(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
角柱形状のスライド軸(固定体)の軸心方向に沿って、このスライド軸の外周面を囲むように配されたスライダ(移動体)を案内するエアスライド装置(直動浮上装置)として、真空チャンバ内において半導体等を搬送するために使用される特許文献1記載の案内装置が知られている。
【0003】
この案内装置は、4つの平面状の案内面を外周に有する角柱状のスライド軸と、スライド軸の各案内面に対向する運動面を内周に有する筒状のスライダと、を有している。
【0004】
スライド軸の4つの案内面には、それぞれ、スライド軸の軸心方向(スライダの移動方向)に沿ってエアパッドが設けられており、スライド軸の内部には、すべてのエアパッドにつながる共通の圧縮気体供給流路が設けられている。また、スライド軸の4つの案内面には、それぞれ、エアパッドの周りを囲むように、供給された圧縮気体を回収するための環状の回収溝が形成されており、スライド軸の内部には、回収溝につながる排気路が設けられている。
【0005】
このような構成において、スライド軸の供給流路に圧縮気体が供給されると、スライド軸の4つの案内面のエアパッドから圧縮気体が同じ圧力で噴出してスライド軸の外周面(4つの案内面)とスライダの内周面(4つの運動面)との間に空気層が形成され、スライダが、スライド軸から浮上した状態で、スライド軸の軸心方向に沿って移動可能となる。また、スライド軸の各案内面上のエアパッドから噴出した圧縮気体は、それぞれのエアパッドを囲む回収溝により回収されるため、スライド軸の案内面とスライダの運動面との間から漏れ出すことなく、スライド軸内の排気路を介して真空チャンバの外部に排気される。
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1に記載の案内装置のスライド軸の案内面には、エアパッドが、スライド軸の軸心方向に沿った中心線を含む中央領域付近のみに取り付けられており、スライド軸の幅方向の端部付近には取り付けられていない。このため、圧縮気体が、スライド軸の案内面およびスライダの運動面の、幅方向両端部付近にまで行き渡たらない可能性がある。したがって、スライド軸の案内面とスライダの運動面との隙間内の圧力は、スライド軸の幅方向において、エアパッドが位置する中央領域からスライド軸の運動面の両端に近づくほど低下することが考えられる。このような圧力勾配が生じた場合、例えば、スライド軸またはスライダが衝撃等の荷重変動を受けたときに、スライド軸の軸心周りにスライダとスライド軸とが相対的に揺動する可能性がある。
【0008】
また、特許文献1に記載の案内装置においては、構造上、圧縮気体が、スライド軸の案内面およびスライダの運動面の、軸心方向両端部付近にまで行き渡たらない可能性がある。このため、スライド軸が曲げ荷重を受けた場合、スライド軸が撓み、スライダの直進度が低下する可能性がある。
【0009】
本発明は上記事情に鑑みてなされたものであり、その目的は、より高精度な直線案内を実現可能な直動浮上装置を提供することにある。
【課題を解決するための手段】
【0010】
上記課題を解決するため、本発明に係るエアスライド装置は、
軸心方向に沿った複数の側面を有する角柱形のスライド軸と、
前記スライド軸の軸心周りに前記スライド軸を囲み、前記スライド軸の前記各側面に対向する内壁面を有し、前記スライド軸に対して、前記軸心方向に沿って相対的に移動するスライダと、を備え、
前記スライド軸の側面および前記スライダの内壁面のうち、いずれか一方の面は、当該面に対向する他方の面を支持対象面として非接触で支持する静圧気体軸受面を含み、
前記スライド軸および前記スライダのうち、前記静圧気体軸受面を有する一方の部品は、
前記各支持対象面側に向けられ
た溝形成面を有し、
当該溝形成面の外周領域に、前記静圧気体軸受面から
前記支持対象面に向けて噴出させる圧縮気体が供給される給気溝が、当該静圧気体軸受面の縁に沿った
一重のパターンで形成され
たベース材と、
前記ベース材の前記溝形成面に積層され、前記静圧気体軸受面を形成する多孔質層と、を有する。
【発明の効果】
【0011】
本発明によれば、角柱形状のスライド軸の各側面、またはスライダのスライド軸の各側面に対向する内壁面が、その外周領域に十分な浮力を受けるため、スライダまたはスライド軸の軸心周りの揺動を防止することができるとともに、スライド軸のモーメント剛性を向上させることができる。このため、より高精度な直線案内を実現することができる。
【発明を実施するための形態】
【0013】
以下に、本発明の一実施の形態について、図面を参照して説明する。
【0014】
まず、本実施の形態に係るエアスライド装置1の構成について説明する。ここでは、高精度位置決めが要求される半導体実装装置等の高精度位置決め装置のZ軸可動機構として用いられるエアスライド装置1を一例に挙げて、固定されたスライダ3によりスライド軸2がその長手方向に直線案内される構成について説明する。
【0015】
図1(A)は、本実施の形態に係るエアスライド装置1の外観図であり、
図1(B)は、このエアスライド装置1のA−A断面図である。また、
図2(A)は、このエアスライド装置1を構成するスライダ3の外観図であり、
図2(B)は、このスライダ3のB−B断面図である。なお、便宜上、
図1(A)において、スライド軸2の長手方向をz、スライド軸2の横幅および縦幅方向をxおよびyとする直交座標系を定義し、他の図の説明においても、適宜、この座標系を用いる。
【0016】
図示するように、本実施の形態に係るエアスライド装置1は、高精度位置決め装置のZ軸等に固定されるスライダ3と、スライダ3により外周21を非接触で支持され、スライダ3の軸心Zに沿って(つまりz方向に)案内されるスライド軸2と、を備えている。
【0017】
スライド軸2は、要求される移動距離に応じた長さの四角柱形状を有しており、スライダ3の軸心Zに沿った4つの側面21(うち、2面は不図示)が、スライダ3により非接触支持されてガイドされる面(以下、支持対象面)21を形成している。また、高精度位置決め装置の用途に応じて、スライド軸2の一方の端面22には、例えば、ワークをチャックする吸着コレット用のホルダを固定するためのネジ穴25、および、吸着コレット内を減圧する真空ポンプからの吸引管を通すための吸引路24の開口等が形成される。
【0018】
一方、スライダ3は、スライド軸2の軸心Z周りにスライド軸2を囲むように、スライド軸2の各支持対象面21と対向する平面状の内壁面31A〜31Dを有する枠形状を有しており、各内壁面31A〜31Dが、気体層を介してスライド軸2の支持対象面21と所定の隙間dで対向する平面状の静圧気体軸受面31A〜31Dを形成している。このスライダ3は、通気性を有する多孔質層32A〜32Dとその裏側に位置する給気路33A〜33Dとを有する以下の2組のプレート(合計4枚のプレート)30A〜30Dを、各組のプレートの多孔質層(32Aと32C、32Bと32D)が向かい合うように組み合わせて複数の六角穴付きボルト37で固定することによって形成される。
【0019】
2組のプレート30A〜30Dのうち、一方の組を構成する2枚のプレート30B、30Dは、同様な構造を有するものであり、スライド軸2の横幅寸法に応じた間隔をおいて対向配置される。
図3(A)および
図3(B)は、対向して配置される2枚のプレート30B、30Dの正面図および下面図であり、
図3(C)および
図3(D)は、
図3(A)に示すプレート30B、30DのC−C断面図およびD−D断面図である。
【0020】
図示するように、プレート30B、30Dは、それぞれ、四角形状に成形されたバックメタル(ベース材)34と、バックメタル34の一方の面(多孔質層形成面)343全体に積層された多孔質層32B、32Dと、を有している。
【0021】
バックメタル34には、対向配置される他の2枚のプレート30A、30C側に向けられる両側の側面341を貫通した複数のボルト挿入穴342が形成されている。これらのボルト挿入穴342には、プレート30Aの後述のボルト穴359を介して六角穴付きボルト37が挿入される。
【0022】
また、バックメタル34の多孔質層形成面343には、多孔質層32B、32D裏側に位置する給気路33B、33Dが形成されている。この給気路33B、33Dは、バックメタル外形の対称線(z方向対称線O1と、y方向対称線O2)に関して対称なパターンを有しており、バックメタル34の多孔質層形成面343の4つの角領域3431を通過する給気溝331と、この給気溝331とつながり、y方向両側の側面341において開口した通気溝332と、を含んでいる。本実施の形態においては、給気溝331は、バックメタル34の多孔質層形成面343の外縁に沿って、バックメタル34の多孔質層形成面343の中央領域3432を囲む外周領域3433(バックメタル34の縁から所定の幅の帯状の領域)内に形成されており(つまり、対向するスライド軸2の支持対象面21の縁に沿って形成されており)、通気溝332は、この給気溝331と交わるように、バックメタル外形のy方向対称線O2上に形成されている。
【0023】
バックメタル34の多孔質層形成面343全体に多孔質層32B、32Dが積層されることにより、この多孔質層32B、32Dの裏側には、一方の側面341側の通気溝332の開口から、バックメタル34の多孔質層形成面343の外縁に沿った給気溝331を介して、他方の側面341側の通気溝332の開口までつながる圧縮気体の流路が形成される。そして、多孔質層32B、32Dの表面31B、31Dは、この流路を介して供給される圧縮気体を噴出する静圧気体軸受面31B、31Dを形成する。
【0024】
2組のプレート30A〜30Dのうち、他方の組を構成する2枚のプレート30A、30Cは、一方の組のプレート30B、30Dをその両側の側面341側から挟むように、スライド軸2の縦幅寸法に応じた間隔をおいて対向配置される。
【0025】
図4(A)および
図4(B)は、対向して配置される他の2枚のプレート30A、30Cのうち、一方のプレート30Aの正面図および背面図であり、
図4(C)、
図4(D)および
図4(E)は、
図4(A)に示すプレート30AのE−E断面図、F−F断面図およびG−G断面図である。
【0026】
図示するように、他の2枚のプレート30A、30Cのうち、一方のプレート30Aは、四角形状に成形されたスチール板等のバックメタル(ベース材)35と、バックメタル35の一方の面(多孔質層形成面)353に積層された多孔質層32Aと、を有している。
【0027】
バックメタル35の多孔質層形成面353には、z方向に沿った両側の縁351からそれぞれプレート30B、30Dの板厚程度の帯状領域(プレート取付領域)354を残して凹部355が形成されている。凹部355には多孔質層32Aが配置され、この凹部355両側のプレート取付領域354には、対向配置された一方の組のプレート30B、30Dの一方の側面341が位置付けられる。
【0028】
この凹部355の底面には、多孔質層32A裏側に位置する給気路33Aが形成されている。この給気路33Aは、バックメタル外形の対称線(z方向対称線O3とx方向対称線O4)に関して対称なパターンを有しており、凹部355の底面3554の4つの角領域3551を通過する給気溝333と、この給気溝333につながり、x方向に伸びてプレート取付領域354内にまで達した通気溝334と、を含んでいる。本実施の形態においては、給気溝333は、凹部355の底面外形に沿って、凹部355の底面3554の中央領域3552を囲む外周領域3553(凹部355の底面3554の輪郭線から所定幅の帯状領域)内に形成されており(つまり、対向するスライド軸2の支持対象面21の縁に沿って形成されており)、通気溝334は、給気溝333に交わるように、バックメタル外形のx方向対称線O4上に形成されている。
【0029】
そして、バックメタル35の他方の面356には、通気溝334を介して給気溝333につながる給気口357が形成されている。
【0030】
バックメタル35の多孔質層形成面353側の凹部355に多孔質層32Aが積層されることにより、この多孔質層32Aの裏側には、バックメタル35の他方の面356の中央部に位置する給気口357から、バックメタル35の凹部355の底面外形に沿った給気溝333を介して、プレート取付領域354内の通気溝端部3341までつながる圧縮気体の流路が形成される。そして、多孔質層32Aの表面31Aは、この流路を介して供給される圧縮気体を噴出する静圧気体軸受面31Aを形成する。
【0031】
また、バックメタル35の他方の面356には、プレート取付領域354に位置付けられるプレート30B、30Dの一方の側面341のボルト挿入穴342に対応する位置にそれぞれボルト穴359が形成されている。
【0032】
図5(A)は、対向して配置される他のプレート30A、30Cのうち、他方のプレート30Cの正面図であり、
図5(B)、
図5(C)および
図5(D)は、
図5(A)に示すプレート30CのH−H断面図、I−I断面図およびJ−J断面図である。
【0033】
図示するように、他の2枚のプレート30A、30Cのうち、他方のプレート30Cは、四角形状に成形されたスチール板等のバックメタル(ベース材)36と、バックメタル36の一方の面(多孔質層形成面)363に積層された多孔質層32Cと、を有している。
【0034】
バックメタル36の多孔質層形成面363は、一方のプレート30Aと同様な表面形状を有している。具体的には、バックメタル36の多孔質層形成面363には、z方向に沿った両側の縁361からそれぞれプレート30B、30Dの板厚程度の帯状領域(プレート取付領域)364を残して、多孔質層32Cが配置される凹部365が形成されており、この凹部365の底面に、多孔質層32Cの裏側に位置する給気路33Cが形成されている。この給気路33Cは、バックメタル外形の対称線(z方向対称線O5とx方向対称線O6)に関して対称なパターンを有しており、凹部365の底面の4つの角領域を通過する給気溝335と、この給気溝335とつながり、プレート取付領域364内にまで達した通気溝336と、を含んでいる。本実施の形態においては、給気溝335は、バックメタル36の多孔質層形成面363の凹部365の底面外形に沿って、この凹部365の底面3655の中央領域3652を囲む外周領域3653(凹部365の底面3655の輪郭線から所定幅の帯状領域)内に形成されており(つまり、対向するスライド軸2の支持対象面21の縁に沿って形成されており)、通気溝336は、この給気溝335に交わるように、バックメタル外形のx方向対称線O6上に形成されている。
【0035】
バックメタル36の多孔質層形成面363側の凹部365に多孔質層32Cが積層されることにより、この多孔質層32Cの裏側には、プレート取付領域364の通気溝端部3361から、バックメタル36の凹部365の底面外形に沿った給気溝336につながる圧縮気体の流路が形成される。そして、多孔質層32Cの表面31Cは、この流路を介して供給される圧縮気体を噴出する静圧気体軸受面31Cを形成する。
【0036】
また、バックメタル36のプレート取付領域364には、このプレート取付領域364に位置付けられたプレート30B、30Dの他方の側面341のボルト挿入穴342に対応する位置にそれぞれ複数のネジ穴369が形成されている。
【0037】
スライダ3は、このような4枚のプレート30A〜30Dを、以下のように組み立てることによって作成される。
【0038】
2枚のプレート30B、30Dを、多孔質層32B、32Dが向かい合うように対向させた状態でプレート30Cの両側のプレート取付領域364上に一枚ずつ配置する。このとき、プレート30B、30Dの他方の側面341のボルト挿入穴342をプレート30Cのプレート取付領域364のネジ穴369に位置あわせすることにより、プレート30B、30Dの他方の側面341における通気溝332の開口がプレート30Cのプレート取付領域364の通気溝端部3361に連結される。
【0039】
さらに、プレート30Aを、そのプレート取付領域354が2枚のプレート30B、30Dの他方の側面341に接触するように、2枚のプレート30B、30Dの一方の側面341上に配置する。このとき、プレート30Aの両側のプレート取付領域354のボルト穴359をプレート30B、30Dの一方の側面341のボルト挿入穴342に位置あわせすることにより、プレート30B、30Dの一方の側面341における通気溝332の開口がプレート30Dのプレート取付領域354の通気溝端部3341に連結される。
【0040】
これにより、4枚のプレート30A〜30Dの給気路33A〜33Dは、
図1(A)に破線で示したように互いに連結される。この状態において、プレート30Aのボルト穴359からプレート30B、30Dのボルト挿入穴342にそれぞれ六角穴付きボルト37を挿入し、これらの六角穴付きボルト37のネジ部をプレート30Cのネジ穴369に締結する。これにより、4枚のプレート30A〜30Dが枠状に固定され、スライダ3が完成する。このようにして作製される枠形状のスライダ3と四角柱形状のスライド軸2と組み合わせることにより、スライダ3の軸心Z周りのスライド軸2の回転を防止可能なエアスライド装置1が作製される。
【0041】
そして、このようなスライダ3によれば、1枚のプレート30Aの給気口357に連結されたポンプの給気管から圧縮気体が供給されると、圧縮気体が、4枚のプレート30A〜30Dの多孔質層32A〜32D裏側の給気路33A〜33D全体に行き渡り、4枚のプレート30A〜30Dの多孔質層32A〜32D内の細孔を介して静圧空気軸受面31A〜31D全体から噴出する。
【0042】
ここで、多孔質層32A〜32D裏側には、スライド軸2の各支持対象面21の縁に沿ったパターンの給気溝331、333、335が存在しているため、スライダ3の静圧空気軸受面31A〜31Dと、スライダ3内に挿入されたスライド軸2の各支持対象面21との隙間内の圧力は、給気溝331、333、335が存在しない領域よりも、給気溝331、333、335上の領域、すなわち、スライド軸2の支持対象面21の外周領域において高くなる。このため、
図6(A)に示すように、xy面内においては、スライド軸2の支持対象面21の両端部(スライド軸2の横幅および縦幅の両端部)が十分な浮力により支持される。このため、スライド軸2が衝撃等の荷重変動を受けた場合であっても、スライド軸2の軸心周りの揺動を防止することができる。また、
図6(B)に示すように、スライド軸2の軸心上の二箇所の位置において、スライド軸2の外周全周にわたる帯状領域60、61に十分な浮力を受けるため、スライド軸2のモーメント剛性が向上する。このため、スライド軸2の直進度の低下を防止することができる。さらに、静圧気体軸受面31A〜31D全体から圧縮気体が噴出するため、スライド軸2の各支持対象面21とスライダ3の静圧気体軸受面31A〜31Dとの隙間内の圧力分布が、スライド軸の案内面の中央領域にのみエアパッドが設けられている従来の案内装置よりも均一化される。このため、スライド軸2の浮上安定性が向上する。したがって、本実施の形態に係るエアスライド装置1によれば、スライド軸2のより高精な直線案内を実現することができる。
【0043】
また、4枚のプレート30A〜30Dの組立てにより、4枚のプレート30A〜30Dの多孔質層32A〜32D裏側の給気溝331、333、335が通気溝332、334、336により相互につながるため、圧縮気体を供給するための給気口357は1枚のプレート30Aに1箇所設けられていれば足りる。このため、ポンプから複数の給気管を引く必要がないため、給気管と他の部品との干渉等が生じにくく、組立て時の調整が容易となる。
【0044】
なお、本実施の形態においては、スライダ3を固定し、その軸心Zに沿ってスライド軸2を案内する場合について説明したが、スライド軸2を固定し、その長手方向zにスライダ3を案内するようにしてもよい。このようにした場合には、スライダ3の高精度な直線案内を実現することができる。
【0045】
また、半導体実装装置等の高精度位置決め装置のZ軸可動機構として用いられるエアスライド装置1を例に挙げたが、本実施の形態に係るエアスライド装置1の用途は、これに限られない。例えば、検査装置等のステージ移動機構といった、高精度な直線案内が要求される他の装置の移動機構としても適用可能である。
【0046】
また、本実施の形態においては、2枚のプレート30B、30Dのバックメタル34の多孔質層形成面343の外周領域に給気溝331を形成しているが、スライダ3のサイズによっては、給気溝331に囲まれた中央領域内に、給気溝331または通気溝332につながる給気溝をさらに形成してもよい。他の2枚のプレート30A、30Cについても同様である。
【0047】
また、本実施の形態においては、2枚のプレート30B、30Dのバックメタル34の多孔質層形成面343に、給気溝331と交わり、バックメタル34の両側の側面341において開口する通気溝332を形成しているが、この通気溝332に代えて、給気溝331と交わる貫通穴を、バックメタル34の一方の側面341から他方の側面341に向けて形成してもよい。多少の位置ズレが生じても、この貫通穴と他の2枚のプレート30A、30C
の通気溝端部3341、3361につながるように、プレート30B、30Dの両側の側面341に、この貫通穴の開口を通過する適当な長さの溝を形成してもよいし、他の2枚のプレート30A、30Dのプレート取付領域354、364に、通気溝端部3341、3361とz方向に交わる適当な長さの溝を形成してもよい。
【0048】
また、本実施の形態においては、4つの側面21を支持対象面とする四角柱形状のスライド軸2を用いているが、スライド軸2は、四角形以外の多角形を断面とする多角柱状であってもよい。この場合、スライド軸2の周りを囲むスライダ3の形状は、スライド軸2の断面形状に対応する枠形状とすればよい。
【0049】
また、本実施の形態においては、スライド軸2の各側面21を支持対象面とし、スライド軸2の軸心Z周りにスライド軸2を囲む枠形状のスライダ3の内壁面31A〜31Dを静圧気体軸受面としているが、これとは逆に、スライド軸2の各側面21を静圧気体軸受面とし、スライダ3の4面の内壁面31A〜31Dを支持対象面としてもよい。具体的には、上述のスライダ3と同様、スライド軸2の各側面21に、対向する支持対象面31A〜31Dの縁に沿ったパターンの給気溝と、隣り合う側面21の給気溝をつなぐ通気溝とを形成し、その上に多孔質層を積層すればよい。これにより、スライダ3の各支持対象面31A〜31Dの外周領域が十分な浮力により支持され、スライダ3の軸心周りの揺動を防止されるとともにスライド軸2のモーメント剛性が向上するため、上述の場合と同様、スライダ3の高精度な直線案内を実現することができる。なお、この場合、上述のスライダ3に用いたプレート30A〜30Dと同様の構造の複数枚のプレートを、多孔質層が外側に向くように組み立てることによって、スライド軸2を構成してもよい。
【0050】
以上において、多孔質層32A〜32Dは、多孔質金属、セラミック等、通気性を有していれば、どのような材料で形成されていてもよい。例えば、多孔質層32A〜32Dを多孔質金属焼結層とする場合には、プレート30A〜30Dとして、例えばオイレス工業(株)のオイレス#2000等を利用することができる。