(58)【調査した分野】(Int.Cl.,DB名)
発光ダイオードと該発光ダイオードの光を集光して出射する球面形状の集光レンズとからそれぞれ構成した複数の光源素子と、前記集光レンズの光出射側に配置して集光レンズから入射した光を出射光として拡散配光する異方性光拡散シートとを備え、
前記複数の光源素子が、前記複数の光源素子の素子配列方向である長手方向に沿って前記球面形状の集光レンズの中心を発光ダイオードの中心から片側にずらした光源素子を含み、
前記異方性光拡散シートが、前記長手方向と交差する凹凸延在方向に蛇行して延びる波状の凹凸パターンを前記複数の光源素子と対向して配置した片面に有していることを特徴とする照明装置。
前記複数の光源素子が、前記片側とは逆側に前記集光レンズの中心を発光ダイオードの中心からずらした光源素子とを含んでいることを特徴とする請求項1に記載の照明装置。
前記異方性光拡散シートの法線方向に沿って異方性光拡散シートの凹凸パターンの形成面側に光を入射させて平滑面側から拡散光を出射した場合に、前記異方性光拡散シートの法線方向に沿って平滑面側に出射される光の強度を1として、該法線方向の光の強度1に対する拡散光の強度1/10以上になる角度範囲を1/10値角としたとき、前記異方性光拡散シートの1/10値角が、前記凹凸パターンの凹凸配列方向で70°乃至80°であり、前記凹凸パターンの凹凸延在方向で5°乃至15°であることを特徴とする請求項1または請求項2に記載の照明装置。
前記異方性光拡散シートが、前記凹凸パターンの凹凸配列方向を前記複数の光源素子の素子配列方向に沿わせた状態で前記集光レンズの光出射側に配置されていることを特徴とする請求項1乃至請求項3のいずれか1つに記載の照明装置。
前記複数の光源素子の素子配列方向である長手方向が、照明対象である道路の延長方向に沿わせた状態であることを特徴とする請求項1乃至請求項4のいずれか1つに記載の照明装置。
前記複数の光源素子の素子配列方向である長手方向に沿って照明対象である道路の両側上方に千鳥状に複数並べて設置することを特徴とする請求項1乃至請求項5のいずれか1つに記載の照明装置。
【発明を実施するための形態】
【0017】
本発明の照明装置は、発光ダイオードと発光ダイオードの光を集光して出射する集光レンズとからそれぞれ構成されている複数の光源素子と、集光レンズの光出射側に配置された異方性光拡散シートとを備え、異方性光拡散シートが、一方向に沿って延びて集光レンズに対向する波状の凹凸パターンを有し、発光ダイオードで発生した光のうち照明に寄与しない光を減らして照明の効率を高めた状態で一方向と直交する方向に沿った広い範囲を均一に照らすものであれば、その具体的な実施の態様は、如何なるものであっても何ら構わない。
例えば、異方性光拡散シートは、光源素子から出射される出射光を拡散する方向に凹凸パターンの凹凸配列方向を沿わせて光源素子に対向配置されていればよい。
また、本発明の照明装置は、光源素子から出射された出射光を異方性光拡散シートに反射する反射鏡を備えていてもよい。
【0018】
なお、本発明に係る照明装置に用いる複数の光源素子は、線状に配列されていればよくその列数は何ら限定されるものではない。
また、本発明に係る照明装置は、複数の光源素子を一纏めにして設置した光源ユニットを複数設けたものであってもよい。
この場合、複数の光源ユニットの配列形態は、複数の光源素子の素子配列方向に沿って配列された形態でもよいし、複数の光源素子の素子配列方向に直交する方向に配列された形態でもよい。
【0019】
そして、本発明に用いられる異方性光拡散シートは、複数の光源素子から出射された出射光を拡散するものであればその設置枚数は本実施形態に限定されるものではなく、複数の光源ユニットのユニット毎に設けられていてもよいし、複数の光源ユニット全体に対して一枚設けられていてもよい。
また、本発明に係る照明装置は、例えば、街路或いは道路等を照らす屋外用灯具、又はトンネル内の道路を照らすトンネル用灯具として使用されてもよい。
本発明に係る照明装置を屋外用灯具又はトンネル用灯具として使用する場合の照明装置の設置形態は、例えば、道路などの照明対象の幅方向両側の上方に照明装置を設置して照明対象に配光する設置形態をいう。
【0020】
なお、以下の各実施例の説明で用いる「ホットスポット」は、照明装置の照明範囲内の最も照度が高い点状の範囲を意味する。
また、以下の各実施例の説明で用いる「均斉度」は、照明装置による光の照射範囲内の最も低い照度を最も高い照度で割った値で定義される値であって、光の照射範囲における照度の均一性を示す指標である。
照明装置による光の照射範囲内の最も低い照度の値が大きいほど、または最も高い照度の値が小さいほど均斉度の値は大きくなる。
したがって、道路等の照明対象は、均斉度の値が大きいほど均一な照度で照らされていることになる。
【0021】
以下、本発明の第1実施例乃至第4実施例と変形例とを図面に基づいて説明する。
ここで、
図1は、本発明の第1実施例に係る照明装置の斜視図であり、
図2は、本発明の第1実施例に係る照明装置の部分平面図であり、
図3は、本発明の第1実施例に係る照明装置に用いる異方性光拡散シートの斜視図であり、
図4は、
図3の凹凸配列方向に沿った仮想平面で異方性光拡散シートを切った断面図であり、
図5は、本発明の第1実施例に係る照明装置における素子配列方向と凹凸配列方向との関係を示す概念図であり、
図6は、凹凸パターンを撮影した画像をフーリエ変換した画像図であり、
図7は、ピッチ頻度を凹凸パターンのピッチの逆数に対してプロットしたグラフであり、
図8は、
図6に示す補助線E2上の光強度を凹凸パターンの配向性に対してプロットしたグラフであり、
図9は、1/10値角の説明図であるであり、
図10は、
図2の10−10線断面図であり、
図11は、
図2の11−11線断面図であり、
図12は、本発明の第1実施例に係る照明装置を複数設置した際の照明範囲を示す概念図であり、
図13は、本発明の第2実施例に係る照明装置の部分平面図であり、
図14は、
図13の14−14線断面図であり、
図15は、
図14の一部を拡大した部分拡大図であり、
図16は、発光ダイオードで発生した光、出射光及び拡散光の強度分布図であり、
図17は、本発明の第2実施例に係る照明装置の配光状態を示す概念図であり、
図18は、本発明の第2実施例に係る照明装置を複数設置した際の照明範囲を示す概念図であり、
図19は、本発明の第3実施例に係る照明装置の部分平面図であり、
図20は、
図19の20−20線断面図であり、
図21は、集光レンズの中心を発光ダイオードの中心から片側にずらした光源素子における発光ダイオードで発生した光、出射光、拡散光の強度分布図であり、
図22は、集光レンズの中心を発光ダイオードの中心から逆側にずらした光源素子における発光ダイオードで発生した光、出射光、拡散光の強度分布図であり、
図23は相互に隣り合う光源素子の拡散光を合成した合成拡散光の強度分布図であり、
図24は、本発明の第3実施例に係る照明装置を複数設置した際の照明範囲を示す概念図であり、
図25は、本発明の第3実施例の一変形例である照明装置の部分平面図であり、
図26は、本発明の第4実施例に係る照明装置における素子配列方向と凹凸配列方向との関係を示す概念図であり、
図27は、本発明の第4実施例に係る照明装置を複数設置した際の照明範囲を示す概念図である。
なお、
図1、
図5、
図26では、説明の便宜上、凹凸パターンを構成する凹同士及び凸部同士のピッチすなわち凹凸パターンのピッチを誇張して示している。
[第1実施例]
【0022】
まず、
図1乃至
図12に基づいて、本発明の第1実施例に係る照明装置100を説明する。
図1乃至
図5に示すように、本第1実施例に係る照明装置100は、発光ダイオード111とこの発光ダイオード111の光を集光して出射する集光レンズ112とからそれぞれ構成されている複数の光源素子110と、集光レンズ112の光出射側に配置された異方性光拡散シート120とを備えている。
そして、異方性光拡散シート120は、Y方向すなわち照明装置100の幅方向に沿って延びて集光レンズ112に対向する波状の凹凸パターン121を有している。
なお、本第1実施例では、Y方向が、「一方向」の一例である。
また、以下の各実施例の光源素子は、球面形状すなわち真円ドーム状の集光レンズを備えているが、集光レンズは、非球面形状であってもよい。
【0023】
本第1実施例では、
図1及び
図2に示すように、複数の光源素子110を配列した素子配列方向であるX方向すなわち照明装置100の長手方向とX方向に交差するY方向とのそれぞれに沿って2つずつ配列された合計4つの光源ユニット100Uが、照明装置100に設けられている。
複数の光源素子110は、X方向に沿って光源ユニット100Uに2列で配列されている。
【0024】
異方性光拡散シート120は、
図3に示す凹凸パターン121が形成されたパターン形成側S1を集光レンズ112の光出射側に対向させ、凹凸パターン121が形成されていない平滑面側S2を後述する拡散光L2の出射側とするように光源素子110上に対向配置されている。
図5に示すように、異方性光拡散シート120は、
図3に示す凹凸パターン121の凹凸配列方向D1に直交する凹凸延在方向D2を
図1及び
図2中のY方向、すなわち複数の光源素子110の素子配列方向であるX方向に直交する方向に沿わせた状態で光源素子110に対向配置されている。
【0025】
次に、
図3乃至
図11に基づいて、異方性光拡散シート120の構成を詳細に説明する。
図3及び
図4に示すように、異方性光拡散シート120は、凹凸パターン121と、透明樹脂製の基材122と、基材122の表面に設けられた透明樹脂製の硬質層123とを備えている。
【0026】
凹凸パターン121は、パターン形成側S1から異方性光拡散シート120をみた場合に凹凸延在方向D2に沿って平行状態で波状に蛇行している。
なお、「凹凸パターン121が凹凸延在方向D2に沿って波状に蛇行している」とは、凹凸パターンの配向度が0、3以上になっていることをいう。
この配向度は、凹凸パターン121の配向のばらつきのを示す指標である。
配向度の値が大きいほど、凹凸パターン121の配向がばらついている。
すなわち、「配向度の値が大きい」とは、隣り合ってそれぞれ凹凸パターン121を形成する凸部同士及び凹部同士のピッチが凹凸延在方向D2に渡ってばらついていることを意味する。
異方性光拡散シート120は、上述の配向度の値が大きいほど光の拡散度合が大きく、光拡散体として好ましい。
【0027】
ここで、
図3乃至
図8に基づいて、上述した配向度の求め方を簡単に説明する。
まず、表面光学顕微鏡により凹凸パターン121の上面を撮影し、その画像をグレースケールのファイルに変換する。
このグレースケールのファイルの画像のうち白度が低いところほど、凹凸パターン121の一部を構成する凹部の底部123A(
図4参照。)は深い。
逆に言えば、上述のグレースケールのファイルの画像のうち白度が高いところほど、凹凸パターン121の一部を構成する凸部の頂部は高い。
【0028】
続いて、上述したグレースケールのファイルの画像をフーリエ変換する。
表面光学顕微鏡により凹凸パターン121の上面を撮影した画像をフーリエ変換した画像すなわち
図6に示す画像の中心から両側に広がる白色部分が、凹凸パターン121のピッチおよび向きの情報を含んでいる。
【0029】
続いて、
図6に示す画像の中心から水平方向に補助線E1を引き、その補助線E1上の輝度をプロットして
図7に示すグラフを作成する。
図7の横軸は凹凸パターン121のピッチの逆数であり、縦軸は凹凸パターン121のピッチ頻度である。
図7中でピッチ頻度が最大となる値Fの逆数が、凹凸パターン121の最頻ピッチGである。
【0030】
続いて、
図6中で補助線E1と値Fの部分にて直交する補助線E2を引き、補助線E2上の輝度をプロットして
図8に示すグラフを作成する。
図8の横軸は、凹凸パターン121の凹凸延在方向D2に対する傾きの程度を示す指標である配向性を表し、縦軸は凹凸パターン121のピッチ頻度を表している。
図8中に示したピッチ頻度分布曲線の半値幅W1は、凹凸パターン121の配向度を表している。
この半値幅W1が大きいほど、凹凸パターン121が蛇行して配向がばらついていることになる。
なお、上述した配向度の求め方は、特開2011−133569号公報で詳細に説明されている。
【0031】
上述した配向度が1.0を超えると、凹凸パターン121の蛇行状態がある程度ランダムになるため、光拡散性は高くなるが、任意の方向に光を拡散する異方性は低くなる。
また、上述した配向度が0.3未満であると、凹凸パターン121の配向のばらつきが小さくなるため、光の拡散性が小さくなる。
したがって、上述した配向度は0.3乃至1.0の範囲の値であることが好ましい。
なお、上述した配向度を0.3以上にするためには、例えば、異方性光拡散シート120の製造時に用いる加熱収縮性フィルムと硬質層とを適宜選択すればよい。
【0032】
本第1実施例の照明装置100では、凹凸パターン121の最頻ピッチGの値は1μm乃至30μmであることが好ましい。
凹凸パターン121の最頻ピッチGが1μm未満であると、最小ピッチが可視光の波長以下となり、光の干渉等による着色を引き起こす場合があるからである。
また、凹凸パターン121の最頻ピッチGが30μmを超えると、異方性光拡散シート120から出射される拡散光が輝線として視認されてしまい照明に不適切だからである。
【0033】
本第1実施例の照明装置100では、凹凸パターン121の最頻ピッチGに対する凹凸の平均深さBの比(B/G)は0.4乃至1、0であることが好ましい。
最頻ピッチGに対する凹凸の平均深さBの比が0.4未満であると、後述する光学特性が得られないことがあるからである。
加えて、最頻ピッチGに対する凹凸の平均深さBの比が1.0より大きくなると、異方性光拡散シート120を製造し難くなるからである。
【0034】
なお、平均深さBは、
図4に示す凹凸パターン121の底部123Aの平均深さを意味している。
底部123Aは、凹凸パターン121を構成している凹部の極小点である。
平均深さBは、
図4に示す異方性光拡散シート120の断面において、異方性光拡散シート120全体の面方向と平行な基準線E3から各凸部の頂部までの長さB1、B2、B3・・・の平均値(BAV)と、基準線E3から各凹部の底部123Aまでの長さb1、b2、b3・・・の平均値(bAV)との差(bAV−BAV)である。
【0035】
また、異方性光拡散シート120の厚さは、0.02〜3.0mmが好ましく、0.05〜2.5mmがより好ましく、0.1〜2.0mmが特に好ましい。
異方性光拡散シート120の厚さが0.02mm未満であると、凹凸パターン121の深さよりも小さいことがあるため適当でなく、3.0mmよりも厚いと異方性光拡散シート120の質量が大きくなるため取り扱いにくくなるおそれがあるからである。
【0036】
なお、異方性光拡散シート120は、2層以上の樹脂層から構成されていてもよい。
異方性光拡散シート120が2層以上の層から構成されている場合も、異方性光拡散シート120の厚さは0.02〜3.0mmであることが好ましい。
【0037】
次に、
図9に基づいて、異方性光拡散シート120の光学特性を説明する。
図9に示すように、本第1実施例の照明装置100に用いられる異方性光拡散シート120の1/10値角は、凹凸配列方向D1すなわち光の主拡散方向で70°乃至80°であり、凹凸延在方向D2すなわち光の主拡散方向に直交する方向で5°乃至15°である。
【0038】
1/10値角は、異方性光拡散シート120の法線方向に沿って異方性光拡散シート120のパターン形成側S1に光を入射させて平滑面側S2から拡散光を出射した場合に、異方性光拡散シート120の法線方向に沿って平滑面側S2に出射される光の強度を1として拡散光の強度が1/10以上になる角度範囲である。
【0039】
次に、
図10乃至
図12に基づいて、本第1実施例に係る照明装置100の配光状態を説明する。
図10及び
図11に示すように、本第1実施例の照明装置100が上述の光源素子110及び異方性光拡散シート120を備えていることにより、発光ダイオード111で発生した光L0を集光レンズ112で集光した出射光L1は、異方性光拡散シート120の臨界角θ0より小さい入射角θx、θyで異方性光拡散シート120に入射して全反射されない。
【0040】
加えて、発光ダイオード111で発生した光L0を集光した出射光L1は、
図10に示すX方向に沿って角度αxの範囲に拡散されて拡散光L2として異方性拡散シート120の平滑面側S2に出射される。
他方、
図11に示すY方向に沿った角度αyすなわちY方向に沿って出射光L1を拡散する角度は角度αxより小さいため、出射光L1はY方向へは殆ど拡散されない。
つまり、発光ダイオード111で発生した光L0を集光した出射光L1は、X方向に沿って拡散されるが、Y方向にはほとんど拡散されない。
【0041】
このため、本第1実施例に係る照明装置100は、発光ダイオード111で発生した光L0のうち照明に寄与しない光を減らして照明の効率を高めた状態でY方向と直交するX方向に沿った広い範囲に拡散光L2を拡散配光して均一に照らすようになっている。
【0042】
特に、本第1実施例に係る照明装置100では、
図5に示すように、異方性光拡散シート120は、凹凸パターン121の凹凸配列方向D1を複数の光源素子110の素子配列方向すなわちX方向に沿わせた状態で集光レンズ112の光出射側に配置されている。
これにより、光源素子110から出射される発光ダイオードの光L0を集光レンズ112で集光した出射光L1は、素子配列方向すなわちX方向に沿って拡散される。
このため、本第1実施例に係る照明装置100は、素子配列方向の広い範囲を均一に照らすようになっている。
【0043】
次に、
図12に基づいて、本第1実施例に係る照明装置100を屋外用灯具として複数設置した場合の拡散光の照射範囲を説明する。
図12に示すように、本第1実施例に係る照明装置100は、照明装置100のX方向すなわち照明装置100の長手方向を道路などの照明対象Rの延長方向に沿わせた状態で設置されている。
より詳細には、複数の照明装置100は、道路などの照明対象Rの幅方向両側の路面より上方に設置された状態で上方から道路などの照明対象Rを照らす。
【0044】
そして、X方向に沿って千鳥状に配列設置された複数の照明装置100のうちX方向に沿って隣り合う2つの照明装置100から出射される拡散光の照射範囲Aは互いに重なる。
このため、道路などの照明対象Rは、複数の照明装置100の配列方向すなわちX方向に沿って広い範囲で均一に照らされる。
【0045】
特に、上述した複数の照明装置100がX方向すなわち照明装置100の長手方向を道路等の照明対象の延長方向に沿わせた状態で配列設置され、しかも光の照射範囲Aが道路等の照明対象の延長方向に沿った長軸を有する楕円形状であることにより、照明装置100の設置数を減らして相互に隣り合う照明装置100の距離を大きくした場合でも、相互に隣り合う照明装置100による光の照射範囲Aを部分的に重ねて広い範囲を均一に照らすことができる。
すなわち、本第1実施例に係る照明装置100によれば、一定の範囲を均一な照度で照明する際に必要な照明装置100の設置数を減らすことができるという利点がある。
【0046】
このようにして得られた本第1実施例に係る照明装置100は、発光ダイオード111とこの発光ダイオード111の光L0を集光して出射する集光レンズ112とからそれぞれ構成されている複数の光源素子110と、集光レンズ112の光出射側に配置された異方性光拡散シート120とを備え、異方性光拡散シート120が、Y方向に沿って延びて集光レンズ112に対向する波状の凹凸パターン121を有していることにより、発光ダイオード111で発生した光L0のうち照明に寄与しない光を減らして照明の効率を高めた状態でY方向と直交する方向すなわちX方向に沿った広い範囲に拡散光L2を配光して均一に照らすことができるなど、その効果は甚大である。
[第2実施例]
【0047】
次に、
図13乃至
図18に基づいて、本発明の第2実施例に係る照明装置200を説明する。
なお、以下で説明する第2実施例乃至第4実施例に係る照明装置と第3実施例の一変形例に係る照明装置とについては、参照符号を100番台から200番台乃至400番台に付け替えて上述の照明装置100と相違する構成のみを詳細に説明し、上述の照明装置100と共通する部分の詳細な説明を省略している。
【0048】
図13乃至
図15に示すように、本第2実施例に係る照明装置200では、集光レンズ212は、球面形状を有し、複数の光源素子210は、それぞれ複数の光源素子210の素子配列方向すなわちX方向に沿って球面形状の集光レンズ212の中心を発光ダイオード211の中心から片側にずらしたものである。
本第2実施例に係る照明装置200の構成は、集光レンズ212の中心が発光ダイオード211の中心からX方向に沿って片側すなわち
図13乃至
図15中の右側に向かってずれている点で上述の照明装置100の構成と相違している。
また、異方性光拡散シート220は、上述の第1実施例に係る照明装置100に用いられる異方性光拡散シート120と同様に凹凸配列方向D1を
図13中のX方向に沿わせた状態で光源素子210に対向配置されている。
【0049】
次に、
図14乃至
図17に基づいて、本第2実施例に係る照明装置200の配光状態を説明する。
図14及び
図15に示すように、発光ダイオード211で発生した光L0は、集光レンズ212で集光されて出射光L1として集光レンズ212から異方性光拡散シート220に出射され、異方性光拡散シート220でX方向に沿って拡散配光される。
【0050】
ここで、
図16に基づいて、発光ダイオード211で発生した光L0、出射光L1及び拡散光L2の強度分布を説明する。
なお、
図16の横軸である角度は、発光ダイオード211の中心を原点とするX方向に沿った光の広がり角度を示している。
より具体的には、
図15中の発光ダイオード211の中心を通る異方性光拡散シート220の法線LCから右側の角度領域が
図16の横軸におけるプラスの角度領域であり、法線LCから左側の角度領域が
図16の横軸におけるマイナスの角度領域である。
【0051】
図16に示すように、発光ダイオード211で発生した光L0の強度分布は、発光ダイオード211の中心直上で最も強度が高いガウシアン分布である。
球面形状すなわち真円ドーム状の集光レンズ212の中心が複数の光源素子210の素子配列方向すなわちX方向に沿って発光ダイオード211の中心から片側にずれていることにより、出射光L1の強度分布のピーク位置は、片側すなわちプラスの角度領域へシフトする。
【0052】
そして、拡散光L2の強度分布のピーク値は、異方性光拡散シート220による出射光L1の拡散作用により出射光L1の強度分布のピーク値より低くなる。
加えて、拡散光L2の強度分布は、異方性光拡散シート220による出射光L1の拡散作用により出射光L1の強度分布に比べて全体としてなだらかな強度分布になる。
これにより、発光ダイオード211の中心直上に出射された高強度の光L0に由来する出射光L1を異方性光拡散シート220で拡散した拡散光L2は、照明装置200の使用時における照明装置200の設置位置からみて照明装置200の直下位置より遠い位置に照射される。
【0053】
より具体的には、
図17に示すように、道路等の照明対象Rに対する照明装置200の光の照明範囲A0が、X方向に沿って照射範囲A1にシフトするとともに、拡散光L2のホットスポットP0が、照明装置200の直下位置から離れた遠い位置であるホットスポットP1へシフトする。
【0054】
このため、本第2実施例に係る照明装置200では、発光ダイオード211の中心直上に出射された高強度の光L0に由来する出射光L1が拡散されずにそのまま照明装置200の直下位置に照射される場合に比べて拡散光L2の照射範囲A1内に生じる光のホットスポットP1の照度が抑制されて照射範囲A1の均斉度が高まっている。
加えて、ホットスポットP0からホットスポットP1へのシフトにより、照明装置200の設置位置からホットスポットP0までの距離が距離d0から距離d1へ大きくなるため、照明装置200の設置位置からホットスポットまでの距離の増大に応じてホットスポットの照度が抑制されて均斉度が高まっている。
【0055】
次に、
図18に基づいて、本第2実施例に係る照明装置200を屋外用灯具として複数設置した場合の拡散光の照射範囲を説明する。
図18に示すように、本第2実施例に係る照明装置200は、例えば、照明装置200のX方向すなわち照明装置200の長手方向を道路などの照明対象Rの延長方向に沿わせた状態で設置される。
より詳細には、複数の照明装置200は、道路などの照明対象Rの幅方向両側の路面より上方に設置された状態で上方から道路等の照明対象Rを照らす。
そして、X方向に沿って千鳥状に配列設置された複数の照明装置200のうちX方向に沿って隣り合う2つの照明装置100から出射される拡散光の照射範囲A1は互いに重なる。
【0056】
このため、道路などの照明対象Rは、複数の照明装置200の配列方向すなわちX方向に沿って広い範囲で均一に照らされる。
なお、本第2実施例に係る照明装置200も、上述の照明装置100と同様に一定の範囲を均一な照度で照明する際に必要な照明装置200の設置数を減らすことができるという利点を有している。
[第3実施例]
【0057】
次に、
図19乃至
図24に基づいて、本発明の第3実施例に係る照明装置300を説明する。
図19及び
図20に示すように、本第3実施例に係る照明装置300は、上述した照明装置200を構成する光源素子210と同様の構成を有する光源素子すなわち
図19中のX方向に沿って片側に球面形状の集光レンズ312の中心を発光ダイオード311の中心からずらした光源素子310Aと、X方向に沿って片側とは逆側に球面形状の集光レンズ312の中心を発光ダイオード311の中心からずらした光源素子310Bとを含んでいる。
より具体的には、
図20に示すように、X方向に沿って相互に隣り合う光源素子310A、310Bは、X方向に沿って各発光ダイオード311の中心を通る法線LCA、LCBから互いに反対側に集光レンズ312の中心をずらした光源素子である。
【0058】
これにより、集光レンズ312を片側にずらした光源素子310Aと集光レンズ312を逆側にずらした光源素子310Bとのそれぞれの発光ダイオード311の中心直上に出射された高強度の光L0が集光レンズ312で片側及び逆側に屈折した後、それぞれ異方性光拡散シート320で拡散され、X方向すなわち素子配列方向に沿って拡散光L2として相互に反対側に配光される。
【0059】
ここで、
図20乃至
図23に基づいて、各光源素子310A、310Bの発光ダイオード311で発生した光L0、出射光L1及び拡散光L2の強度分布と、光源素子310A、310Bから出射される拡散光L2を合成した合成拡散光の強度分布を具体的に説明する。
図21で横軸にとった角度は、
図20中の光源素子310Aに含まれる発光ダイオード311の中心LCAを原点として
図20中の右側及び左側に広がる角度範囲である。
図22で横軸にとった角度は、
図20中の光源素子310Bに含まれる発光ダイオード311の中心LCBを原点として
図20中の右側及び左側に広がる角度範囲である。
図23で横軸にとった角度は、
図20中の2つの光源素子310A、310Bの中間Cを原点として
図20中の右側及び左側に広がる角度範囲である。
【0060】
なお、
図21及び
図22に示された光L0の強度分布IA0、IB0は、各光源素子310A、310Bの発光ダイオード311の中心直上に出射される光だけでなく、各光源素子310A、310Bのそれぞれの発光ダイオード311から出射される光全体の強度分布である。
【0061】
図20乃至
図22に示すように、各光源素子310A、310Bの発光ダイオード311で発生した光L0の強度分布IA0、IB0は、各光源素子310A、310Bの中心LCA、LCBを原点とした対称なガウシアン分布である。
そして、各光源素子310A、310Bから出射される出射光L1の強度分布IA1、IB1のピーク位置は、各光源素子310A、310Bの発光ダイオード311で発生した光L0のピーク位置に比べて片側及び逆側のそれぞれにシフトしている。
すなわち、集光レンズ312を片側にずらした光源素子310Aと集光レンズ312を逆側にずらした光源素子310Bとのそれぞれの発光ダイオード311の中心直上に出射された高強度の光L0は、集光レンズ312で屈折した後、光源素子310AにおいてはX方向に沿って片側に、光源素子310BにおいてはX方向に沿って逆側に、出射光L1として各集光レンズ312から出射されていることになる。
【0062】
さらに、各光源素子310A、310Bの出射光L1を拡散した拡散光L2の強度分布IA2、IB2のピーク値は、異方性光拡散シート320による出射光L1の拡散作用により出射光L1のピーク値より抑えられる。
これにより、各光源素子310A、310Bの出射光L1を拡散した拡散光L2の強度分布IA2、IB2は、出射光L1の強度分布IA1、IB1に比べて全体としてなだらかな強度分布になる。
【0063】
加えて、
図23に示すように、各光源素子310A、310Bから出射された出射光L1に由来する拡散光L2を合成した合成拡散光の強度分布ICは、各光源素子310A、310Bのそれぞれにおける出射光L1の強度分布と各光源素子310A、310Bのそれぞれの拡散光L2の強度分布とに比べて広い角度範囲でなだらかな強度分布になる。
このため、本第3実施例に係る照明装置300は、拡散光L2の照射範囲における光のホットポイントの重なりを防ぐとともにその照度を抑制して均斉度を高めるようになっている。
【0064】
次に、
図24に基づいて、本第3実施例に係る照明装置300を複数設置した際の照明範囲を説明する。
図24に示すように、本第3実施例に係る照明装置300をX方向に沿って道路等の照明対象Rの両側上方に千鳥状に複数並べて設置することにより、集光レンズ312を片側にずらした光源素子310Aと集光レンズ312を逆側にずらした光源素子310Bとのそれぞれの発光ダイオード311の中心直上へ出射された高強度の光L0に由来する拡散光L2が片側及び逆側に分散配光された状態で各照明装置300の照明範囲A2が互いに重なる。
これにより、本第3実施例に係る照明装置300は、上述の第2実施例に係る照明装置200を複数並べて設置する場合に比べて照射範囲A2におけるホットスポットP2の照度が抑えられてX方向に均一且つ均斉度を高めた状態で路面等の照明対象Rを照らすようになっている。
【0065】
次に、
図25に基づいて、上述した第3実施例に係る照明装置300の一変形例である照明装置300Xを説明する。
図25に示すように、本変形例に係る照明装置300Xは、X方向に沿って相互に隣り合って配置される光源ユニット300UA、300UBを有している。
光源ユニット300UAは、図中X方向に沿って片側に集光レンズ312の中心を発光ダイオード311の中心からずらして配置した複数の光源素子310XAを有している。
光源ユニット300UBは、図中X方向に沿って逆側に集光レンズ312の中心を発光ダイオード311の中心からずらして配置した複数の光源素子310XBを有している。
【0066】
すなわち、光源素子310XA、310XBは、互いに反対向きに集光レンズ312の中心を発光ダイオード311の中心からずらして配置した状態で照明装置300Xに設けられている。
これにより、本変形例に係る照明装置300Xは、上述した照明装置300と同様の効果を奏する。
加えて、本変形例に係る照明装置300Xは、光源ユニット300UA、300UBを付け替えることにより、拡散光L2の照射範囲及びホットスポットの位置を調整してX方向に均一に且つ均斉度を高めた状態で路面等の照明対象を照らすようになっている。
【0067】
なお、本第3実施例に係る照明装置300及びその変形例に係る300Xは、上述の照明装置100、200と同様に、一定の範囲を均一な照度で照明する際に必要な照明装置300、300Xの設置数を減らすことができるという利点を有している。
[第4実施例]
【0068】
次に、
図26及び
図27に基づいて、本発明の第4実施例に係る照明装置400を説明する。
図26に示すように、本第4実施例に係る照明装置400は、発光ダイオード411とこの発光ダイオード411の光を集光して出射する集光レンズ412とからそれぞれ構成されている複数の光源素子410と、集光レンズ412の光出射側でX方向に沿って延びて集光レンズ412に対向する波状の凹凸パターン421を形成した異方性光拡散シート420とを備えている。
すなわち、本第4実施例では、
図26中のX方向が「一方向」の一例である。
【0069】
本第4実施例に係る照明装置400では、異方性光拡散シート420は、凹凸パターン421の凹凸配列方向D1を複数の光源素子410の素子配列方向すなわち図中X方向に交差させた状態で集光レンズ412の光出射側に配置されている。
これにより、発光ダイオード411で発生した光を集光レンズ412で集光した出射光は、素子配列方向に交差する方向すなわち図中X方向に直交しているY方向に平行な凹凸配列方向D1に沿って拡散される。
このため、本第4実施例に係る照明装置400は、光源素子410の素子配列方向に交差する方向すなわちX方向に直交するY方向に拡散光を配光してY方向に沿った楕円状の広い範囲を均一に照らすようになっている。
【0070】
そして、
図27に示すように、本第4実施例に係る照明装置400を
図26中のY方向に沿って複数並べて設置した場合、相互に隣り合う照明装置400の光の照射範囲が互いに重なる。
このため、上述した複数の照明装置400は、複数の照明装置400の配列方向すなわちY方向に沿って道路などの照明対象の広い範囲を均一に照らすようになっている。
加えて、光の照射範囲A3が楕円状であることにより、照明装置400の設置数を減らして相互に隣り合う照明装置400の距離を大きくした場合でも、相互に隣り合う照明装置100による光の照射範囲A3を部分的に重ねて広い範囲を均一に照らすことができる。
すなわち、本第1実施例に係る照明装置400によれば、一定の範囲を均一な照度で照明する際に必要な照明装置400の設置数を減らすことができるという利点がある。
【0071】
このようにして得られた本第4実施例に係る照明装置400は、発光ダイオード411とこの発光ダイオード411の光を集光して出射する集光レンズ412とからそれぞれ構成されている複数の光源素子410と、集光レンズ412の光出射側でX方向に沿って延びて集光レンズ412に対向する波状の凹凸パターン421を有している異方性光拡散シート420とを備えていることにより、発光ダイオード411で発生した光のうち照明に寄与しない光を減らして照明の効率を高めた状態でX方向と直交する方向すなわちY方向の広い範囲に配光させて広い範囲を均一に照らすことができるなど、その効果は甚大である。