は、非特許文献1に記載のLi
7La
3Zr
2O
12における各元素のモル比であるLi:La:Zr=7:3:2とは必ずしも一致せず、むしろそれよりもずれる傾向がある。
【0022】
Alは、LLZ結晶構造を有するセラミックス材料をハンドリング可能な焼結体ペレットとして得る上で有効な元素であり、リチウムイオン伝導率も向上させる。Alの存在形態は特に限定されず、LLZ結晶構造を確認できるかぎり、Alは結晶格子に存在してもよいし、結晶格子以外に存在してもよい。Alの存在は、例えば、ICP(高周波誘導結合プラズマ)発光分光分析やEPMA(電子線マイクロアナライザ)等により検出することができ、また、その含有量を決定することができる。Alの添加量は、LLZ系固体電解質セラミックス材料の基本特性を損なうことなく密度及びリチウムイオン伝導率を改善できる量とすればよく特に限定されるものではないが、最終的に得られるLLZ−Al系セラミックス粉末や焼結体ペレットの全重量に対して、0.01〜1質量%とするのが好ましく、より好ましくは0.05質量%以上である。このような量でアルミニウムが含有されているとき、改善された密度及びリチウムイオン伝導率が得られる。また、Al含有量は2質量%を大きく超えるとリチウムイオン伝導率が低下する傾向にあり、好ましくは1.2質量%以下である。Laに対するAlのモル比Al/Laは、0.004〜0.12であるのが好ましい。
【0023】
Mgは、Alと共に添加されることで、焼成ムラ、クラック、空孔等の欠陥、異常粒成長等の発生を抑制又は回避して、密度及び強度を向上させる元素である。Mgの存在形態は特に限定されず、LLZ結晶構造を確認できるかぎり、Mgは結晶格子に存在してもよいし、結晶格子以外に存在してもよい。Mgの存在は、例えば、ICP(高周波誘導結合プラズマ)発光分光分析やEPMA(電子線マイクロアナライザ)等により検出することができ、また、その含有量を決定することができる。Mgの添加量は、LLZ系固体電解質セラミックス材料の基本特性を損なうことなく密度及び強度を改善できる量とすればよく特に限定されるものではないが、酸化物焼結体の総重量に対して、0.01質量%以上マグネシウムが含有されているとき、改善された密度及びリチウムイオン伝導率が得られる。また、Mg含有量は1質量%を大きく超えるとリチウムイオン伝導率が低下する傾向にあり、好ましくは0.50質量%以下である。より好ましいMg含有量は0.05〜0.30質量%である。Laに対するMgのモル比Mg/Laは、0.0016〜0.07であるのが好ましい。
【0024】
Nb及び/又はTaがガーネット型又はガーネット型類似の結晶構造に含まれていてもよい。すなわち、LLZのZrの一部がNb及びTaのいずれか一方又は双方で置換されることにより、置換前に比べて伝導率を向上させることができる。Nb及び/又はTaによるZrの置換率(モル比)は、良好な焼結体密度及び伝導率が得られるように焼成条件等も考慮して適宜設定することができる。例えば、Li成分、La成分、Zr成分、Nb成分及び/又はTa成分を含む原料をガーネット型又はガーネット型類似の結晶構造のセラミックス材料を得るために準備する際に、ZrのNb及び/又はTaによる置換量(モル比)は、(Nb+Ta)/Laのモル比が0.03以上0.20以下となる量にすることが好ましい。この範囲であると、良好な焼結性とリチウムイオン導電率を得ることができる。なお、Nb+Taは、NbとTaの総モルを表し、Nbのみを含有する場合にはNbの総モルを表し、Taのみを含有する場合にはTaの総モルを表す。また、ガーネット型又はガーネット型類似の結晶構造を考慮すると、(Zr+Nb+Ta)/Laのモル比が0.66〜0.67であることが好ましい。なお、こうした比率の範囲は、原料及び焼結体のいずれにおいても適用される。このような構成金属元素の組成(モル比)は、例えば、以下のようにして出発原料に適用できる。すなわち、LLZ系セラミックス組成(Li
7La
3Zr
2O
12)をセラミックス材料に適用して、Li
aLa
bZr
xM
yO
c(ただし、Mは、NbとTaの総モル数を表す。)としたとき、Nb及びTaを含む構成金属元素のモル比を、a:b:x+y:y=7:3:2:0.1以上0.6以下とすることができる。
【0025】
本発明のセラミックス材料は、リチウムイオン伝導性を有している。本発明のセラミックス材料のリチウムイオン伝導率は、0.1mS/cm以上であることが好ましく、より好ましくは0.5mS/cm以上である。リチウムイオン伝導率は、例えば、交流インピーダンス法又はそれと同等の精度と正確性が得られる方法で測定することが好ましい。
【0026】
本発明のセラミックス材料は、その伝導率や緻密性を利用して各種用途の固体電解質材料として用いられるものである。例えば、リチウム二次電池や、SOx、NOx、炭酸ガス及び酸素等の各種ガスセンサ材料に用いることができるが、全固体リチウム二次電池の固体電解質として用いるのが特に好ましい。例えば、電解液を用いる通常のリチウムイオン二次電池のセパレータ部分に本発明によるセラミックス材料を重ねる又は置換することで、正極側と負極側の電解液を完全に分離することができる。また、正極に硫黄を用いる電池(例えば負極リチウムとの組合せによるLiS電池)においても、セパレータの少なくとも一部を本発明によるセラミックス材料で置換して正負極の電解液を完全に分離することで、正極多硫化物の電解液への溶出に起因する電池容量低下を回避又は抑制することができる。さらに、リチウム空気電池等の空気二次電池においても、液状電解質の少なくとも一部を本発明によるセラミックス材料で置換することで、有機電解液の使用を回避又は抑制でき、電池構造を簡素化すると同時に有機電解液に起因する副反応を抑制することが可能となる。
【0027】
このように、本発明で対象とするセラミックス材料の適用が想定される電池には、リチウム金属を負極に用いることを想定したリチウム空気電池やリチウム硫黄電池をはじめ、全固体電池や現状のリチウムイオン電池に至るまで様々な電池が挙げられる。これらの電池のいずれにおいても、デンドライト短絡を本質的に防止する手段として、セラミックス製の緻密な固体電解質を正負極間の隔壁として用いる方法が有効と考えられる。この点、過去において、リチウム金属を負極に用いた二次電池では、デンドライト(樹脂状結晶)析出物による正負極の短絡事故が多発していた。デンドライト短絡が起こると、その短絡部に電流集中して過剰発熱を起こし電池の熱暴走を誘発して発熱・発火する事故に発展したため、現在ではリチウム金属を負極に用いた電池は一次電池用以外では使われていない。このような現状において、本発明で対象とするセラミックス材料には、このデンドライト短絡を本質的に防止して、上記各種の電池を二次電池として利用可能にできるとの利点がある。
【0028】
製造方法
上述したような本発明による固体電解質セラミックス材料は、次のような手順で製造することができる。まず、ガーネット型又はガーネット型類似の結晶構造を与えることが可能な配合比でLi、La及びZrを含む原料粉末を用意する。次いで、原料粉末を一段階又は多段階で焼成して、少なくともLi、La、Zr及びOで構成されるガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体がセラミックス材料として合成する。そして、原料粉末を用意する工程及び/又は合成工程においてAl及びMgを添加する。以下、これらの工程について具体的に説明する。
【0029】
(1)原料粉末の用意
まず、ガーネット型又はガーネット型類似の結晶構造を与えることが可能な配合比でLi、La、Zr、所望によりNb及び/又はTa、並びに所望によりAl及び/又はMgを含む原料粉末を用意する。すなわち、原料粉末は、少なくともLi、La及びZrを含む焼成用原料の粉砕粉である。これらの構成金属元素は、Li成分、La成分及びZr成分として焼成用原料に含有されていればよい。本発明のセラミックス材料はOを含有するが、Oはこれらの構成金属元素の化合物中に構成元素として含まれるものであってよい。これらの各種原料成分は、それぞれの金属元素を含む金属酸化物、金属水酸化物、金属炭酸塩等の各種金属塩等の任意の形態であることができ、特に限定されない。例えば、Li成分としてはLi
2CO
3又はLiOHを用い、La成分としてはLa(OH)
3又はLa
2O
3を用い、Zr成分としてはZrO
2を用いることができる。
【0030】
原料粉末は、固相反応等によりLLZ結晶構造が得られる程度に、上記Li成分、La成分及びZr成分を含むことができる。Li成分、La成分及びZr成分は、LLZの化学量論組成に従えば、7:3:2あるいは組成比に近似した組成で用いることができる。熱処理時におけるLiの揮発等によるLi成分の消失を考慮する場合には、Li成分は、LLZにおけるLiの化学量論に基づくモル比相当量よりも約10%増量した量を含み、La成分及びZr成分は、それぞれLLZモル比に相当する量となるように含有することができる。例えば、Li:La:Zrのモル比が7.7:3:2となるように配合することができる。具体的な化合物を用いた場合のモル比としては、Li
2CO
3:La(OH)
3:ZrO
2のとき、約3.85:約3:約2のモル比となり、Li
2CO
3:La
2O
3:ZrO
2のとき、約3.85:約1.5:約2のモル比となり、LiOH:La(OH)
3:ZrO
2のとき、約7.7:約3:約2となり、LiOH:La
2O
3:ZrO
2のとき、約7.7:約1.5:約2となる。
【0031】
Alの添加を原料粉末の用意の際に行ってもよい。すなわち、原料粉末にAl含有粉末を含有させることができる。Al成分は、Alを含む金属酸化物、金属水酸化物、金属硝酸塩、金属有機物、金属単体等の任意の形態であることができ、特に限定されない。Al成分の例としては、Al
2O
3、Al(NO
3)
3・9H
2O、Al(OH)
3、Al、アルミニウムアセチルアセトナート、アルミニウムトリエトキシド、アルミニウムブトキシド、アルミニウムプロポキシド、アルミニウムメトキシド、塩化アルミニウム、塩化アルウミニウム六水和物、塩化ジエチルアルミニウム、オレイン酸アルミニウム、酢酸アルミニウムn水和物、シュウ酸アルミニウム、臭化アルミニウム六水和物、ステアリン酸アルミニウム、トリエチルアルミニウム、トリメチルアルミニウム、トリイソブチルアルミニウム、硫酸アルウミニウム、ヨウ化アルミニウムなどが挙げられる。Alの添加は、酸化物焼結体がAlを0.01〜1質量%の量で含むように行われるのが好ましく、より好ましくは0.05〜0.8質量%である。
【0032】
Mgの添加を原料粉末の用意の際に行ってもよい。すなわち、原料粉末にはMg含有粉末を含有させることができる。Mg成分は、Mgを含む金属酸化物、金属水酸化物、金属硝酸塩、金属有機物、金属単体等の任意の形態であることができ、特に限定されない。Mg成分の例としては、MgO、MgO
2、Mg(OH)
2、MgF
2、MgCl
2、MgBr
2、MgI
2、MgH
2、MgB
2、Mg
3N
2、MgCO
3、Mg(NO
3)
2、MgClO
4、Mg(CH
3COO)
2、C
14H
10MgO
4、Mg(CH
3(CH
2)
16COO)
2などが挙げられる。Mgの添加は、酸化物焼結体がMgを0.01〜1質量%の量で含むように行われるのが好ましく、より好ましくは0.05〜0.30質量%である。
【0033】
Nb及び/又はTaが原料粉末にさらに含まれていてもよい。この場合、Nb成分及び/又はTa成分は、それぞれの金属成分を含む、金属酸化物、金属水酸化物、金属炭酸塩等の任意の形態であることができ、特に限定されない。Nb成分の例としては、Nb
2O
5、NbCl
5、Nb、プロポキシニオブ等を含んだニオブアルコキシド等が挙げられる。Ta成分の例としては、Ta
2O
5、TaCl
5、Ta、タンタルエトキシド等を含んだタンタルアルコキシド等が挙げられる。例えば、Li成分、La成分、Zr成分、Nb成分及び/又はTa成分を含む原料を準備するとき、ZrのNb及び/又はTaによる置換量は、すでに説明したようにして決定できる。すなわち、ZrのNb及び/又はTaによる置換量は、原料において、(Nb+Ta)/Laのモル比が0.03以上0.20以下となるようにすることが好ましい。また、LLZ系セラミックス組成(Li
7La
3Zr
2O
12)を本セラミックス材料に適用して、Li
aLa
bZr
xM
yO
c(ただし、Mは、NbとTaの総モル数を表す。)としたとき、構成金属元素のモル比を、a:b:x+y:y=7:3:2:0.1以上0.6以下とすることができる。また、ガーネット型又はガーネット型類似の結晶構造を考慮すると、(Zr+Nb+Ta)/Laのモル比が0.6〜0.7であることが好ましい。
【0034】
上記各成分は、工業的に生産されて入手可能なものであれば特に限定されることなく使用可能であるが、好ましくは純度95%以上のものであり、より好ましくは純度98%以上のものである。また、各成分における水分は1%以下であることが好ましく、必要に応じて乾燥を行ってもよい。
【0035】
焼成用原料の調製においては、公知のセラミックス粉末合成における原料粉末調製方法を適宜採用することができる。例えば、ライカイ機等や適当なボールミル等に投入して焼成用原料を均一に混合することができる。このような焼成用原料の調製条件は、後続の合成工程に応じて適宜決定されるものである。すなわち、本発明のセラミックス材料に必要な全ての原料成分を含んだ焼成用原料を一度に調製してもよいし、あるいは、原料成分の一部(例えば、Li成分、La成分、Zr成分、Nb成分、Ta成分、Al成分及びMg成分のうちの一部の成分又は部分量)を含む焼成用原料をまず調製しておき、合成工程の直前でこの焼成用原料の焼成粉末(仮焼粉末)に、残余の成分や残余の量(例えばAl成分及び/又はMg成分の全量又はその一部等)を添加して最終的な焼成用原料を得てもよい。
【0036】
(2)合成工程
原料粉末は一段階又は多段階で焼成されて、少なくともLi、La、Zr及びOで構成されるガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体がセラミックス材料として合成される。そして、この合成工程においてAl及び/又はMgが添加されてもよい。
【0037】
この合成工程の少なくとも一つの段階において、原料粉末が充填されたMg含有材料製の焼成用容器(以下、焼成サヤという)中で焼成を行って、この容器からMgを拡散させることによりMgの添加が行われるのが特に好ましい。これにより組成ムラの発生を効果的に抑制して、焼成ムラ、クラック、空孔等の欠陥、異常粒成長等をより効果的に防止することができる。Mg含有材料は焼成に伴いMgを焼結体中に拡散可能に含有する材料であれば特に限定されないが、MgOであるのが好ましい。もっとも、前述したように原料粉末にMg含有粉末を添加させた場合においてはMg含有材料製の焼成サヤの使用は必須ではなく、その場合は、アルミナ製等の他の材質の焼成サヤを使用してもよい。また、焼成サヤからMgを拡散させる態様においても、原料粉末へのMg含有粉末の添加を併せて行ってもよい。いずれにしても、Mgの添加は、酸化物焼結体がMgを0.01〜1質量%の量で含むように行われるのが好ましく、より好ましくは0.05〜0.30質量%である。
【0038】
合成工程における焼成雰囲気は、酸素を含む酸化性雰囲気又はArなどの不活性ガスからなる不活性雰囲気であってもよく、特に限定されない。また、不活性ガス雰囲気中で熱処理する場合には、原料が酸化物等のO成分を含有する粉末となっていることが好ましい。後述する第一の焼成工程と第二の焼成工程とでは、第二の焼成工程を不活性ガス雰囲気中で行うことが好ましい。不活性ガス種の例としては、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、窒素(N)、クリプトン(Kr)、キセノン(Xe)及びラドン(Rn)から選択される1種又は2種以上が挙げられ、好ましくはArである。合成のための焼成温度は、特に限定されないが、800℃以上であることが好ましく、より好ましくは850℃以上1250℃以下である。
【0039】
本発明の好ましい態様によれば、合成工程は、上述した原料粉末を焼成して前駆粉末を得る第一の焼成工程と、得られた前駆粉末を粉砕及び焼成して酸化物焼結体を得る第二の焼成工程とを含んでなる。このような焼成工程の組み合わせにより、LLZ結晶構造が得られやすくなる。この態様において前述したMgの拡散による添加を行う場合には、第二の焼成工程において行われるのが好ましく、この場合、前駆粉末が充填されたMg含有材料製の焼成用容器(焼成サヤ)中で焼成を行って、この容器からMgを拡散させることによりMgの添加を行えばよい。
【0040】
第一の焼成工程は、少なくともLi成分、La成分及びZr成分の熱分解を行うことで第二の焼成工程でLLZ結晶構造を形成しやくするための前駆粉末を得る工程である。前駆粉末は、LLZ結晶構造を既に有している場合もある。焼成温度は、好ましくは、850℃以上1150℃以下の温度である。第一の焼成工程は、上記温度範囲内において、より低い加熱温度で加熱するステップとより高い加熱温度で加熱するステップとを備えていてもよい。こうした加熱ステップを備えることで、より均一な状態なセラミックス粉末を得ることができ、第二の焼成工程によって良質な焼結体を得ることができる。このような複数ステップで第一の焼成工程を実施するときには、各焼成ステップ終了後、ライカイ機、ボールミル、および振動ミルなどを用いて混練・粉砕することが好ましい。また粉砕手法は乾式で行うことが望ましい。こうすることで、第二の焼成工程により一層均一なLLZ相を得ることができる。そして、Mgの添加は、粉砕時又はその前後に前駆粉末にMg含有粉末を添加することにより行われてもよい。
【0041】
第一の焼成工程は、大気等の酸化性の雰囲気で行ってもよいし、不活性雰囲気で行ってもよく、原料に応じた雰囲気が適宜選択されるのが好ましい。熱分解を考慮すると、酸化性雰囲気が好ましい。また、第一の焼成工程は、850℃以上950℃以下の熱処理ステップと、1075℃以上1150℃以下の熱処理ステップとから構成されるのが好ましく、875℃以上925℃以下(さらに好ましくは約900℃)の熱処理ステップと1100℃以上1150℃以下(さらに好ましくは約1125℃)の熱処理ステップとから構成されるのがより好ましい。この場合、第一の焼成工程は、全体で加熱温度として設定した最高温度での加熱時間の合計として10時間以上15時間以下程度することが好ましい。このように第一の焼成工程を2つの熱処理ステップで構成する場合には、それぞれ最高温度での加熱時間を5〜6時間程度することが好ましい。あるいは、出発原料を変更することにより第一の焼成工程を短縮化することも可能である。例えば、LiOHを出発原料に用いる場合、LLZ結晶構造を得るには、Li、La及びZrを含むLLZ構成成分を850℃以上950℃以下の熱処理ステップで最高温度での加熱時間を10時間以下にすることができる。これは、出発原料に用いたLiOHが低温で液相を形成するため、より低温で他の出発原料と反応しやすくなるからである。
【0042】
第一の焼成工程で用いる焼成用原料は、Al成分及び/又はMg成分を含んでいないものであってよい。この場合には、第二の焼成工程において、Al成分及び/又はMg成分を添加して焼成すればよい。このAl成分及び/又はMg成分の添加は、Al含有粉末及び/又はMg含有粉末の添加により行われてもよいし、焼成サヤからのAl及び/又はMgの拡散によって行われてもよい。
【0043】
第一の焼成工程中で用いる焼成用原料は、Al成分及び/又はMg成分を含むものであってもよい。この場合には、Al及び/又はMgを含む前駆粉末を得ることができることから、後続の第二の焼成工程において、別途Al成分及び/又はMg成分を前駆粉末に添加しなくてもよい。すなわち、前駆粉末中にAl及び/又はMgが内在するため、第二の焼成工程がAl及び/又はMgの存在下で行われることになる。なお、第一の焼成工程で用いる焼成用原料がAl成分及び/又はMg成分の必要量の一部を含むようにし、第二の焼成工程において前駆粉末に残余のAl成分及び/又はMg成分を追加するようにしてもよい。このAl成分及び/又はMg成分の添加は、Al含有粉末及び/又はMg含有粉末の添加により行われてもよいし、焼成サヤからのAl及び/又はMgの拡散によって行われてもよい。
【0044】
第二の焼成工程は、第一の焼成工程で得られた前駆粉末を950℃以上1250℃以下の温度で加熱する工程とするのが好ましい。第二の焼成工程によれば、第一の焼成工程で得た前駆粉末を焼成して、最終的に複合酸化物であるLLZ結晶構造を有するセラミックス材料を得ることができる。LLZ結晶構造を得るには、例えば、Li、La及びZrを含むLLZ構成成分を1125℃以上1250℃以下の温度で熱処理するのが好ましい。Li原料としてLiCO
3を用いるときには、1125℃以上1250℃以下で熱処置することが好ましい。1125℃未満であるとLLZの単相が得られにくくLiイオン伝導度が小さく、1250℃を超えると、異相(La
2Zr
2O
7など)の形成が見られるようになりLiイオン伝導度が小さく、また結晶成長が著しくなるため、固体電解質としての強度を保つことが難しくなる傾向があるからである。より好ましくは、約1180℃から1230℃である。あるいは、原料成分を変更することにより第二の焼成工程を低温化することができる。例えば、Li成分としてLiOHを原料成分に用いる場合、LLZ結晶構造を得るには、Li、La、及びZrを含むLLZ構成成分を950℃以上1125℃未満の温度でも熱処理することができる。これは、原料成分に用いたLiOHが低温で液相を形成するため、より低温で他の出発原料と反応しやすくなるからである。第二の焼成工程における上記加熱温度での加熱時間は18時間以上50時間以下程度であることが好ましい。時間が18時間よりも短い場合、LLZ系セラミックスの形成が十分ではなく、50時間よりも長い場合、埋め粉を介してセッターと反応しやすくなるほか、結晶成長が著しくサンプルとして強度を保てなくなるからである。好ましくは、30時間以上である。第二の焼成工程は、大気雰囲気中で実施することもできるが、焼結体の密度やLi/Laのモル比維持等を考慮すると、不活性ガス雰囲気中で実施することが好ましい。
【0045】
第二の焼成工程は、前駆粉末を含む成形体とした上で行われるのが好ましい。例えば、前駆粉末又は前駆粉末にAl成分やMg成分等を追加した粉末を周知のプレス手法を用いて加圧成形して所望の三次元形状(例えば、二次電池の固体電解質やセパレータとして使用可能な形状及びサイズ)を付与した成形体とした上で実施することが好ましい。成形体とすることで固相反応が促進されるほか、容易に焼結体を得ることができる。なお、第二の焼成工程後に、第二の焼成工程で得られたセラミックス粉末を成形体として、第二の焼成工程における加熱温度と同様の温度で焼結工程を別途実施してもよい。第二の焼成工程で前駆粉末の成形体を焼成して焼結させる場合、成形体を同じ粉末内に埋没させるようにして実施することが好ましい。こうすることでLiの損失を抑制して第二の焼成工程前後における組成の変化を抑制できる。また、必要に応じて成形体を埋め粉の上下からセッターで押さえ込むことにより、焼結体の焼成時の反りを防止することができる。一方、第二の焼成工程においてLi原料としてLiOHを用いるなどして低温化した場合、前駆粉末の成形体を同じ粉末内に埋没させなくても焼結させることができる。これは、第二の焼成工程が低温化したことで、Liの損失が比較的抑制されるからである。
【0046】
第二の焼成工程をAl及び/又はMgの存在下で実施するには、既に説明したように、Al成分及び/又はMg成分を含む焼成用原料を用いて第一の焼成工程を実施して得られた前駆粉末をそのまま第二の焼成工程で用いる形態のほか、Al成分及び/又はMg成分を含まない焼成用原料を用いて第一の焼成工程を実施し、得られた前駆粉末にAl成分及び/又はMg成分を追加し混合して第二の焼成工程を実施する形態、さらにはAl及び/又はMgを含有する焼成サヤを用いて第二の焼成工程を実施する形態が挙げられる。Al及び/又はMgの存在下に第二の焼成工程を実施するには、これらの形態のいずれかであってもよいし、これらの形態を適宜組み合わせてもよい。
【0047】
上述したような合成工程を経て、本発明のセラミックス材料を酸化物焼結体として得ることができる。
【実施例】
【0048】
本発明を以下の例によってさらに具体的に説明する。
【0049】
例1:
酸化物焼結体の作製及び評価
焼成用原料調製のための各原料成分として、水酸化リチウム(関東化学株式会社)、水酸化ランタン(信越化学工業株式会社)、酸化ジルコニウム(東ソー株式会社)、酸化タンタルを用意した。これらの粉末をLiOH:La(OH)
3:ZrO
2:Ta
2O
5=7:3:1.625:0.1875になるように秤量及び配合し、ライカイ機にて混合して焼成用原料を得た。
【0050】
第一の焼成工程として、上記焼成用原料をアルミナ坩堝に入れて大気雰囲気で600℃/時間にて昇温し900℃にて6時間保持した。
【0051】
第二の焼成工程として、第一の焼成工程で得られた粉末に対しγ−Al
2O
3及び/又は酸化マグネシウムを表1に示される各種の濃度で添加し、この粉末と玉石を混合し振動ミルを用いて3時間粉砕して、表1の試料1〜7に対応する粉砕粉を得た。この粉砕粉を篩通しした後、得られた粉末を、金型を用いて約100MPaにてプレス成形してペレット状にした。得られたペレットをアルミナ製セッター又はマグネシア製セッター上に乗せ、セッターごと表1に示されるとおりアルミナ製又はマグネシア製のサヤ内に入れて、Ar雰囲気にて200℃/時間で昇温し、1000℃で36時間保持することにより、35mm×18mmのサイズで厚さ11mmの焼結体を得て、そこから10mm×10mmのサイズで厚さ1mmの試料1〜6(以下、試料1〜7という)を得た。なお、Ar雰囲気として、事前に容量約3Lの炉内を真空引きした後、純度99.99%以上のArガスを電気炉に2L/分で流した。
【0052】
【表1】
【0053】
試料1〜7の上下面を研磨した後、以下に示される各種の評価ないし測定を行った。
【0054】
構造評価
試料1〜7のX線回折測定を行ったところ、CSD(Cambridge
Structural Database)のX線回折ファイルNo.422259(Li
7La
3Zr
2O
12)類似の結晶構造が得られた。このことから、得られた全ての試料がLLZ結晶構造の特徴を有することが確認された。
【0055】
化学分析
試料1〜7のAl及びMg含有量を把握するため、誘導結合プラズマ発光分析(ICP分析)により化学分析を行った。その結果、試料1〜6におけるAl及びMgの含有量は表1に示されるとおりであった。同様にして、試料5について、Li及びLa含有量を測定したところ、Li:5.45wt%、La:47.02wt%、Ta:7.62wt%、Zr:16.19wt%であったことから、Li/Laモル比:2.19、Ta/Laモル比:0.12、Zr/Laモル比:0.52であった。
【0056】
外観及び粒状組織の観察
試料3について外観を観察したところ、
図1のとおり組成ムラやクラックが無いものであった。また、試料3の粒状組織をSEMで観察したところ、
図2に示されるとおり数μm程度の一様なLLZ粒子が緻密に焼結し、異常粒成長も観察されなかった。
【0057】
一方、試料6について外観を観察したところ、
図3のとおり、内側から外周部に向かって組成ムラが観察されるとともに、外周部近傍にはクラックが発生していた。試料6の外周部近傍を拡大観察したところ、
図4に示されるとおり、様々な大きさのクラックが複数観察された。また、試料6の粒状組織をSEMで観察したところ、
図5に示されるとおり大きいものでは直径約100μmにも至るような異常粒成長が観察された。
【0058】
試料3及び6の比較から、Al及びMgの両方を添加した試料3では、Mg非含有の試料6よりも、焼成ムラ、クラック、空孔等の欠陥、異常粒成長等を低減又は回避して、高密度及び高強度が実現されたことが分かる。
【0059】
密度及び強度の測定
試料1〜7の重量を測定した後、マイクロメーターを用いて試料1〜6の直径を数箇所測定して平均値を算出した後、同様にペレットの厚みを測定して試料1〜6の体積を算出し、密度を算出した。その結果、焼成したペレットの密度は表1に示されるとおりであった。
【0060】
試料1〜7から所定形状の試験片を切り出し、JIS R1601(2008)に準拠して、強度試験器(INSTRON社製3366型ツインコラム卓上試験システム)で4点曲げ強度を測定したところ、表1及び
図6に示されるとおりの結果が得られた。表1から明らかなように、Mgを添加しなかった試料6及び7と比較して、Al及びMgの両方が含有される試料1〜5では格段に高い強度が得られた。
【0061】
図6に、試料1〜7について測定された強度と密度との関係をプロットした図を示す。同図から分かるように、図中に点線で示される試料1〜5のプロットの延長線(図中の点線)よりも遙か下方に試料6及び7のプロットが位置する。これは、試料6及び7では、試料1〜5のプロットの延長線が示すように密度の減少に伴って線状に減少する強度低下から推測されるよりも顕著に低い強度しか得られないことを示しており、この顕著な強度低下は異常粒成長に起因するものと推察される。また、
図6から分かるように、マグネシア(MgO)の焼成サヤからの拡散によってMgを添加した試料3〜5にあっては、粉砕粉への直接添加によってMgを添加した試料1及び2よりも相対的に高い強度及び密度が得られた。
【0062】
例2:
酸化物焼結体薄板の作製
焼結体のサイズが約55mm平方で10mmの厚さとなるように成形及び焼結を行ったこと以外は例1の試料5と同様にして焼結体を作製した。得られた焼結体を撮影した写真を
図7A及び
図7Bに示す。この焼結体をワイヤーソーで切断加工して、約50mm平方で厚さ0.2mmの焼結体薄板を得た。得られた焼結体薄板を並べて撮影した写真を
図8に示す。