特許第5972960号(P5972960)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ マウイ イマギング,インコーポレーテッドの特許一覧

特許5972960マルチアパーチャ方式の医用超音波技術を用いた画像形成方法及びアドオンシステムの同期方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5972960
(24)【登録日】2016年7月22日
(45)【発行日】2016年8月17日
(54)【発明の名称】マルチアパーチャ方式の医用超音波技術を用いた画像形成方法及びアドオンシステムの同期方法
(51)【国際特許分類】
   A61B 8/14 20060101AFI20160804BHJP
【FI】
   A61B8/14ZDM
【請求項の数】13
【全頁数】15
(21)【出願番号】特願2014-249465(P2014-249465)
(22)【出願日】2014年12月10日
(62)【分割の表示】特願2011-522263(P2011-522263)の分割
【原出願日】2009年8月7日
(65)【公開番号】特開2015-71074(P2015-71074A)
(43)【公開日】2015年4月16日
【審査請求日】2014年12月18日
(31)【優先権主張番号】61/087,571
(32)【優先日】2008年8月8日
(33)【優先権主張国】US
(31)【優先権主張番号】61/169,264
(32)【優先日】2009年4月14日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】511032992
【氏名又は名称】マウイ イマギング,インコーポレーテッド
(74)【代理人】
【識別番号】100097456
【弁理士】
【氏名又は名称】石川 徹
(72)【発明者】
【氏名】ドナルド エフ. スペクフト
(72)【発明者】
【氏名】ケンネトフ ディー. ブレウエル
【審査官】 宮川 哲伸
(56)【参考文献】
【文献】 特開2006−061203(JP,A)
【文献】 特開昭57−031848(JP,A)
【文献】 米国特許第05355888(US,A)
【文献】 米国特許出願公開第2014/0135626(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 8/00 − 8/15
(57)【特許請求の範囲】
【請求項1】
アドオン超音波システムをホスト超音波システムに同期させる方法であって、
該ホスト超音波システムのホスト超音波プロセッサを用いてホスト超音波プローブから超音波パルスを送信する送信ステップと、
該アドオン超音波システムのアドオン超音波プローブにより該超音波パルスを受信する受信ステップと、
該アドオン超音波システムのアドオン超音波プロセッサにより、該アドオン超音波システムを該ホスト超音波システムに同期させる同期ステップとを含み、
該アドオン超音波プロセッサが、該ホスト超音波システムを該アドオン超音波システムに接続しているタップを介して得られるデータを処理し、該ホスト超音波システムによって送信された該超音波パルスの開始時間を検出する、前記方法。
【請求項2】
前記受信ステップが、前記アドオン超音波システムの複数のアドオン超音波プローブにより前記超音波パルスを受信することを更に含む、請求項1記載の方法。
【請求項3】
前記アドオン超音波システムから提供される組織の超音波画像を表示することを更に含む、請求項1記載の方法。
【請求項4】
前記送信ステップが超音波パルスを身体組織の中へ送出することを含む、請求項1記載の方法。
【請求項5】
超音波画像形成システムであって、
超音波パルスを送出するように構成されたホスト送信用プローブ、及びホストプロセッサを備えるホスト超音波画像形成システム;
該ホスト送信用プローブから送出された超音波パルスを受信するように構成されたアドオン受信用プローブ、及びアドオンプロセッサを備えるアドオン超音波画像形成システム;及び
該アドオンプロセッサを該ホスト送信用プローブに直接接続するタップを含み、
該タップによる直接接続が、該アドオンプロセッサにより、該ホスト送信用プローブから送出される超音波パルスの開始時間、及び方向を決定できるようにしている、前記超音波画像形成システム。
【請求項6】
前記アドオンプロセッサが、前記タップからのデータを処理し、前記アドオン超音波画像形成システムを前記ホスト超音波画像形成システムに同期するように構成されている、請求項5記載のシステム。
【請求項7】
前記アドオンプロセッサからの超音波画像を表示するよう設定されているィスプレイを更に含む、請求項5記載のシステム。
【請求項8】
第2のアドオン受信用プローブを更に含む、請求項5記載のシステム。
【請求項9】
前記開始時間を、パルス繰り返しインターバルよりも実質的に長い振幅ピーク間インターバルを特定することで決定する、請求項5記載のシステム。
【請求項10】
前記開始時間を、連続するスキャンラインの間でピーク振幅値が大きく変化したことを特定することで決定する、請求項5記載のシステム。
【請求項11】
前記開始時間を、ピーク振幅値が低値から高値へまたは高値から低値へ変化したことを特定することで決定する、請求項5記載のシステム。
【請求項12】
超音波画像形成システムであって、
超音波パルスを送出するように構成されたホスト送信用プローブ、及びホストプロセッサを備えるホスト超音波画像形成システム;
該ホスト送信用プローブから送出された超音波パルスを受信するように構成されたアドオン受信用プローブ、及びアドオンプロセッサを備えるアドオン超音波画像形成システム;及び
該アドオンプロセッサを該ホスト送信用プローブに接続するタップを含み、
該タップによる接続が、該アドオンプロセッサにより、該ホスト送信用プローブから送出される超音波パルスの開始時間、及び方向を決定できるようにしており、かつ該開始時間を、連続するスキャンラインの間でピーク振幅値が大きく変化したことを特定することで決定する、前記超音波画像形成システム。
【請求項13】
超音波画像形成システムであって、
超音波パルスを送出するように構成されたホスト送信用プローブ、及びホストプロセッサを備えるホスト超音波画像形成システム;
該ホスト送信用プローブから送出された超音波パルスを受信するように構成されたアドオン受信用プローブ、及びアドオンプロセッサを備えるアドオン超音波画像形成システム;及び
該アドオンプロセッサを該ホスト送信用プローブに接続するタップを含み、
該タップによる接続が、該アドオンプロセッサにより、該ホスト送信用プローブから送出される超音波パルスの開始時間、及び方向を決定できるようにしており、かつ該開始時間を、ピーク振幅値が低値から高値へまたは高値から低値へ変化したことを特定することで決定する、前記超音波画像形成システム。
【発明の詳細な説明】
【技術分野】
【0001】
(関連特許出願のクロスレファレンス)
本件特許出願は米国特許法第119条に規定された優先権を主張するものであり、この
優先権は、米国仮特許出願第61/087571号(出願日:2008年8月8日、発明
の名称:UNIVERSAL IMAGING AND SYNCHRONIZATION USING MULTIPLE APERTURE APPARATUS
IN MEDICAL ULTRASOUND(マルチアパーチャ方式の医用超音波装置を用いたユニバーサル
画像形成方法及び同期方法))、並びに、米国仮特許出願第61/169264号(出願
日:2009年4月14日、発明の名称:METHOD FOR AN ADD-ON MULTIPLE APERTURE PRO
CESSOR TO DETECT START AND DIRECTION OF PULSE FROM A HOST MACHINE(ホスト・マシ
ンから送出されるパルスの送出開始点及び送出方向をマルチアパーチャ方式用アドオン・
プロセッサにより検出する方法))に基づくものであり、これら2件の米国仮特許出願の
開示内容はこの言及をもって本願開示に組込まれたものとする。
【0002】
本件特許出願の関連特許出願として、米国特許出願第11/532013号(出願日:
2007年10月11日、発明の名称:METHOD AND APPARATUS TO VISUALIZE THE CORONA
RY ARTERIES USING ULTRASOUND(超音波技術を用いて冠動脈を可視化する方法及び装置)
)があり、同米国特許出願は、米国仮特許出願第60/765887号(出願日:200
6年2月6日、発明の名称:METHOD AND APPARATUS TO VISUALIZE THE CORONARY ARTERIE
S USING ULTRASOUND(超音波技術を用いて冠動脈を可視化する方法及び装置))に基づく
優先権を主張するものである。また本件特許出願の更なる関連特許出願として、米国特許
出願第11/865501号(出願日:2008年5月1日、発明の名称:METHOD AND A
PPARATUS TO PRODUCE ULTRASONIC IMAGES USING MULTIPLE APERTURES(マルチアパーチャ
方式を用いた超音波画像形成方法及び超音波画像形成装置))があり、同米国特許出願は
、米国仮特許出願第60/862951号(出願日:2006年10月25日、発明の名
称:METHOD AND APPARATUS TO PRODUCE ULTRASONIC IMAGES USING MULTIPLE APERTURES(
マルチアパーチャ方式を用いた超音波画像形成方法及び超音波画像形成装置))、並びに
、米国仮特許出願第60/940261号(出願日:2007年5月25日、発明の名称
:METHOD AND APPARATUS TO PRODUCE ULTRASONIC IMAGES USING MULTIPLE APERTURES(マ
ルチアパーチャ方式を用いた超音波画像形成方法及び超音波画像形成装置))に基づく優
先権を主張するものである。尚、以上に言及した米国特許出願並びに米国仮特許出願の開
示内容はこの言及をもって本願開示に組込まれたものとする。
【0003】
(参考文献の開示内容の組込み)
本明細書中において言及する全ての文献並びに特許出願は、この言及をもってそれら文
献並びに特許出願の開示内容が本開示に組込まれたものとすることをここに明言し、また
この明言により、それら文献並びに特許出願の各々についてその開示内容が本開示に組込
まれたものとすることを明言したものとする。
【0004】
(発明の技術分野)
本発明は広くは医用画像形成方法に関し、より具体的には医用超音波技術に関し、また
更に具体的にはマルチアパーチャ方式で超音波画像形成を行なうためにアドオン装置をホ
スト超音波機器に同期させる方法に関する。
【背景技術】
【0005】
一般的な超音波画像形成方法は、超音波エネルギビームを合焦ビームの形で検査対象の
身体組織の中へ送出し、その反射エコーを検出してプロットすることにより画像を形成す
るものである。特に、心臓超音波検査法(心エコー検査法)では、通常、超音波ビームを
1回送出するごとに、超音波ビーム送出角度をプローブ中央角度位置から所定角度ずつ増
大させるようにし、そして、送出した超音波ビームの経路に対応したラインに沿って反射
エコーをプロットする。一方、腹部超音波検査法では、通常、超音波ビームを1回送出す
るごとに、超音波ビーム送出位置を横方向に所定距離ずつ移動させることにより、互いに
平行な複数のビーム径路を形成し、そして、反射エコーをそれらビーム径路に対応した複
数の平行ラインに沿ってプロットする。以下の説明では、心エコー検査法のための、超音
波ビーム送出角度を変化させるスキャン方式(これは一般的にセクタ・スキャン(扇形ス
キャン)と呼ばれている)に本発明を適用した場合について述べる。ただし以下に述べる
方式は、僅かな変更を加えるだけで、腹部画像を形成するためのスキャン装置に適用する
ことができる。
【0006】
一般的な超音波画像形成方法の基本原理を分かりやすく記載した文献としては、例えば
Harvey Feigenbaum著、Echocardiography第5版(Lippincott Williams & Wilkins社(Ph
iladelphia)、1993年刊行)の第1章などがある。本明細書においては、従来の一般
的な方式と本発明の方式との相違について特に説明する必要があるときを除き、同文献中
に記載されている内容については再説を省略する。
【0007】
周知の如く、ヒトの身体組織の中を伝搬する超音波の平均伝搬速度vはおよそ1540
m/秒前後であり、特に身体組織が軟組織である場合の平均伝搬速度vは1440〜16
70m/秒の範囲内の速度となる(これについては、例えば、P. N. T. Wells著、Biomed
ical Ultrasonics(Academic Press社(London、 New York、 San Francisco)、197
7年刊行)などを参照されたい)。従って、反射エコーを発生させているインピーダンス
不連続部の身体表面からの深さは、反射エコーとして戻ってきた超音波ビームの往復伝搬
時間にv/2を乗じた積の値に等しく、この積の値を、超音波ビーム径路に対応したライ
ン(スキャン・ライン)上の当該深さに対応した位置にプロットすればよい。全てのスキ
ャン・ライン上に、全てのエコーに対応した点をプロットしたならば、それによって1つ
の画像が形成される。また通常は更に、スキャン・ラインとスキャン・ラインとの間のギ
ャップに内挿法による補間が施される。
【0008】
身体組織に対してインソニファイする(即ち、身体組織の中へ超音波ビームを送出して
身体組織の超音波画像を形成する)には、フェーズド・アレイまたはシェープト・トラン
スデューサなどにより形成した超音波ビームで、検査対象の身体組織領域をスキャンする
ことになる。従来は、超音波を形成して送出するシェープト・トランスデューサやフェー
ズド・アレイなどを、反射エコーを検出するために利用する構成とすることが一般的であ
った。しかるに、この構成であることが、医用超音波画像形成方法を利用する上での大き
な制約を生じさせる中心的要因となっていた。その制約とは、横方向解像度が低いことで
ある。理論的には、超音波プローブのアパーチャ寸法を大型化すれば、横方向解像度を向
上させることができるはずである。しかしながら実際には、アパーチャ寸法を大型化する
と数々の問題が発生するため、アパーチャ寸法を小さく抑えざるを得ず、そのため横方向
解像度は低いままであった。たとえ横方向解像度が低くても、超音波画像形成法は非常に
有用な方法であるが、しかしながら横方向解像度を向上させればより効果的な方法となる
ことは疑いがない。
【0009】
例えば心臓学の具体例として、単一のアパーチャ寸法の上限は肋骨と肋骨との間の隙間
(肋間隙)の大きさまでとなる。一方、腹部などのその他の部位の画像を形成するスキャ
ン装置の場合であれば、アパーチャ寸法の上限はそれほど明確ではないものの、アパーチ
ャ寸法が超えてはならない上限があることに変わりはない。特に問題となるのは、複数個
のエレメントをアレイ状に並べて構成したフェーズド・アレイの形態の超音波プローブに
おいて、そのアパーチャ寸法を大型化すると、エレメントどうしの位相を適切に維持する
ことが困難になることである。なぜなら、超音波プローブと検査対象領域との間に介在す
るビーム伝搬経路上の身体組織の種類が異なれば超音波の伝搬速度も異なるからである。
前述のWellsの文献によれば、身体組織が軟組織である場合には、超音波の伝搬速度は軟
組織内で±10%の範囲内で変化する。アパーチャ寸法を小さく抑えておけば、介在する
身体組織は、一次近似として、全面的に同一であり、どのような差違も無視される。しか
るに、横方向解像度を向上させるためにアパーチャ寸法を大型化すると、フェーズド・ア
レイのエレメントの数が増大するためにエレメントどうしの間で位相がずれるおそれが発
生し、そうなると横方向解像度が向上するどころか逆に劣化してしまうことにもなりかね
ない。
【0010】
横方向解像度を向上させる手段としては、従来の医用機器に広く採用されている1個で
送受信の両機能を受け持つ超音波プローブを、それと異なる構成の超音波プローブに交換
するよりは、むしろ、アドオンシステム(既存の機器に付加して用いる超音波システム)
を適用することで、既存の医用機器の横方向解像度を向上させる方が、より有利な結果が
得られ、また費用対効果の点でも優れている。ただし、これによって既存のシステムの解
像度を向上させるためには、解決しなければならない数々の課題が存在しており、例えば
、アドオンシステムを既存のホスト超音波機器に同期させることなどが課題となる。
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明は広くは医用画像形成方法に関し、より具体的には医用超音波技術に関し、また
更に具体的にはマルチアパーチャ方式で超音波画像形成を行なうためにアドオン装置をホ
スト超音波機器に同期させる方法に関する。
【課題を解決するための手段】
【0012】
本発明は、その1つの局面として、アドオン超音波システムを提供し、このアドオン超
音波システムは、ホストプローブから送信された超音波パルスを受信するように構成され
た超音波レシーバと、前記超音波レシーバに接続されたプロセッサであって、前記アドオ
ン超音波システムを前記ホストプローブに同期させるように構成されたアルゴリズムが組
込まれたプロセッサとを備えたことを特徴とするものである。
【0013】
様々な実施の形態のうちには、前記アドオン超音波システムが更に、前記プロセッサか
ら供給される超音波画像を表示するためのディスプレイを備えているようにしたものがあ
る。このディスプレイは、例えばGUI(グラフィカル・ユーザ・インターフェース)と
して構成されたものとするとよい。
【0014】
様々な実施の形態のうちには、前記アドオン超音波システムが、複数個の超音波レシー
バを備えているようにしたものがある。それら超音波レシーバの個数は、例えば2個、3
個、或いはそれ以上の個数とすることもできる。
【0015】
本発明はその1つの局面として、受信超音波パルスに処理を加えることにより前記アド
オン超音波システムを前記ホスト超音波プローブに同期させるように構成したアルゴリズ
ムを提供するものである。様々な実施の形態のうちには、前記アルゴリズムが送信超音波
パルスのフレーム開始点を求めるようにしたものがある。このフレーム開始点は、様々な
方法で求めることができる。様々な実施の形態のうちには、前記アルゴリズムが、パルス
繰り返しインターバルよりも明らかに長い振幅ピーク間インターバルを判別することでフ
レーム開始点を求めるようにしたものがある。また別の実施の形態として、前記アルゴリ
ズムが、連続したスキャン・ラインの間でピーク振幅値が大きく変化したことを判別する
ことでフレーム開始点を求めるようにしたものもある。このピーク振幅値の大きな変化は
、例えば低値から高値への変化であってもよく、高値から低値への変化であってもよい。
【0016】
本発明の更に別の1つの局面として、前記アドオン超音波システムが更に、前記ホスト
超音波プローブを前記アドオン超音波システムに接続しているタップを備えているように
するのもよい。このタップを介して、前記ホスト超音波プローブの全てのデータを入手で
きるため、前記アドオン超音波システムのプロセッサを、前記タップを介して得られるデ
ータに処理を加えることで前記アドオン超音波システムを前記ホスト超音波プローブに同
期させるように構成したプロセッサとすることができる。
【0017】
本発明の別の1つの局面は、アドオン超音波システムをホスト超音波プローブに同期さ
せる方法であり、この方法は、前記ホスト超音波プローブから超音波パルスを送信する送
信ステップと、前記アドオン超音波システムにより前記超音波パルスを受信する受信ステ
ップと、プロセッサにより前記アドオン超音波システムを前記ホスト超音波プローブに同
期させる同期ステップとを含むことを特徴とするものである。
【0018】
様々な実施の形態のうちには、前記受信ステップにおいて、更に、前記アドオン超音波
システムの受信用プローブにより前記超音波パルスを受信するようにしたものがある。ま
た様々な実施の形態のうちには、前記受信ステップにおいて、更に、前記アドオン超音波
システムの複数の受信用プローブにより前記超音波パルスを受信するようにしたものがあ
る。
【0019】
本発明の様々な局面のうちには、前記同期ステップにおいて、更に、送信された前記超
音波パルスに基づいて、前記プロセッサにより前記アドオン超音波システムを前記ホスト
超音波プローブに同期させることがある。また、前記プロセッサに組込まれているアルゴ
リズムにより前記アドオン超音波システムを前記超音波プローブに同期させるようにする
のもよい。
【0020】
様々な実施の形態のうちには、前記アルゴリズムが、送信超音波パルスのフレーム開始
点を求めるようにしたものがある。また、前記アルゴリズムが、パルス繰り返しインター
バルよりも大幅に長い振幅ピーク間インターバルを判別することでフレーム開始点を求め
るようにするのもよい。また別の実施の形態として、前記アルゴリズムが、連続するスキ
ャン・ラインの間でピーク振幅値が大きく変化したことを判別することでフレーム開始点
を求めるようにしたものがある。このピーク振幅値の大きな変化は、例えば低値から高値
への変化であってもよく、高値から低値への変化であってもよい。
【0021】
様々な実施の形態のうちには、前記同期ステップにおいて、前記ホスト超音波プローブ
を前記アドオン超音波システムに接続しているタップを介して得られるデータに処理を加
えるように構成された前記プロセッサにより、前記アドオン超音波システムを前記ホスト
超音波プローブに同期させるようにしたものがある。
【0022】
本発明の別の局面として、前記アドオン超音波システムからディスプレイへ超音波画像
を供給するようにするのもよい。また、前記超音波パルスを身体組織の中へ送出するよう
にするとよく、その場合に、前記超音波画像は当該身体組織の画像となる。
【0023】
本発明の様々な新規な特徴は、特許請求の範囲に明記した通りのものである。本発明の
それら特徴について、並びに、本発明の様々な利点については、本発明の原理を採用した
具体的な実施の形態についての以下の詳細な説明と、添付図面とを参照することによって
明瞭に理解することができる。添付図面については以下の通りである。
【図面の簡単な説明】
【0024】
図1A】ホスト超音波機器と組合せて用いることにより高解像度の超音波画像を提供するアドオンシステムであって、単一の受信用プローブを備えたアドオンシステムを示した図である。
図1B】ホスト超音波機器と組合せて用いることにより高解像度の超音波画像を提供するアドオンシステムであって、複数の受信用プローブを備えたアドオンシステムを示した図である。
図2A】アドオンシステムをホスト超音波機器に同期するためにアドオンシステムのアルゴリズムが実行する一連の動作の1つの実施の形態を示したフローチャートである。
図2B】アドオン超音波システムが収集するデータを示した線図である。
図3A】ホスト超音波機器と組合せて用いることにより高解像度の超音波画像を提供するアドオンシステムであって、単一の受信用プローブを備え、更に高インピーダンスのタップを備えたアドオンシステムを示した図である。
図3B】ホスト超音波機器と組合せて用いることにより高解像度の超音波画像を提供するアドオンシステムであって、複数の受信用プローブを備え、更に高インピーダンスのタップを備えたアドオンシステムを示した図である。
【発明を実施するための形態】
【0025】
これより超音波画像形成システムの様々な実施の形態について説明する。
【0026】
超音波画像形成においては、反射エコーの検出をインソニファイ用プローブとは別の任
意に配置される無指向性の受信用プローブにより行なうようにすることも可能である(そ
の場合のインソニファイ用プローブは送信用プローブとなる)。またその場合に、無指向
性の受信用プローブ(受信用トランスデューサ)の位置は、インソニファイ用プローブの
音響ウィンドウとは異なった音響ウィンドウを持つ位置とすることができる。無指向性の
受信用プローブは、広い視野角において感度を持つように設計されているため、全方向性
あるいは受信用プローブと呼ばれることもある。
【0027】
インソニファイ用プローブ(インソニファイ用トランスデューサともいう)から次々と
送出される複数の超音波パルスの夫々のエコーを受信用プローブで検出し、各々のエコー
ごとの検出データを個別に格納することで、単一の受信用プローブによって得られるデー
タから完全な2次元画像を形成することができる。更に、全方向性プローブから成る受信
用プローブの数を複数とし、それら複数の受信用プローブが、インソニファイ用プローブ
から送出される同じ一連の超音波パルスから夫々にデータを収集するようにするならば、
それによって複数枚の2次元画像を形成することが可能となる。
【0028】
1つの実施の形態として、受信機能のみを有する超音波機器としてアドオン装置を構成
し、超音波パルスの送出は既存の超音波機器のインソニファイ用プローブによって行なう
ようにすることができ、そのようにすれば、そのアドオン装置の製造者とは異なる製造者
により製造された既存の超音波機器に対しても、そのアドオン装置を組合せて使用するこ
とができる。また、この構成とすれば、医療診断に関連した研究施設や医療施設において
、既存の超音波機器を交換することなく、その超音波機器のBモード、Mモード、及びド
ップラーモードの解像度を向上させることができる。
【0029】
図1Aないし図1Bに示した体外装着式のアドオンシステム100は、身体組織101
の画像を形成するためにホスト送受信用超音波プローブ104とホスト超音波システム1
02とともに使用されるものである。図1Aに示したアドオン超音波システム100は、
単一の受信用プローブ106を備えたものであり、図1Bに示したアドオン超音波システ
ム100は、2つの受信用プローブ106及び108を備えたものである。それら受信用
プローブ106及び108は、例えば送信機能を持たず受信機能のみを有するものである
。別の実施の形態として、それら受信用プローブ106及び108を、送信機能と受信機
能との両方を備えたものとしてもよい。他の実施の形態として、アドオンシステムは、例
えば3つ以上の多数の受信用プローブを備えることができる。図1Aないし図1Bに示し
たように、アドオン超音波システム100が更に、アドオン・プロセッサ110とディス
プレイ112とを備えているようにするのもよい。ディスプレイ112は、グラフィカル
・ユーザ・インターフェース(GUI)として構成されたものとしてもよく、或いは、そ
の他の適宜の構成のディスプレイとしてもよい。ディスプレイ112には更に、タイム・
ゲイン調節部、総合ゲイン設定部、ソフトボタンによる画像後処理特性曲線設定部、圧縮
レベル設定部、深度設定部などを備えたものとするのもよい。他の制御を、ディスプレイ
に便利なように加えることもできる。
【0030】
本明細書において説明するアドオン超音波システムにとっては、受信用プローブをホス
ト超音波プローブに同期させることが不可欠である。受信用プローブをホスト超音波プロ
ーブに同期させることができなければ、アドオン超音波システム100はホスト超音波プ
ローブから送信される超音波パルスを利用する術がないからである。アドオン超音波シス
テム100をホスト超音波システム102及びホスト超音波プローブ104に同期させる
ための方法及びアルゴリズムは、以下に説明するアドオン・プロセッサ110に組込んで
おくとよい。
【0031】
本明細書において説明するアドオン超音波システム及びホスト超音波システムでは、超
音波パルスの送出は、送受信用プローブ及びホスト超音波システム(標準的な超音波機器
はそのように構成されている)により行なわせ、一方、超音波パルスの受信並びに超音波
画像のディスプレイ上での表示は、アドオン超音波システムに行なわせることができるよ
うにしている。アドオン超音波システムを、このアドオン超音波システムの大多数の製造
者とは別の製造者により製造された既存のないしは将来導入される超音波装置(例えばホ
スト超音波プローブ及びホスト超音波システムなど)の多くのものに付加して使用できる
ようにするには、アドオンシステムが、ホスト機器から得られるデータ、ないしは、受信
した超音波信号(超音波パルス)から得られるデータだけに基づいて、ホスト機器の様々
な特性の大部分を判定可能であるようにしておく必要がある。
【0032】
複数個の受信超音波パルスのうち、最初に受信され、そして、おそらくは最も大きな強
度を有する受信超音波パルスは、送信用プローブから受信用プローブへ直接伝搬して受信
された超音波パルスである。この直接伝搬した受信超音波パルスは、送信超音波パルスの
送出後に最初に受信されることによって、また、非常に大きな強度を有することによって
、深部の身体組織で反射したエコーから成る受信超音波パルスとは容易に区別することが
できる。このように受信された超音波信号(超音波パルス)に基づいて、パルス繰り返し
インターバル(PRI)の長さを判定することができ、また、エンド・オブ・フレーム(
フレーム終了点)の後にギャップ・タイムが存在する場合にはそのギャップ・タイムの長
さも判定することができ、更には、トータル・フレーム・インターバル(TFI)長さと
、最大透過深度とを判定することもできる。尚、パルス繰り返しインターバル(PRI)
というのは、ある1個の送信超音波パルスの送出開始点(送出開始時刻)から、それに続
く次の送信超音波パルスの送出開始点(送出開始時刻)までの経過時間であり、この経過
時間内にスキャン・ライン1本分のエコー・データの収集が行なわれる。また、最大透過
深度は、PRIの値と、身体組織の中を伝搬する超音波の伝搬速度の値(これは既知値で
ある)とから算出される。実際に画像として表示される透過深度の範囲は、超音波システ
ムのユーザが適宜選択できるようにしておくのもよく、或いは、最大透過深度に対して所
定割合の深さの範囲が画像として表示されるようにしておいてもよい。
【0033】
以上に言及したパラメータのうち、特に重要度が高く、しかも判定することが比較的困
難なパラメータは、送信超音波パルスの送出開始点(送出開始時刻)である。もし、送信
超音波パルスの送出後に最初に受信される超音波パルスの受信開始時刻をもって、送出開
始点を判定するための基準としたならば、それによって、送出開始点の判定結果に過大な
ノイズが入り込むため、スキャン・ラインごとのジッタが不都合なほど大きくなり、その
結果として、画質の劣化を来たしてしまう。それゆえ、ある1つの仮定を導入するのがよ
く、その仮定とは、ホスト超音波システムの設定が一旦なされたならば、その設定が変更
されない限りPRIは一定不変であるというものである。この仮定によれば、セクタ・ス
キャンの第N番目のスキャン・ラインにおける送信超音波パルスの送出開始点は、(第1
番目のスキャン・ラインにおける送信超音波の送出開始点)+(n−1)×(パルス繰り
返しインターバル)で与えられる。従って、あとは、セクタ・スキャンの第1番目のスキ
ャン・ラインにおける送信超音波パルスの送出開始点を求めればよい。
【0034】
図1Aないし図1Bに示したように、ホスト超音波システム及びホスト超音波プローブ
により生成されて送出される送信超音波パルスの送出開始点は、ホスト超音波プローブに
よって送信されるとともに、ホスト超音波プローブのいずれかの側に配置された受信用プ
ローブの1つによって受信される超音波パルスに基づいて求めることができる。送信超音
波パルスの送出後に最初に受信されて検出される受信超音波パルスの検出開始点(検出開
始時刻)は、送信超音波パルスの送出開始点(送出開始時刻)より遅れることになり、こ
れは、送出された超音波パルスが受信用プローブに到達するまでに、ある距離を伝搬しな
ければならないからである。ただしこの時間遅れの大きさは、ホスト超音波プローブと受
信用プローブとの相対位置から算出することができ、即ち、受信超音波パルスの検出開始
点からこの時間遅れの分を差し引くことで、送信超音波パルスの送出開始点を求めること
ができる。
【0035】
このように、送信超音波パルスの送出開始点を求める上では、ホスト超音波システムの
設定が変更されない限りPRIが一定不変であるということが重要な必要条件となる。ま
た、PRIが一定不変であれば、いわゆる「フライホイール」アルゴリズムを用いて個々
のスキャン・ラインの開始点を求めることができる。そして、PRIが変化することはめ
ったにないため、こうして求めたPRIの値は、多数回のスキャン・サイクルに亘って使
用することができる。
【0036】
以下に、アドオン超音波システムをホスト超音波プローブに同期させる方法の1つの実
施の形態について説明する。図1Aないし図1Bに示したアドオンシステム100に関し
て、ホスト超音波プローブ104は、身体組織101の中へ超音波パルスを送出すること
ができる。その送出された超音波パルスを、アドオンシステム100が受信することがで
きるようにしてあり、例えば受信用プローブ106により受信する。アドオン超音波シス
テムの様々な実施の形態のうちには、図1Bに示した実施の形態のように、送出された超
音波信号(超音波パルス)を受信するためのプローブとして、複数の受信用プローブ(図
示例では受信用プローブ106及び108)を備えたものがある。以上において、アドオ
ン・プロセッサ110が、アドオンシステムをホスト超音波プローブに同期させることが
できるようにしてある。アドオン・プロセッサ110は、然るべきアルゴリズムを用いて
アドオンシステムをホスト超音波プローブに同期させる。アドオンシステムをホスト超音
波プローブに同期させたならば、アドオンシステムは、対象領域の身体組織の高解像度の
画像をGUIなどのディスプレイに供給できるようになる。
【0037】
図2Aに示したフローチャート200は、ホストシステムから送出された送信超音波パ
ルスの送出開始時間を判定するためのフライホイール・アルゴリズムの1つの実施の形態
を示したものである。また、図2Bに示した線図201は、そのフライホイール・アルゴ
リズムがアドオンシステムをホスト機器に同期させるために収集して使用するデータ一式
を示した線図である。図2Bに示したように、アルゴリズムが収集するデータには、パル
ス繰り返しインターバル(PRI)2の長さ、振幅ピーク4の位置(時刻)、インター・
フレーム・ギャップ(IFG)6の長さ、フレーム開始点(SOF)8の位置(時刻)、
それにトータル・フレーム・インターバル(TFI)10の長さが含まれている。ここに
説明するアルゴリズムは、通常、上述のアドオン・プロセッサ110によって実行される
。このアルゴリズムは、ファームウェア、ソフトウェア、ハードウェア、ないしはこれら
3つの組合せの形態で、アドオン・プロセッサにプログラムとして組込むことができる。
【0038】
フローチャート200のステップ202では、アドオンシステムを起動する(即ち電源
の投入ないしはブートアップを行う)。
【0039】
ステップ204において、アドオンシステムは、インターバルに関するデータの収集を
開始する。このデータの収集は、例えば、ホスト超音波プローブからデータを収集すると
いう形態で行なえるようにしておくのもよく、そのような実施の形態のうちには、例えば
、ホスト超音波プローブに接続したタップ(接続部)を介してデータを収集するようにし
たものがある。このデータの収集に要する時間は数秒程度であり、例えば1〜2秒間で行
なえることもある。このとき収集するデータは、振幅ピーク間インターバルの値を含むも
のである。この振幅ピーク間インターバルは、ある1つの振幅ピークの発生時刻から、そ
の次の振幅ピークの発生時刻までのインターバル(時間間隔)であって、パルス繰り返し
インターバル(PRI)に相当するものである(図2BのPRI2参照)。
【0040】
次に、フローチャート200のステップ206では、PRIの長さを表わす値を測定す
る。上で述べたように、PRIとは、ある1つの超音波パルスの送出開始点(送出開始時
刻)から、その次の超音波パルスの送出開始点(送出開始時刻)までの経過時間である。
PRIは、アドオン超音波システムのアドオン・プロセッサにより、ステップ204で収
集された振幅ピーク間インターバルの複数個の収集値のうちの中央値をもって、算出され
ることができる。
【0041】
次に、ステップ208において、サンプル検出回数(即ち超音波パルスの検出回数)を
カウントする。このカウントはアドオン・プロセッサの積算機構(カウント機構)により
実行される。尚、サンプル検出回数のカウントの開始時には、この積算機構を初期化して
「0」にする必要がある。この積算機構は、サンプル検出回数をカウントするカウンタで
あり、このカウンタによって、1つのフレームの長さ(トータル・フレーム・インターバ
ルの長さ)が計測される。
【0042】
次に、ステップ210において、アドオン・プロセッサのアルゴリズムは、引き続きイ
ンターバルに関するデータの収集を実行して、連続する複数のスキャン・ラインの各々に
おける信号ピーク位置(図2B中の振幅ピーク4参照)を判別する。
【0043】
ステップ212では、以下に説明する2通りの判別方法のうちのいずれかを用いてフレ
ーム開始点(SOF)の判別を実行する。第1の実施の形態の判別方法は、新たに判定さ
れた振幅ピーク間インターバルの長さが、PRIの現在格納値より明らかに長ければ、S
OFが検出されたものと判別するというものである。また、そのように判別された場合に
は、その振幅ピーク間インターバルの長さを表わしている値を、インター・フレーム・ギ
ャップ(IFG)の長さを表わす値として格納する。ただし、IFGの長さとPRIの長
さとに大差がない場合(図2B中のIFG6及びPRI2参照)には、これとは別の第2
の実施の形態の判別方法を用いてSOFの判別を行なわねばならない。
【0044】
第2の実施の形態の判別方法では、連続したスキャン・ラインにおけるピーク振幅値を
比較する。そのとき実行しているスキャン方式が、1つのフレームの中で、ホスト超音波
プローブから送出する超音波パルスの送出角度を変化させて行くアングル・スイープ方式
(セクタ・スキャン方式)である場合には、同一フレーム内の、あるスキャン・ラインと
その次のスキャン・ラインとの間で生じるピーク振幅値の変化は小さなものとなる。そし
て、あるフレームのスキャンが終了してその次のフレームのスキャンを開始するために、
超音波パルスの送出角度をフレーム終了点送出角度からフレーム開始点送出角度へと移行
させるときには、その送出角度の変化に対応してピーク振幅値の大きな変化が発生する。
このピーク振幅値の大きな変化に基づいて、フレーム開始点(SOF)を判別することが
できる。これについては図2Bを参照されたい。同図に示したように、SOF8に至らな
いうちは、あるスキャン・ラインとその次のスキャン・ラインとの間でピーク振幅値(振
幅ピーク4における振幅値)が緩やかに変化しているのに対して、SOF8に至ったとき
にはピーク振幅値が大きく変化している。尚、SOF8に至ったときのピーク振幅値の変
化は、図2Bに示したように低値から高値への変化であることもあれば、逆に高値から低
値への変化であることもある。
【0045】
ステップ214において、アドオン・プロセッサは、トータル・フレーム・インターバ
ル(TFI)の長さを判定する。トータル・フレーム・インターバル(TFI)とは、あ
る1つのフレームのSOFの時刻からその次のフレームのSOFの時刻まで(サンプルで
)の経過時間である。これを図2BにTOF10で示した。
【0046】
ステップ216において、アドオンシステムは、次のTFIにおけるデータの収集を行
なう。
【0047】
ステップ218において、アドオン・プロセッサのアルゴリズムは、PRIの長さない
しTFIの長さが変化したか否かを判定する。そして、PRIの長さないしTFIの長さ
が変化したと判定されたならば、次のステップ220において、アドオンシステムはPR
Iの新たな格納値ないしTFIの新たな格納値への更新を行なう。
【0048】
ステップ222において、アドオン・プロセッサは、再びステップ216へ戻って新た
なデータの収集を行う。更に、アドオン・プロセッサは、ステップ218におけるデータ
判定を実行し、そして、PRIないしTFIが変化したと判定されたならば、PRIの格
納値ないしTFIの格納値の更新を行なう。
【0049】
図3Aないし図3Bに示した体外装着式のアドオンシステム300は、ホスト超音波プ
ローブ304を備えたホスト超音波システム302に組合せて使用することにより身体組
織301の画像を形成するための、別の実施の形態に係るアドオンシステムであり、図示
例のホスト超音波プローブ304は送受信用プローブである。図3Aないし図3Bに示し
たシステムは、前述したシステムの構成要素に加えて更に、アドオン超音波システムをホ
スト超音波システム及びホスト超音波プローブに接続するための高インピーダンスのタッ
プ(接続部)314を備えている。タップ314は例えば配線等である。図3Aないし図
3Bにおいて、ホスト超音波システム302、送受信用プローブから成るホスト超音波プ
ローブ304、受信用プローブ306及び308、アドオン・プロセッサ310、及びデ
ィスプレイ312は、夫々、図1Aないし図1Bの、ホスト超音波システム102、送受
信用プローブから成るホスト超音波プローブ104、受信用プローブ106及び108、
アドオン・プロセッサ110、及びディスプレイ112に対応したものである。タップ3
14によって、ホスト超音波プローブ304をアドオン・プロセッサ310に接続するこ
とが可能となっており、これによって、ホスト超音波プローブ304から送出される超音
波パルスの送出開始時刻及び送出方向をアドオン・プロセッサ310が検出できるように
している。この構成によれば、アドオン・プロセッサ310は、送出される全ての超音波
パルスに関する情報を、タップ314を介して入手することができるため、図1A図1
B、及び図2を参照して上で説明したアドオンシステムをホストシステムに同期させるた
めのアルゴリズムを必要としない。
【0050】
タップ314は、ホスト機器の送受信用プローブ(ホスト超音波プローブ)に接続して
おくとよく、それによって、送信超音波パルスの送出開始時刻を直接的に検出することが
できる。更に、それによって、各々の送信超音波パルスの送出方向を検出することもでき
る。送信超音波パルスの送出方向の検出は、送信アレイ状の複数の送信エレメントのサブ
セットのパルス送出開始時刻をモニタすることによって行なうことができる。セクタ・ス
キャンを行なう在来の超音波機器の多くは、その超音波ビームの送出角度を、セクタの一
端から他端へ向けて一方向へ変化させて行くように構成されている。ただし、最先端のホ
スト機器においては、超音波パルスを順次送出する際に、その超音波ビームの送出角度を
等角度間隔で単純に増大させて行くのではなく、インターレース方式のビーム送出を行な
うようにしたものがある。ホスト超音波システムがそのような超音波機器である場合には
、個々の送信超音波パルスごとに、そのビーム送出方向を判定することが必要とされるこ
ともある。
【0051】
以下に、アドオン超音波システムをホスト超音波プローブに同期させる方法の別の実施
の形態について説明する。図3Aないし図3Bに示したアドオンシステム300に関して
、ホスト超音波プローブ304は、身体組織301の中へ超音波パルスを送出することが
できる。その送出された超音波パルスを、アドオンシステム300が受信することができ
るようにしてあり、例えば受信用プローブ306により受信する。アドオンシステムの様
々な実施の形態のうちには、図3Bに示した実施の形態のように、送出された超音波信号
(超音波パルス)を受信するためのプローブとして、複数の受信用プローブ(図示例では
受信用プローブ306及び308)を備えたものがある。以上において、アドオン・プロ
セッサ310が、アドオンシステムをホスト超音波プローブに同期させることができるよ
うにしてあり、この同期は、ホスト超音波プローブをアドオンシステムに接続しているタ
ップ314を介して得られるデータに基づいて行われる。アドオンシステムをホスト超音
波プローブに同期させたならば、アドオンシステムは、対象領域の身体組織の高解像度の
画像をGUIなどのディスプレイに供給できるようになる。
【0052】
本発明に関するその他の細部特徴として、使用材料及び製造方法などは、当業者の通常
の技量の範囲内の様々なものを用いることができる。また、本発明の方法上の特徴に関し
ても同様に、当業者の通常の技量の範囲内で一般的に採用されておりまた理論的に採用可
能な、以上に説明した以外の様々な動作を組込むことができる。更に、以上に説明した本
発明の様々な構成例の任意採用可能な様々な特徴は、それら特徴の各々を単独で本明細書
及び特許請求の範囲に記載することも、また、その他の特徴と任意に組合せたものを本明
細書及び特許請求の範囲に記載することも可能な特徴であるといえる。更には、以上の説
明中ではただ1つだけ備えているものとして記載した構成要素を、複数備えるようにする
ことも可能である。即ち、本明細書並びに特許請求の範囲に単数形で記載した構成要素で
あっても、文脈から判断して明らかにただ1つしか備えていないと認められる場合を除い
て、その構成要素を複数備えるようにすることが可能である。更には、特許請求の範囲の
記載は、任意採用可能な特徴を除外した記載とすることが許されている。従って、ここに
述べていることは、特許請求の範囲の先行請求項に記載した構成要素を従属請求項におい
て更に限定する際に、「ただ1つしか備えていない」という除外的限定をすることや、当
該構成要素を備えていないという「否定的」限定をすることにも、十分な根拠が存在する
ということである。また、本明細書中で使用している全ての技術用語及び科学用語は、そ
の用語の意味を本明細書中で特に定義している場合を除き、当業者が通常その用語を解釈
するところの意味を有するものである。また、本発明の範囲は、本明細書の記載によって
限定されるものではなく、特許請求の範囲の記載に使用している用語の本来の意味によっ
てのみ限定されるものである。
図1A
図1B
図2A
図2B
図3A
図3B