(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0034】
本発明の陰イオン交換樹脂は、2価の疎水性基と、2価の結合性基と、2価の親水性基とからなる。
【0035】
本発明の陰イオン交換樹脂において、2価の疎水性基は、2価の飽和炭化水素基を介して互いに結合する複数(2つ以上、好ましくは、2つ)の芳香環からなる。
【0036】
2価の飽和炭化水素基としては、例えば、メチレン(−CH
2−)、エチレン、プロピレン、イソプロピレン(−C(CH
3)
2−)、ブチレン、イソブチレン、sec−ブチレン、ペンチレン(ペンテン)、イソペンチレン、sec−ペンチレン、ヘキシレン(ヘキサメチレン)、3−メチルペンテン、ヘプチレン、オクチレン、2−エチルヘキシレン、ノニレン、デシレン、イソデシレン、ドデシレン、テトラデシレン、ヘキサデシレン、オクタデシレンなどの、炭素数1〜20の2価の飽和炭化水素基が挙げられる。
【0037】
2価の飽和炭化水素基として、好ましくは、炭素数1〜3の2価の飽和炭化水素基、具体的には、メチレン(−CH
2−)、エチレン、プロピレン、イソプロピレン(−C(CH
3)
2−)が挙げられ、より好ましくは、メチレン(−CH
2−)、イソプロピレン(−C(CH
3)
2−)が挙げられ、とりわけ好ましくは、イソプロピレン(−C(CH
3)
2−)が挙げられる。
【0038】
また、2価の飽和炭化水素基は、例えば、フッ素、塩素、臭素、ヨウ素などのハロゲン原子に置換されていてもよい。ハロゲン原子として、好ましくは、フッ素が挙げられる。
【0039】
2価の飽和炭化水素基がハロゲン原子に置換される場合において、ハロゲン原子の置換数および置換位置は、目的および用途に応じて、適宜設定される。
【0040】
ハロゲン原子に置換された2価の飽和炭化水素基として、より具体的には、例えば、ハロゲン原子で置換されたメチレン(例えば、フルオロメチレン、ジフルオロメチレン、クロロメチレン、ジクロロメチレン、ブロモメチレン、ジブロモメチレン、ヨードメチレン、ヨードメチレンなど)、ハロゲン原子で置換されたイソプロピレン(例えば、フルオロイソプロピレン、ジフルオロイソプロピレン、トリフルオロイソプロピレン、テトラフルオロイソプロピレン、ペンタフルオロイソプロピレン、ヘキサフルオロイソプロピレン、クロロイソプロピレン、ジクロロイソプロピレン、トリクロロイソプロピレン、テトラクロロイソプロピレン、ペンタクロロイソプロピレン、ヘキサクロロイソプロピレン、ブロモイソプロピレン、ジブロモイソプロピレン、トリブロモイソプロピレン、テトラブロモイソプロピレン、ペンタブロモイソプロピレン、ヘキサブロモイソプロピレン、ヨードイソプロピレン、ジヨードイソプロピレン、トリヨードイソプロピレン、テトラヨードイソプロピレン、ペンタヨードイソプロピレン、ヘキサヨードイソプロピレンなど)などが挙げられる。
【0041】
ハロゲン原子で置換された2価の飽和炭化水素基として、好ましくは、ハロゲン原子で置換されたイソプロピレン、より好ましくは、ヘキサフルオロイソプロピレンが挙げられる。
【0042】
芳香環としては、例えば、ベンゼン環、ナフタレン環、インデン環、アズレン環、フルオレン環、アントラセン環、フェナントレン環などの、炭素数6〜14の単環または多環芳香族炭化水素が挙げられる。
【0043】
芳香環として、好ましくは、炭素数6〜14の単環芳香族炭化水素が挙げられ、より好ましくは、ベンゼン環が挙げられる。
【0044】
また、芳香環は、必要により、ハロゲン原子に置換されていてもよい。
【0045】
なお、芳香環がハロゲン原子に置換される場合において、ハロゲン原子の置換数および置換位置は、目的および用途に応じて、適宜設定される。
【0046】
ハロゲン原子に置換された芳香環として、より具体的には、例えば、1〜4つのハロゲン原子で置換されたベンゼン環(例えば、1〜4つのフッ素で置換されたベンゼン環、1〜4つの塩素で置換されたベンゼン環、1〜4つの臭素で置換されたベンゼン環、1〜4つのヨウ素で置換されたベンゼン環など)などが挙げられる。
【0047】
このような疎水性基として、好ましくは、下記式(1)で示される、ハロゲン原子で置換されていてもよいビスフェノール残基(メチレン(−CH
2−)またはイソプロピレン(−C(CH
3)
2−)を介して互いに結合する2つのベンゼン環からなる2価の疎水性基)が挙げられる。
【0049】
(式中、Rは、ハロゲン原子で置換されていてもよい−CH
2−または−C(CH
3)
2−を示し、Xは、互いに同一または相異なって、ハロゲン原子を示し、aおよびbは、互いに同一または相異なって、0〜4の整数を示す。)
上記式(1)において、Rは、ハロゲン原子で置換されていてもよいメチレン(−CH
2−)またはイソプロピレン(−C(CH
3)
2−)を示し、好ましくは、ハロゲン原子で置換されていてもよいイソプロピレン(−C(CH
3)
2−)を示す。
【0050】
上記式(1)において、Xは、互いに同一または相異なって、上記したハロゲン原子を示す。
【0051】
上記式(1)において、aおよびbは、互いに同一または相異なって、0〜4の整数を示し、好ましくは、0〜2を示し、さらに好ましくは、aおよびbが、ともに0を示す。
【0052】
このような疎水性基として、とりわけ好ましくは、下記式(4)で示されるビスフェノール残基(ビスフェノールA残基)が挙げられる。
【0054】
本発明の陰イオン交換樹脂において、結合性基は、単数の芳香環からなる、または、炭素−炭素結合を介して互いに結合する複数(2つ以上、好ましくは、2つ)の芳香環からなる。
【0055】
芳香環としては、例えば、上記した芳香環が挙げられ、好ましくは、炭素数6〜14の単環芳香族炭化水素が挙げられ、より好ましくは、ベンゼン環が挙げられる。
【0056】
また、芳香環は、必要により、ハロゲン原子や、シアノ基などの置換基に置換されていてもよい。
【0057】
なお、芳香環がハロゲン原子やシアノ基などの置換基に置換される場合において、置換基の置換数および置換位置は、目的および用途に応じて、適宜設定される。
【0058】
このような結合性基として、好ましくは、下記式(2)で示される、ハロゲン原子で置換されていてもよいビフェニレン基、下記式(2’)で示される、ハロゲン原子で置換されていてもよいo−、m−またはp−フェニレン基、下記式(2’’)で示される、シアノ基で置換されていてもよいo−、m−またはp−フェニレン基が挙げられる。
【0060】
(式中、Xは、互いに同一または相異なって、ハロゲン原子を示し、cおよびdは、互いに同一または相異なって、0〜4の整数を示す。)
【0062】
(式中、Xは、ハロゲン原子を示し、c’は、0〜4の整数を示す。)
【0064】
(式中、c’’は、0〜4の整数を示す。)
上記式(2)において、Xは、互いに同一または相異なって、上記したハロゲン原子を示す。
【0065】
上記式(2)において、cおよびdは、互いに同一または相異なって、0〜4の整数を示し、耐ラジカル性の観点から、好ましくは、cおよびdの少なくとも一方が1〜4を示し、とりわけ好ましくは、cおよびdがともに4を示す。
【0066】
上記式(2’)において、Xは、上記したハロゲン原子を示し、また、c’は、0〜4の整数を示し、好ましくは、4を示す。
【0067】
上記式(2’’)において、c’’は、0〜4の整数を示し、好ましくは、1を示す。
【0068】
このような結合性基として、とりわけ好ましくは、下記式(5)で示されるビフェニレン基(各ベンゼン環に4つのフッ素が置換されたビフェニレン基)、下記式(5’)で示される、パーフルオロp−フェニレン基(ベンゼン環に4つのフッ素が置換されたp−フェニレン基)、下記式(5’’)で示される、2−シアノ−1,3−フェニレン基(ベンゼン環に1つのシアノ基が置換されたm−フェニレン基)が挙げられる。
【0072】
陰イオン交換樹脂において、親水性基は、酸素原子または硫黄原子を介して互いに結合し、陰イオン交換基を有する複数の芳香環からなる。
【0073】
親水性基において、複数(2つ以上、好ましくは、2つ)の芳香環としては、例えば、上記した芳香環が挙げられ、好ましくは、ベンゼン環が挙げられる。
【0074】
また、陰イオン交換基は、親水性基において側鎖に導入される。陰イオン交換基として、具体的には、特に制限されず、例えば、四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ホスフィン、ホスファゼン、三級スルホニウム基、四級ボロニウム基、四級ホスホニウム基など、公知の陰イオン交換基をいずれも採用することができる。陰イオン伝導性の観点から、好ましくは、四級アンモニウム塩が挙げられる。
【0075】
このような陰イオン交換基の置換数および置換位置は、目的および用途に応じて、適宜設定される。すなわち、陰イオン交換基は、複数の芳香環の少なくとも1つの芳香環に置換されていればよく、また、全ての芳香環に置換されていてもよい。また、陰イオン交換基は、1つの芳香環に対して、1つ置換されていてもよく、また、複数(2つ以上)置換されていてもよい。
【0076】
このような親水性基として、好ましくは、下記式(3a)で示される、陰イオン交換基で置換されているビス(ヒドロキシフェニル)オキシド残基、下記式(3b)で示される、陰イオン交換基で置換されているビス(ヒドロキシフェニル)スルフィド残基が挙げられる。
【0078】
(式中、Aは、互いに同一または相異なって、陰イオン交換基を示し、eおよびfは、互いに同一または相異なって、0〜4の整数を示すとともに、eおよびfの少なくとも一方が、1以上を示す。)
【0080】
(式中、A、eおよびfは、前記と同意義を示す。)
上記式(3a)および上記式(3b)中、Aは、互いに同一または相異なって、上記した陰イオン交換基を示し、好ましくは、上記した四級アンモニウム基を示す。
【0081】
上記式(3a)および上記式(3b)中、eおよびfは、互いに同一または相異なって、0〜4の整数を示すとともに、eおよびfの少なくとも一方が、1以上を示す。
【0082】
なお、上記式(3a)および上記式(3b)において、eおよび/またはfが、1〜3の範囲である場合には、陰イオン交換基の置換位置は、目的および用途に応じて、適宜設定される。
【0083】
このような親水性基として、とりわけ好ましくは、下記式(6a)で示されるビス(ヒドロキシフェニル)オキシド残基、下記式(6b)で示される、ビス(ヒドロキシフェニル)スルフィド残基が挙げられる。
【0085】
(式中、A’およびA’’は、少なくとも一方が、CH
2N
+(CH
3)
3OH
−を示し、他方が、CH
2N
+(CH
3)
3OH
−または水素原子を示す。)
【0087】
(式中、A’は、前記と同意義を示す。)
また、親水性基としては、例えば、上記したビス(ヒドロキシフェニル)オキシド残基、ビス(ヒドロキシフェニル)スルフィド残基などを単独使用することができ、また、それらを併用することもできる。なお、併用される場合において、それらの割合は、特に制限されず、目的および用途に応じて適宜設定される。親水性基として、好ましくは、ビス(ヒドロキシフェニル)オキシド残基の単独使用、ビス(ヒドロキシフェニル)スルフィド残基の単独使用が挙げられ、より好ましくは、ビス(ヒドロキシフェニル)オキシド残基の単独使用が挙げられる。
【0088】
このような親水性基は、従来の芳香族高分子電解質に含まれる樹脂(上記式(25)など)の親水性基、すなわち、ビスフェノールフルオレン残基などに比べて、分子量が小さい。そのため、このような親水性基を用いれば、樹脂全体としての分子量を小さくすることができ、その結果、樹脂中の陰イオン交換基の含有率の向上を図ることができ、イオン交換容量の向上を図ることができる。
【0089】
そして、この陰イオン交換樹脂では、上記した疎水性基および上記した結合性基がエーテル結合を介して繰り返される疎水ユニットと、上記した親水性基および上記した結合性基がエーテル結合を介して繰り返される親水ユニットとを有している。
【0090】
なお、疎水ユニットにおける結合性基と、親水ユニットにおける結合性基とは、互いに同一または相異なっていてもよい。また、ユニットとは一般に用いられるブロック共重合体のブロックに相当する。
【0091】
疎水ユニットとして、好ましくは、上記式(1)で示されるハロゲン原子で置換されていてもよいビスフェノール残基(疎水性基)と、上記式(2)で示されるとハロゲン原子で置換されていてもよいビフェニレン基(結合性基)とが、エーテル結合を介して繰り返されて形成されるユニットが挙げられる。
【0092】
このような疎水ユニットは、例えば、下記式(7)で示される。
【0094】
(式中、Xは、互いに同一または相異なって、ハロゲン原子を示し、aおよびbは、上記式(1)のaおよびbと同意義を示し、cおよびdは、上記式(2)のcおよびdと同意義を示し、nは、1〜200の数値を示す。)
上記式(7)において、nは、陰イオン交換樹脂における疎水ユニットの繰り返し単位数であって、例えば、1〜200、好ましくは、4〜40、より好ましくは、4〜20を示す。
【0095】
このような疎水ユニットとして、とりわけ好ましくは、上記式(4)で示されるビスフェノール残基(ビスフェノールA残基)と、上記式(5)で示されるビフェニレン基(各ベンゼン環に4つのフッ素が置換されたビフェニレン基)とが、エーテル結合を介して繰り返されて形成されるユニットが挙げられる。
【0096】
このような疎水ユニットは、例えば、下記式(8)で示される。
【0098】
(式中、nは、上記式(7)のnと同意義を示す。)
また、親水ユニットとして、好ましくは、上記式(3a)で示される陰イオン交換基で置換されているビス(ヒドロキシフェニル)オキシド残基、または、上記式(3b)で示される陰イオン交換基で置換されているビス(ヒドロキシフェニル)スルフィド残基(親水性基)と、上記式(2)で示されるとハロゲン原子で置換されていてもよいビフェニレン基(結合性基)とが、エーテル結合を介して繰り返されて形成されるユニットが挙げられる。
【0099】
このような親水ユニットは、例えば、親水性基としてビス(ヒドロキシフェニル)オキシド残基(上記式(3a))が採用される場合には、下記式(9a)で示される。また、親水性基としてビス(ヒドロキシフェニル)スルフィド残基(上記式(3b))が採用される場合には、下記式(9b)で示される。
【0101】
(式中、Xは、互いに同一または相異なって、ハロゲン原子を示し、Aは、上記式(3a)のAと同意義を示し、cおよびdは、上記式(2)のcおよびdと同意義を示し、eおよびfは、上記式(3a)のeおよびfと同意義を示し、mは、1〜200の数値を示す。)
【0103】
(式中、Xは、互いに同一または相異なって、ハロゲン原子を示し、Aは、上記式(3b)のAと同意義を示し、cおよびdは、上記式(2)のcおよびdと同意義を示し、eおよびfは、上記式(3b)のeおよびfと同意義を示し、mは、1〜200の数値を示す。)
上記式(9a)および上記式(9b)において、mは、陰イオン交換樹脂における親水ユニットの繰り返し単位数であって、例えば、1〜200、好ましくは、4〜40、より好ましくは、4〜20を示す。
【0104】
このような親水ユニットとして、とりわけ好ましくは、上記式(6a)で示されるビス(ヒドロキシフェニル)オキシド残基、または、上記式(6b)で示されるビス(ヒドロキシフェニル)スルフィド残基と、上記式(5)で示されるビフェニレン基(各ベンゼン環に4つのフッ素が置換されたビフェニレン基)とが、エーテル結合を介して繰り返されて形成されるユニットが挙げられる。
【0105】
このような親水ユニットは、例えば、上記式(6a)で示されるビス(ヒドロキシフェニル)オキシド残基が採用される場合には、下記式(10a)で示され、上記式(6b)で示されるビス(ヒドロキシフェニル)スルフィド残基が採用される場合には、下記式(10b)で示される。
【0107】
(式中、A’およびA’’は、上記式(6a)のA’およびA’’と同意義を示し、mは、上記式(9a)のmと同意義を示す。)
【0109】
(式中、A’およびA’’は、上記式(6b)のA’およびA’’と同意義を示し、mは、上記式(9b)のmと同意義を示す。)
そして、この陰イオン交換樹脂では、上記した疎水ユニットと、上記した親水ユニットとが、エーテル結合を介して結合されている。
【0110】
陰イオン交換樹脂として、好ましくは、下記式(11a)で示されるように、上記式(7)で示される疎水ユニットと、上記式(9a)で示される親水ユニットや、下記式(11b)で示されるように、上記式(7)で示される疎水ユニットと、上記式(9b)で示される親水ユニットとがエーテル結合を介して結合された陰イオン交換樹脂が挙げられる。
【0112】
(式中、Rは、上記式(1)のRと同意義を示し、Xは、互いに同一または相異なって、ハロゲン原子を示し、Aは、上記式(3a)のAと同意義を示し、aおよびbは、上記式(1)のaおよびbと同意義を示し、cおよびdは、上記式(2)のcおよびdと同意義を示し、eおよびfは、上記式(3a)のeおよびfと同意義を示し、nは、上記式(7)のnと同意義を示し、mは、上記式(9a)のmと同意義を示し、lは、1〜100の数値を示す。)
【0114】
(式中、Rは、上記式(1)のRと同意義を示し、Xは、互いに同一または相異なって、ハロゲン原子を示し、Aは、上記式(3b)のAと同意義を示し、aおよびbは、上記式(1)のaおよびbと同意義を示し、cおよびdは、上記式(2)のcおよびdと同意義を示し、eおよびfは、上記式(3b)のeおよびfと同意義を示し、nは、上記式(7)のnと同意義を示し、mは、上記式(9b)のmと同意義を示し、lは、1〜100の数値を示す。)
上記式(11a)および上記式(11b)において、lは、エーテル結合により結合された疎水ユニットおよび親水ユニットからなるユニットの繰り返し単位数であって、例えば、1〜100、好ましくは、1〜80、より好ましくは、1〜50、さらに好ましくは、1〜20、とりわけ好ましくは、1〜5を示す。
【0115】
なお、lとしては、陰イオン交換樹脂の数平均分子量が、10〜300kDa、好ましくは、30〜150kDaとなるように、調整される。
【0116】
このような陰イオン交換樹脂として、とりわけ好ましくは、下記式(12a)で示されるように、上記式(8)で示される疎水ユニットと、上記式(10a)で示される親水ユニットとがエーテル結合を介して結合された陰イオン交換樹脂や、下記式(12b)で示されるように、上記式(8)で示される疎水ユニットと、上記式(10b)で示される親水ユニットとがエーテル結合を介して結合された陰イオン交換樹脂が挙げられる。
【0118】
(式中、式中、A’およびA’’は、上記式(6a)のA’およびA’’と同意義を示し、nは、上記式(7)のnと同意義を示し、mは、上記式(9a)のmと同意義を示し、lは、上記式(11a)のlと同意義を示す。)
【0120】
(式中、式中、A’およびA’’は、上記式(6b)のA’およびA’’と同意義を示し、nは、上記式(7)のnと同意義を示し、mは、上記式(9b)のmと同意義を示し、lは、上記式(11a)のlと同意義を示す。)
また、このような陰イオン交換樹脂の数平均分子量は、上記したように、例えば、10〜300kDa、好ましくは、30〜150kDaである。
【0121】
陰イオン交換樹脂を製造する方法としては、特に制限されず、公知の方法を採用することができる。好ましくは、重縮合反応による方法が、採用される。
【0122】
この方法により陰イオン交換樹脂を製造する場合には、例えば、まず、疎水ユニットを形成するための第1オリゴマーと、親水ユニットを形成するための第2オリゴマーとを、それぞれ重縮合反応により製造し、その後、それらを重縮合反応させた後、得られる陰イオン交換樹脂前駆体ポリマーに、陰イオン交換基を導入する。
【0123】
重縮合反応については、従来公知の一般的な方法(「新高分子実験学3 高分子の合成法・反応(2)縮合系高分子の合成」p.7−57、p.399−401、(1996)共立出版株式会社)、(J.Am.Chem.Soc.,129,,3879−3887(2007)),(Eur.Polym.J.,44,4054−4062(2008))を採用することができる。好ましくは、ジハロゲン化化合物とジオール化合物とを反応させる方法が採用される。
【0124】
第1オリゴマーを製造するには、まず、疎水性基を形成するためのジオール化合物またはジハロゲン化化合物と、結合性基を形成するためのジハロゲン化化合物(疎水性基を形成するためのジオール化合物が用いられる場合)、または、結合性基を形成するためのジオール化合物(疎水性基を形成するためのジハロゲン化化合物が用いられる場合)とを重縮合反応させる。
【0125】
疎水性基を形成するためのジオール化合物としては、例えば、上記した2価の飽和炭化水素基を介して互いに結合する複数(好ましくは、2つ)の上記した芳香環と、その芳香環に結合された2つの水酸基とを含有する化合物が挙げられる。
【0126】
疎水性基を形成するためのジオール化合物として、好ましくは、上記式(1)に対応する、下記式(13)で示される化合物が挙げられる。
【0128】
(式中、Rは、上記式(1)のRと同意義を示し、Xは、上記式(1)のXと同意義を示し、aおよびbは、上記式(1)のaおよびbと同意義を示す。)
また、疎水性基を形成するためのジオール化合物として、とりわけ好ましくは、上記式(4)に対応する、下記式(14)で示される化合物(2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン)が挙げられる。
【0130】
一方、疎水性基を形成するためのジハロゲン化化合物としては、例えば、上記した2価の飽和炭化水素基を介して互いに結合する複数(好ましくは、2つ)の上記した芳香環と、その芳香環に結合された2つの上記したハロゲン原子とを含有する化合物が挙げられる。
【0131】
疎水性基を形成するためのジハロゲン化化合物として、好ましくは、上記式(1)に対応する、下記式(13’)で示される化合物が挙げられる。
【0133】
(式中、Rは、上記式(1)のRと同意義を示し、Xは、上記式(1)のXと同意義を示し、aおよびbは、上記式(1)のaおよびbと同意義を示す。)
結合性基を形成するためのジハロゲン化化合物としては、例えば、単数、または、炭素−炭素結合を介して互いに結合する複数(好ましくは、2つ)の上記した芳香環と、その芳香環に結合された2つの上記したハロゲン原子とを含有する化合物が挙げられる。
【0134】
結合性基を形成するためのジハロゲン化化合物として、好ましくは、上記式(2)に対応する、下記式(15)で示される化合物が挙げられる。
【0136】
(式中、Xは、上記式(2)のXと同意義を示し、cおよびdは、上記式(2)のcおよびdと同意義を示す。)
また、結合性基を形成するためのジハロゲン化化合物として、とりわけ好ましくは、上記式(5)に対応する、下記式(16)で示される化合物(デカフルオロビフェニル)が挙げられる。
【0138】
一方、結合性基を形成するためのジオール化合物としては、例えば、単数、または、炭素−炭素結合を介して互いに結合する複数(好ましくは、2つ)の上記した芳香環と、その芳香環に結合された2つの水酸基とを含有する化合物が挙げられる。
【0139】
結合性基を形成するためのジオール化合物として、好ましくは、上記式(2)に対応する、下記式(15’)で示される化合物が挙げられる。
【0141】
(式中、Xは、上記式(2)のXと同意義を示し、cおよびdは、上記式(2)のcおよびdと同意義を示す。)
重縮合反応において、これら疎水性基を形成するためのジオール化合物またはジハロゲン化化合物と、結合性基を形成するためのジハロゲン化化合物またはジオール化合物との配合量は、得られる第1オリゴマーにおける繰り返し単位数が、上記式(7)におけるnになるように調整される。
【0142】
このような第1オリゴマーは、ジハロゲン化化合物またはジオール化合物として形成され、好ましくは、後述する第2オリゴマーと重縮合反応させるため、ジハロゲン化化合物として形成される。
【0143】
第1オリゴマーをジハロゲン化化合物として形成する場合には、ジオール化合物(好ましくは、疎水性基を形成するためのジオール化合物)と、ジハロゲン化化合物(好ましくは、結合性基を形成するためのジハロゲン化化合物)との配合比は、ジハロゲン化化合物が過剰となるように調整される。具体的には、ジオール化合物1モルに対して、ジハロゲン化化合物が、上記式(7)におけるnとの関係において、好ましくは、(n+1)/nモル以上である。
【0144】
一方、第1オリゴマーをジオール化合物として形成する場合には、ジオール化合物(好ましくは、疎水性基を形成するためのジオール化合物)と、ジハロゲン化化合物(好ましくは、結合性基を形成するためのジハロゲン化化合物)との配合比は、ジオール化合物が過剰となるように調整される。具体的には、ジハロゲン化化合物1モルに対して、ジオール化合物が、上記式(7)におけるnとの関係において、好ましくは、(n+1)/nモル以上である。
【0145】
そして、この方法では、これら疎水性基を形成するためのジオール化合物またはジハロゲン化化合物と、結合性基を形成するためのジハロゲン化化合物またはジオール化合物とを、有機溶媒中で重縮合反応させる。
【0146】
有機溶媒としては、例えば、極性非プロトン性溶媒が挙げられる。
【0147】
極性非プロトン性溶媒としては、例えば、ジメチルスルホキシド、スルホラン、ピリジン、N−メチルピロリドン、N−シクロヘキシルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド(DMAc)などが挙げられる。
【0148】
これら極性非プロトン性溶媒は、単独使用または2種類以上併用することができる。
【0149】
極性非プロトン性溶媒として、好ましくは、N,N−ジメチルアセトアミド、ジメチルスルホキシドが挙げられる。
【0150】
また、有機溶媒としては、さらに、その他の溶媒を併用することができる。
【0151】
その他の溶媒としては、特に制限されず、公知の非極性溶媒(例えば、脂肪族炭化水素類、ハロゲン化脂肪族炭化水素(例えば、クロロホルムなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類)や、公知の極性非プロトン性溶媒(例えば、トルエン、キシレン、クロロベンゼンまたはo−ジクロロベンゼンなど)などが挙げられる。
【0152】
なお、極性非プロトン性溶媒とその他の溶媒とを併用する場合において、それらの配合割合は、目的および用途に応じて、適宜設定される。
【0153】
また、疎水性基を形成するためのジオール化合物またはジハロゲン化化合物、および、結合性基を形成するためのジハロゲン化化合物またはジオール化合物に対する、有機溶媒の配合割合は、目的および用途に応じて、適宜設定される。
【0154】
また、重縮合反応では、塩基性化合物を配合することができる。
【0155】
塩基性化合物としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸セシウム、炭酸マグネシウム、炭酸カルシウム、などの炭酸塩、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの金属水酸化物、例えば、リン酸ナトリウム、リン酸水素ナトリウム、リン酸二水素ナトリウム、リン酸カリウム、リン酸水素カリウム、リン酸二水素カリウムなどのリン酸塩などが挙げられる。
【0156】
これら塩基性化合物は、単独使用または2種類以上併用することができる。
【0157】
塩基性化合物として、好ましくは、金属水酸化物、より好ましくは、炭酸カリウムが挙げられる。
【0158】
なお、塩基性化合物の配合量は、例えば、炭酸塩触媒の場合、反応混合物中に存在する水酸基と等モル以上、好ましくは1.2倍モル以上である。
【0159】
重縮合反応における反応温度は、例えば、50〜300℃、好ましくは、50〜200℃であり、反応時間は、例えば、1〜20時間、好ましくは、2〜5時間である。
【0160】
このような第1オリゴマーは、好ましくは、上記したように、上記式(13)で示されるジオール化合物と、上記式(15)で示されるジハロゲン化化合物との反応により、ジハロゲン化化合物またはジオール化合物、好ましくは、ジハロゲン化化合物として得られる。
【0161】
このようなジハロゲン化化合物は、具体的には、下記式(17)で示される。
【0163】
(式中、Rは、上記式(1)のRと同意義を示し、Xは、互いに同一または相異なって、ハロゲン原子を示し、aおよびbは、上記式(1)のaおよびbと同意義を示し、cおよびdは、上記式(2)のcおよびdと同意義を示し、nは、上記式(7)のnと同意義を示す。)
また、第1オリゴマーは、とりわけ好ましくは、上記式(14)で示されるジオール化合物と、上記式(16)で示されるジハロゲン化化合物との反応により、ジハロゲン化化合物またはジオール化合物、好ましくは、ジハロゲン化化合物として得られる。
【0164】
このようなジハロゲン化化合物は、具体的には、下記式(18)で示される。
【0166】
(式中、nは、上記式(7)のnと同意義を示す。)
また、例えば、第1オリゴマーは、上記したように、上記式(13’)で示されるジハロゲン化化合物と、上記式(15’)で示されるジオール化合物との反応により、ジオール化合物またはジハロゲン化化合物、好ましくは、ジオール化合物として得ることもできる。
【0167】
このようなジオール化合物は、具体的には、下記式(17’)で示される。
【0169】
(式中、Rは、上記式(1)のRと同意義を示し、Xは、互いに同一または相異なって、ハロゲン原子を示し、aおよびbは、上記式(1)のaおよびbと同意義を示し、cおよびdは、上記式(2)のcおよびdと同意義を示し、nは、上記式(7)のnと同意義を示す。)
第2オリゴマーを製造するには、まず、親水性基を形成するためのジオール化合物またはジハロゲン化化合物と、結合性基を形成するための上記したジハロゲン化化合物(親水性基を形成するためのジオール化合物が用いられる場合)、または、結合性基を形成するための上記したジオール化合物(親水性基を形成するためのジハロゲン化化合物が用いられる場合)とを重縮合反応させる。
【0170】
親水性基を形成するためのジオール化合物としては、例えば、酸素原子または硫黄原子を介して互いに結合する複数の芳香環を有し、かつ、2つの水酸基を有する化合物が挙げられる。
【0171】
このような親水性基を形成するためのジオール化合物として、好ましくは、上記式(3a)に対応する、下記式(19a)で示される化合物(ビス(ヒドロキシフェニル)オキシド(ジヒドロキシジフェニルエーテル))や、上記式(3b)に対応する、下記式(19b)で示される化合物(ビス(ヒドロキシフェニル)スルフィド)が挙げられる。
【0174】
一方、親水性基を形成するためのジハロゲン化化合物としては、例えば、酸素原子または硫黄原子を介して互いに結合する複数の芳香環を有し、かつ、2つの上記したハロゲン原子を有する化合物が挙げられる。
【0175】
このような親水性基を形成するためのジハロゲン化化合物として、好ましくは、上記式(3a)に対応する、下記式(19a’)で示される化合物や、上記式(3b)に対応する、下記式(19b’)で示される化合物が挙げられる。
【0177】
(式中、Xは、互いに同一または相異なって、ハロゲン原子を示す。)
【0179】
(式中、Xは、互いに同一または相異なって、ハロゲン原子を示す。)
重縮合反応において、これら親水性基を形成するためのジオール化合物またはジハロゲン化化合物と、結合性基を形成するための上記したジハロゲン化化合物または上記したジオール化合物との配合量は、得られる第2オリゴマーにおける繰り返し単位数が、上記式(9a)および上記式(9b)におけるmになるように調整される。
【0180】
また、第2オリゴマーは、ジハロゲン化化合物またはジオール化合物として形成され、好ましくは、上記したようにジハロゲン化化合物として形成された第1オリゴマーと重縮合反応させるため、好ましくは、ジオール化合物として形成される。
【0181】
第2オリゴマーをジオール化合物として形成する場合には、ジオール化合物(好ましくは、親水性基を形成するためのジオール化合物)と、ジハロゲン化化合物(好ましくは、結合性基を形成するためのジハロゲン化化合物)との配合比は、ジオール化合物が過剰となるように調整される。具体的には、ジハロゲン化化合物1モルに対して、ジオール化合物が、上記式(9a)および上記式(9b)におけるmとの関係において、好ましくは、(m+1)/mモル以上である。
【0182】
一方、第2オリゴマーをジハロゲン化化合物として形成する場合には、ジオール化合物(好ましくは、親水性基を形成するためのジオール化合物)と、ジハロゲン化化合物(好ましくは、結合性基を形成するためのジハロゲン化化合物)との配合比は、ジハロゲン化化合物が過剰となるように調整される。具体的には、ジオール化合物1モルに対して、ジハロゲン化化合物が、上記式(9a)および上記式(9b)におけるmとの関係において、好ましくは、(m+1)/mモル以上である。
【0183】
そして、この方法では、これら親水性基を形成するためのジオール化合物またはジハロゲン化化合物と、結合性基を形成するためのジハロゲン化化合物またはジオール化合物とを、上記した有機溶媒中で重縮合反応させる。
【0184】
なお、親水性基を形成するためのジオール化合物またはジハロゲン化化合物、および、結合性基を形成するためのジハロゲン化化合物またはジオール化合物に対する、有機溶媒の配合割合は、目的および用途に応じて、適宜設定される。
【0185】
また、重縮合反応では、上記した塩基性化合物を、上記した割合で配合することができる。
【0186】
重縮合反応における反応温度は、例えば、50〜300℃、好ましくは、50〜150℃であり、反応時間は、例えば、1〜20時間、好ましくは、2〜5時間である。
【0187】
このような第2オリゴマーは、好ましくは、上記したように、上記式(19a)で示されるジオール化合物と、上記式(15)で示されるジハロゲン化化合物との反応により、ジオール化合物またはジハロゲン化化合物、好ましくは、ジオール化合物として得られる。
【0188】
このようなジオール化合物は、具体的には、下記式(20a)で示される。
【0190】
(式中、Xは、互いに同一または相異なって、ハロゲン原子を示し、cおよびdは、上記式(2)のcおよびdと同意義を示し、mは、上記式(9a)のmと同意義を示す。)
また、第2オリゴマーは、とりわけ好ましくは、上記式(19a)で示されるジオール化合物と、上記式(16)で示されるジハロゲン化化合物との反応により、ジオール化合物またはジハロゲン化化合物、好ましくは、ジオール化合物として得られ、具体的には、下記式(21a)で示される。
【0192】
(式中、mは、上記式(9a)のmと同意義を示す。)
また、第2オリゴマーは、好ましくは、上記したように、上記式(19b)で示されるジオール化合物と、上記式(15)で示されるジハロゲン化化合物との反応により、ジオール化合物またはジハロゲン化化合物、好ましくは、ジオール化合物として得られる。
【0193】
このようなジオール化合物は、具体的には、下記式(20b)で示される。
【0195】
(式中、Xは、互いに同一または相異なって、ハロゲン原子を示し、cおよびdは、上記式(2)のcおよびdと同意義を示し、mは、上記式(9b)のmと同意義を示す。)
また、第2オリゴマーは、とりわけ好ましくは、上記式(19b)で示されるジオール化合物と、上記式(16)で示されるジハロゲン化化合物との反応により、ジオール化合物またはジハロゲン化化合物、好ましくは、ジオール化合物として得られ、具体的には、下記式(21b)で示される。
【0197】
(式中、mは、上記式(9b)のmと同意義を示す。)
また、例えば、第2オリゴマーは、上記したように、上記式(19a’)で示されるジハロゲン化化合物と、上記式(15’)で示されるジオール化合物との反応により、ジハロゲン化化合物またはジオール化合物、好ましくは、ジハロゲン化化合物として得ることもできる。
【0198】
このようなジハロゲン化化合物は、具体的には、下記式(20a’)で示される。
【0200】
(式中、Xは、互いに同一または相異なって、ハロゲン原子を示し、cおよびdは、上記式(2)のcおよびdと同意義を示し、mは、上記式(9a)のmと同意義を示す。)
また、例えば、第2オリゴマーは、上記したように、上記式(19b’)で示されるジハロゲン化化合物と、上記式(15’)で示されるジオール化合物との反応により、ジハロゲン化化合物またはジオール化合物、好ましくは、ジハロゲン化化合物として得ることもできる。
【0201】
このようなジハロゲン化化合物は、具体的には、下記式(20b’)で示される。
【0203】
(式中、Xは、互いに同一または相異なって、ハロゲン原子を示し、cおよびdは、上記式(2)のcおよびdと同意義を示し、mは、上記式(9b)のmと同意義を示す。)
そして、この方法では、上記により得られた第1オリゴマーと第2オリゴマーとを、例えば、上記した有機溶媒中で重縮合反応させる。
【0204】
具体的には、第1オリゴマーとして、上記式(17)、上記式(18)で示されるジハロゲン化化合物、または、上記式(17’)で示されるジオール化合物を用いる。また、第2オリゴマーとして、上記式(20a)、上記式(20b)、上記式(21a)、上記式(21b)で示されるジオール化合物、または、上記式(20a’)、上記式(20b’)で示されるジハロゲン化化合物を用いる。
【0205】
好ましくは、第1オリゴマーとして、上記式(17)、上記式(18)で示されるジハロゲン化化合物を用いるとともに、第2オリゴマーとして、上記式(20a)、上記式(20b)、上記式(21a)、上記式(21b)で示されるジオール化合物を用いる。
【0206】
なお、第1オリゴマーおよび第2オリゴマーに対する、有機溶媒の配合割合は、目的および用途に応じて、適宜設定される。
【0207】
また、重縮合反応では、上記した塩基性化合物を、上記した割合で配合することができる。
【0208】
重縮合反応における反応温度は、例えば、50〜300℃、好ましくは、50〜100℃であり、反応時間は、例えば、1〜20時間、好ましくは、2〜5時間である。
【0209】
これにより、陰イオン交換樹脂前駆体ポリマー、好ましくは、下記式(22a)、下記式(22b)で示される陰イオン交換樹脂前駆体ポリマーが得られる。
【0211】
(式中、Rは、上記式(1)のRと同意義を示し、Xは、互いに同一または相異なって、ハロゲン原子を示し、aおよびbは、上記式(1)のaおよびbと同意義を示し、cおよびdは、上記式(2)のcおよびdと同意義を示し、nは、上記式(7)のnと同意義を示し、mは、上記式(9a)のmと同意義を示し、lは、上記式(11a)のlと同意義を示す。)
【0213】
(式中、Rは、上記式(1)のRと同意義を示し、Xは、互いに同一または相異なって、ハロゲン原子を示し、aおよびbは、上記式(1)のaおよびbと同意義を示し、cおよびdは、上記式(2)のcおよびdと同意義を示し、nは、上記式(7)のnと同意義を示し、mは、上記式(9b)のmと同意義を示し、lは、上記式(11b)のlと同意義を示す。)
また、陰イオン交換樹脂前駆体ポリマーとして、とりわけ好ましくは、下記式(23a)、下記式(23b)で示される陰イオン交換樹脂前駆体ポリマーが得られる。
【0215】
(式中、式中、nは、上記式(7)のnと同意義を示し、mは、上記式(9a)のmと同意義を示し、lは、上記式(11a)のlと同意義を示す。)
【0217】
(式中、式中、nは、上記式(7)のnと同意義を示し、mは、上記式(9b)のmと同意義を示し、lは、上記式(11b)のlと同意義を示す。)
次いで、この方法では、陰イオン交換樹脂前駆体ポリマーに、陰イオン交換基を導入する。
【0218】
陰イオン交換基を導入する方法としては、特に制限されず、公知の方法を採用することができる。
【0219】
例えば、クロロメチル化反応により、陰イオン交換樹脂前駆体ポリマーをクロロメチル化した後、そのクロロメチル化された陰イオン交換樹脂前駆体ポリマーを、四級化反応(例えば、アンモニウム化反応)させることにより、陰イオン交換基を導入する。
【0220】
クロロメチル化反応としては、特に制限されず、例えば、陰イオン交換樹脂前駆体ポリマーを、例えば、テトラクロロエタン(1,1,2,2−テトラクロロエタンなど)などの溶媒に溶解させ、塩化鉄、塩化亜鉛などのルイス酸を触媒として、クロロメチルメチルエーテル中に浸漬処理する方法など、公知の方法を採用することができる。
【0221】
クロロメチル化反応における反応温度は、例えば、20〜120℃、好ましくは、35〜100℃であり、反応時間は、例えば、24〜168時間、好ましくは、36〜72時間である。
【0222】
これにより、クロロメチル化された陰イオン交換樹脂前駆体ポリマーを得ることができる。
【0223】
四級化反応では、クロロメチル化された陰イオン交換樹脂前駆体ポリマーを、必要により公知の方法で製膜し、例えば、アミン、ホスフィン、ホスファゼン、スルフィド、ボロン化合物などを、適宜の割合で添加し、クロロメチル基の塩素原子をそれらで置換することにより、陰イオン交換基を導入する。
【0224】
アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジアリルアミン、ジn−プロピルアミン、ジn−ブチルアミン、ジn−ペンチルアミンなどの2級アミン、例えば、トリメチルアミン、N,N−ジメチルエタノールアミン、トリエチルアミン、トリアリルアミン、トリn−プロピルアミン、トリn−ブチルアミン、トリn−ペンチルアミン、トリn−ヘキシルアミンなどの3級アミン、例えば、ピリジン、キノリン、イミダゾールなどの環状アミン、例えば、グアニジンなどが挙げられる。
【0225】
これらアミンは、単独使用または2種類以上併用することができる。
【0226】
四級化反応における反応温度は、例えば、15〜40℃、好ましくは、20〜30℃であり、反応時間は、例えば、24〜72時間、好ましくは、48〜72時間である。
【0227】
なお、この方法では、陰イオン交換樹脂前駆体ポリマーを製膜することなく、例えば、溶液状態において、四級化反応させることもできる。
【0228】
また、この方法では、必要により、上記のアミン、ホスフィン、ホスファゼン、スルフィド、ボロン化合物などを、公知の方法により除去する。
【0229】
これにより、上記陰イオン交換樹脂前駆体ポリマーに、陰イオン交換基が導入され、陰イオン交換樹脂、好ましくは、上記式(11a)、上記式(11b)で示される陰イオン交換樹脂、とりわけ好ましくは、上記式(12a)、上記式(12b)で示される陰イオン交換樹脂が得られる。
【0230】
また、陰イオン交換樹脂のイオン交換基容量は、例えば、0.5〜2.3meq./g、好ましくは、0.6〜1.2meq./gである。
【0231】
なお、イオン交換基容量は、下記式(24)により求めることができる。
[イオン交換基容量(meq./g)]=イオン交換基導入量×m×1000/(第1オリゴマーの分子量×n+第2オリゴマーの分子量×m+イオン交換基の分子量×m)―(24)
(式中、nは、上記式(7)のnと同意義を示し、mは、上記式(9a)または上記式(9b)のmと同意義を示す。)
なお、イオン交換基導入量とは、単位親水性基あたりのクロロメチル基の数と定義される。
【0232】
そして、このような陰イオン交換樹脂は、2価の飽和炭化水素基を介して互いに結合する複数の芳香環からなる2価の疎水性基と、単数の芳香環からなる、または、炭素−炭素結合を介して互いに結合する複数の芳香環からなる2価の結合性基と、酸素原子または硫黄原子を介して互いに結合し、陰イオン交換基を有する複数の芳香環からなる2価の親水性基とからなり、前記疎水性基および前記結合性基がエーテル結合を介して繰り返される疎水ユニットと、前記親水性基および前記結合性基がエーテル結合を介して繰り返される親水ユニットとを有し、前記疎水ユニットと前記親水ユニットとがエーテル結合を介して結合されている。
【0233】
つまり、この陰イオン交換樹脂には、スルホニル基、カルボニル基、イミド基などが含有されておらず、そのため、耐アルカリ性などの耐久性に優れる。
【0234】
このような陰イオン交換樹脂に含まれる親水性基は、従来の芳香族高分子電解質(上記式(25)など)に含まれる親水性基、すなわち、ビスフェノールフルオレン残基などに比べ、分子量が小さい。そのため、このような親水性基を用いることにより、電解質全体としての分子量を小さくすることができ、その結果、電解質における陰イオン交換基の含有率の向上を図ることができ、イオン交換容量の向上を図ることができる。
【0235】
このような親水性基として、好ましくは、ビス(ヒドロキシフェニル)オキシド残基の単独使用、ビス(ヒドロキシフェニル)スルフィド残基の単独使用が挙げられ、より好ましくは、ビス(ヒドロキシフェニル)オキシド残基の単独使用が挙げられる。
【0236】
そして、本発明は、このような陰イオン交換樹脂を用いて得られる燃料電池用電解質層(燃料電池用電解質膜)、さらには、その燃料電池用電解質層を電解質層として備える燃料電池を、含んでいる。
【0237】
図1は、本発明の燃料電池の一実施形態を示す概略構成図である。
図1において、この燃料電池1は、燃料電池セルSを備えており、燃料電池セルSは、燃料側電極2、酸素側電極3および電解質層4を備え、燃料側電極2および酸素側電極3が、それらの間に電解質層4を挟んだ状態で、対向配置されている。
【0238】
電解質層4としては、上記した陰イオン交換樹脂を用いることができる(すなわち、電解質層4は、上記した陰イオン交換樹脂を含んでいる。)
なお、電解質層4としては、例えば、多孔質基材などの公知の補強材により補強することができ、さらには、例えば、分子配向などを制御するための二軸延伸処理や、結晶化度や残存応力を制御するための熱処理などの各種処理することができる。また、電解質層4には、その機械強度を上げるために、公知のフィラーを添加することができ、電解質層4と、ガラス不織布などの補強剤とをプレスにより複合化させることもできる。
【0239】
また、電解質層4において、通常用いられる各種添加剤、例えば、相溶性を向上させるための相溶化剤、例えば、樹脂劣化を防止するための酸化防止剤、例えば、フィルムとしての成型加工における取扱性を向上するための帯電防止剤や滑剤などを、電解質層4としての加工や性能に影響を及ぼさない範囲で、適宜含有させることができる。
【0240】
電解質層4の厚さは、特に制限されず、目的および用途に応じて、適宜設定される。
【0241】
電解質層4の厚みは、例えば、1.2〜350μm、好ましくは、5〜200μmである。
【0242】
燃料側電極2は、電解質層4の一方の面に対向接触されている。この燃料側電極2は、例えば、多孔質担体に触媒が担持されている触媒層(電池電極触媒層)を含んでいる。
【0243】
多孔質担体としては、特に限定されず、カーボンなどの、撥水性担体が挙げられる。
【0244】
触媒としては、特に制限されず、例えば、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、鉄族元素(Fe、Co、Ni)などの周期表第8〜10(IUPAC Periodic Table of the Elements(version date 19 February 2010)に従う。以下同じ。)族元素や、例えば、Cu、Ag、Auなどの周期表第11族元素など、さらにはこれらの組み合わせなどが挙げられ、好ましくは、Pt(白金)が挙げられる。
【0245】
燃料側電極2は、例えば、上記多孔質単体および触媒を、公知の電解質溶液(例えば、側鎖に4級アンモニウム基を有するフッ素系樹脂を上記の有機溶媒に溶かしたもの(電極触媒層形成用バインダー))に分散させ、電極インクを調製する。次いで、必要により、電極インクの粘度を、アルコール類などの適量の有機溶媒を配合することにより調整し、その後、電極インクを、公知の方法(例えば、スプレー法、ダイコーター法など)により電解質層4の一方面に塗布し、所定の温度で乾燥させることにより、薄膜状の電極膜として電解質層4の一方面に接合される。
【0246】
燃料側電極2における触媒の担持量は、特に限定されないが、例えば、0.1〜10.0mg/cm
2、好ましくは、0.5〜5.0mg/cm
2である。
【0247】
燃料側電極2では、後述するように、供給される燃料と、電解質層4を通過した水酸化物イオン(OH
−)とを反応させて、電子(e
−)および水(H
2O)を生成させる。なお、例えば、燃料が水素(H
2)である場合には、電子(e
−)および水(H
2O)のみを生成させ、燃料がヒドラジン(NH
2NH
2)である場合には、電子(e
−)、水(H
2O)および窒素(N
2)を生成させる。
【0248】
酸素側電極3は、電解質層4の他方の面に対向接触されている。この酸素側電極3は、例えば、多孔質担体に触媒が担持されている触媒層(電池電極触媒層)を含んでいる。
【0249】
酸素側電極3は、例えば、上記多孔質単体および触媒を、公知の電解質溶液(例えば、側鎖に4級アンモニウム基を有するフッ素系樹脂を上記の有機溶媒に溶かしたもの(電極触媒層形成用バインダー))に分散させ、電極インクを調製する。次いで、必要により、電極インクの粘度を、アルコール類などの適量の有機溶媒を配合することにより調整し、その後、電極インクを、公知の方法(例えば、スプレー法、ダイコーター法など)により電解質層4の他方面に塗布し、所定の温度で乾燥させることにより、薄膜状の電極膜として電解質層4の他方面に接合される。
【0250】
これにより、電解質層4、燃料側電極2および酸素側電極3は、電解質層4の一方面に薄膜状の燃料側電極2が接合され、電解質層4の他方面に薄膜状の酸素側電極3が接合されてなる膜・電極接合体を形成している。
【0251】
酸素側電極3における触媒の担持量は、特に限定されないが、例えば、0.1〜10.0mg/cm
2、好ましくは、0.5〜5.0mg/cm
2である。
【0252】
酸素側電極3では、後述するように、供給される酸素(O
2)と、電解質層4を通過した水(H
2O)と、外部回路13を通過した電子(e
−)とを反応させて、水酸化物イオン(OH
−)を生成させる。
【0253】
燃料電池セルSは、さらに、燃料供給部材5および酸素供給部材6を備えている。燃料供給部材5は、ガス不透過性の導電性部材からなり、その一方の面が、燃料側電極2に対向接触されている。そして、この燃料供給部材5には、燃料側電極2の全体に燃料を接触させるための燃料側流路7が、一方の面から凹む葛折状の溝として形成されている。なお、この燃料側流路7には、その上流側端部および下流側端部に、燃料供給部材5を貫通する供給口8および排出口9がそれぞれ連続して形成されている。
【0254】
また、酸素供給部材6も、燃料供給部材5と同様に、ガス不透過性の導電性部材からなり、その一方の面が、酸素側電極3に対向接触されている。そして、この酸素供給部材6にも、酸素側電極3の全体に酸素(空気)を接触させるための酸素側流路10が、一方の面から凹む葛折状の溝として形成されている。なお、この酸素側流路10にも、その上流側端部および下流側端部に、酸素供給部材6を貫通する供給口11および排出口12がそれぞれ連続して形成されている。
【0255】
この燃料電池1は、実際には、上記した燃料電池セルSが、複数積層されるスタック構造として形成される。そのため、燃料供給部材5および酸素供給部材6は、実際には、両面に燃料側流路7および酸素側流路10が形成されるセパレータとして構成される。
【0256】
なお、図示しないが、この燃料電池1には、導電性材料によって形成される集電板が備えられており、集電板に備えられた端子から燃料電池1で発生した起電力を外部に取り出すことができるように構成されている。
【0257】
また、
図1においては、この燃料電池セルSの燃料供給部材5と酸素供給部材6とを外部回路13によって接続し、その外部回路13に電圧計14を介在させて、発生する電圧を計測するようにしている。
【0258】
この燃料電池1においては、燃料が、改質などを経由することなく直接に、または、改質などを経由した上で、燃料側電極2に供給される。
【0259】
燃料としては、含水素液体燃料が挙げられる。
【0260】
含水素液体燃料は、分子中に水素原子を含有する液体燃料であって、例えば、アルコール類、ヒドラジン類などが挙げられ、好ましくは、ヒドラジン類が挙げられる。
【0261】
ヒドラジン類として、具体的には、例えば、ヒドラジン(NH
2NH
2)、水加ヒドラジン(NH
2NH
2・H
2O)、炭酸ヒドラジン((NH
2NH
2)
2CO
2)、塩酸ヒドラジン(NH
2NH
2・HCl)、硫酸ヒドラジン(NH
2NH
2・H
2SO
4)、モノメチルヒドラジン(CH
3NHNH
2)、ジメチルヒドラジン((CH
3)
2NNH
2、CH
3NHNHCH
3)、カルボンヒドラジド((NHNH
2)
2CO)などが挙げられる。上記例示の燃料は、単独または2種類以上組み合わせて用いることができる。
【0262】
上記した燃料化合物のうち、炭素を含まない化合物、すなわち、ヒドラジン、水加ヒドラジン、硫酸ヒドラジンなどは、COおよびCO
2の生成がなく、触媒の被毒が生じないことから、耐久性の向上を図ることができ、実質的なゼロエミッションを実現することができる。
【0263】
また、上記例示の燃料としては、上記の燃料化合物をそのまま用いてもよいが、上記例示の燃料化合物を、例えば、水および/またはアルコール(例えば、メタノール、エタノール、プロパノール、イソプロパノールなどの低級アルコールなど)などの溶液として用いることができる。この場合、溶液中の燃料化合物の濃度は、燃料化合物の種類によっても異なるが、例えば、1〜90質量%、好ましくは、1〜30質量%である。
【0264】
さらに、燃料は、上記した燃料化合物をガス(例えば、蒸気)として用いることができる。
【0265】
そして、酸素供給部材6の酸素側流路10に酸素(空気)を供給しつつ、燃料供給部材5の燃料側流路7に上記した燃料を供給すれば、酸素側電極3においては、次に述べるように、燃料側電極2で発生し、外部回路13を介して移動する電子(e
−)と、燃料側電極2で発生する水(H
2O)と、酸素(O
2)とが反応して、水酸化物イオン(OH
−)を生成する。生成した水酸化物イオン(OH
−)は、アニオン交換膜からなる電解質層4を、酸素側電極3から燃料側電極2へ移動する。そして、燃料側電極2においては、電解質層4を通過した水酸化物イオン(OH
−)と、燃料とが反応して、電子(e
−)と水(H
2O)とが生成する。生成した電子(e
−)は、燃料供給部材5から外部回路13を介して酸素供給部材6に移動され、酸素側電極3へ供給される。また、生成した水(H
2O)は、電解質層4を燃料側電極2から酸素側電極3へ移動する。このような燃料側電極2および酸素側電極3における電気化学的反応によって、起電力が生じ、発電が行われる。
【0266】
なお、この燃料電池1の運転条件は、特に限定されないが、例えば、燃料側電極2側の加圧が200kPa以下、好ましくは、100kPa以下であり、酸素側電極3側の加圧が200kPa以下、好ましくは、100kPa以下であり、燃料電池セルSの温度が0〜120℃、好ましくは、20〜80℃として設定される。
【0267】
そして、このような燃料電池1においては、電解質層4に、上記の耐久性に優れる陰イオン交換樹脂を含む燃料電池用電解質層が、用いられている。
【0268】
そのため、本発明の陰イオン交換樹脂を用いて得られる本発明の燃料電池用電解質層、および、そのような燃料電池用電解質層を備える燃料電池は、耐久性に優れる。
【0269】
また、本発明は、上記した陰イオン交換樹脂を含む電極触媒層形成用バインダー、その電極触媒層形成用バインダーを含む電池電極触媒層、さらには、その電池電極触媒層を備える燃料電池を含んでいる。
【0270】
すなわち、燃料電池1では、上記した燃料側電極2および/または酸素側電極3の形成時において、陰イオン交換樹脂を電極触媒層形成用バインダーに含有させることができる。
【0271】
陰イオン交換樹脂を電極触媒層形成用バインダーに含有させる方法として、具体的には、例えば、陰イオン交換樹脂を細断し、上記した有機溶媒に溶解させることにより、電極触媒層形成用バインダーを調製する。
【0272】
電極触媒層形成用バインダーにおいて、陰イオン交換樹脂の含有割合は、電極触媒層形成用バインダー100質量部に対して、例えば、2〜10質量部、好ましくは、2〜5質量部である。
【0273】
また、その電極触媒層形成用バインダーを、上記した燃料側電極2および/または酸素側電極3の触媒層(電池電極触媒層)の形成に用いることにより、陰イオン交換樹脂を、触媒層(電池電極触媒層)に含有させることができ、これにより、陰イオン交換樹脂を含む触媒層(電池電極触媒層)を備える燃料電池1を得ることができる。
【0274】
そして、このような燃料電池1においては、電池電極触媒層の形成において、上記の耐久性に優れる陰イオン交換樹脂を含む電極触媒層形成用バインダーが、用いられている。
【0275】
そのため、本発明の陰イオン交換樹脂を用いて得られる本発明の電極触媒層形成用バインダー、また、その電極触媒層形成用バインダーを用いて得られる電池電極触媒層は、耐久性、および、イオン交換容量に優れており、優れたアニオン導電性を確保することができる。
【0276】
その結果、そのような電池電極触媒層を備える燃料電池は、耐久性、および、イオン交換容量に優れており、優れたアニオン導電性を確保することができる。
【0277】
以上、本発明の実施形態について説明したが、本発明の実施形態は、これに限定されるものではなく、本発明の要旨を変更しない範囲で、適宜設計を変形することができる。
【0278】
本発明の燃料電池の用途としては、例えば、自動車、船舶、航空機などにおける駆動用モータの電源や、携帯電話機などの通信端末における電源などが挙げられる。
【実施例】
【0279】
次に、本発明を実施例および比較例に基づいて説明するが、本発明は下記の実施例によって限定されるものではない。
【0280】
実施例1
<第1オリゴマーの合成>
窒素インレットおよびディーンスタックトラップを備えた100mlの丸底三口フラスコに、ヘキサフルオロビスフェノールA(2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン)(2.50g、7.44mmol)、炭酸カリウム(1.54g、11.15mmol)、N,N−ジメチルアセトアミド(16ml)、トルエン(8ml)を加えた。この混合物を撹拌してヘキサフルオロビスフェノールAを溶解した後、150℃に昇温しトルエンで共沸しながら3時間脱水した。
【0281】
脱水後、ディーンスタックトラップ内のトルエンを除去し、還流したトルエンをトラップすることで混合物からトルエンを除去した。その後、常温まで放冷し、デカフルオロビフェニル(2.98g、8.92mmol)を加え、60℃に昇温し2時間時間反応させた。
【0282】
ここで、エンドキャップ剤としてデカフルオロビフェニル(0.30g、0.89mmol)を加え、さらに1時間反応を続けた。
【0283】
反応混合物を熱水中に滴下して反応を停止させ、生成物を析出させた。生成物を濾別回収し、熱水、熱メタノールで数回洗浄後、60℃で一晩真空乾燥させた。
【0284】
これにより、上記式(18)で示される白色の第1オリゴマー(n=5)を、収率84%で得た。
<第2オリゴマーの合成>
窒素インレットおよびディーンスタックトラップを備えた100mlの丸底三口フラスコに、4,4’−ビス(ヒドロキシフェニル)スルフィド(3.68g、16.84mmol)、炭酸カリウム(3.49g、25.25mmol)、N,N−ジメチルアセトアミド(30ml)、トルエン(15ml)を加えた。この混合物を撹拌して4,4’−ビス(ヒドロキシフェニル)スルフィドを溶解した後、150℃に昇温しトルエンで共沸しながら3時間脱水した。
【0285】
脱水後、トラップ内のトルエンを除去し、還流したトルエンをトラップすることで混合物からトルエンを除去した。その後、常温まで放冷しデカフルオロビフェニル(4.50g、13.47mmol)を加え、60℃に昇温し1.5時間反応させた。
【0286】
ここで、エンドキャップ剤として4,4’−ビス(ヒドロキシフェニル)スルフィド(0.37g、1.68mmol)を加え、さらに1時間反応を続けた。
【0287】
反応混合物を熱水中に滴下して反応を停止させ、生成物を析出させた。生成物を濾別回収し、熱水、熱メタノールで数回洗浄後、60℃で一晩真空乾燥させた。
【0288】
これにより、上記式(21b)で示される白色の第2オリゴマー(m=4)を収率80%で得た。
<陰イオン交換樹脂前駆体ポリマーの合成>
窒素インレット、メカニカルスターラーおよび冷却管を備えた100mlの丸底三口フラスコに、第1オリゴマー1(2.08g、0.45mmol)、第2オリゴマー(2.00g、0.45mmol)、炭酸カリウム(0.09g、0.68mmol)およびN,N−ジメチルアセトアミド(14ml)を加えた。この混合物を撹拌してオリゴマー1、2を溶解させた後に、60℃に加熱して8時間反応させた。
【0289】
反応混合物を熱水中に滴下し反応を停止させ、生成物を析出させた。生成物を濾別回収し、熱水で数回、熱メタノールで数回洗浄後、60℃で一晩真空乾燥させた。
【0290】
これにより、上記式(23b)で示される白色の陰イオン交換樹脂前駆体ポリマー(n=5、m=4、l=2.32)を収率91%で得た。
<陰イオン交換基導入>
(クロロメチル化反応)
100mlのガラス反応容器に陰イオン交換樹脂前駆体ポリマー(1.00g)と1,1,2,2−テトラクロロエタン(22ml)を加えた。この混合物を撹拌して陰イオン交換樹脂前駆体ポリマーを溶解させた後に、クロロメチルメチルエーテル(13.27ml)、塩化亜鉛(0.5mol/Lテトラヒドロフラン溶液)(2.06ml)を加えて、アルゴンで置換したグローブボックス中で80℃で5日間反応させた。
【0291】
反応混合物をメタノール中に滴下して反応を停止させ、生成物を析出させた。生成物を濾別回収し、メタノールで数回洗浄後、60℃で一晩真空乾燥させた。
【0292】
これにより、陰イオン交換樹脂前駆体ポリマーをクロロメチル化した。
(製膜)
クロロメチル化された陰イオン交換樹脂前駆体ポリマーを、溶液キャスト法により製膜した。
【0293】
すなわち、クロロメチル化された陰イオン交換樹脂前駆体ポリマー(0.2g)を1,1,2,2−テトラクロロエタン(2.7ml)に溶解させ、ガラスフィルター(G3)で濾過した。濾液をシリコンゴムで3×9cmの大きさに縁取りされたガラス板状に流し込み、水平に調節した50℃のホットプレート上で静置し、乾燥させることにより厚さ約50μmの透明な膜を得た。
(四級化反応)
クロロメチル化された陰イオン交換樹脂前駆体ポリマーの膜を、トリメチルアミン45質量%水溶液中に室温で2日間浸漬させ、四級化させた。
【0294】
この膜を純水で数回洗浄し、60℃で一晩真空乾燥させた。乾燥させた膜(0.2g)をジメチルスルホキシド(2.7ml)に溶解させ、上記と同様にキャスト製膜することにより透明な陰イオン交換樹脂の膜を得た。
【0295】
なお、この膜はイオン交換基(アンモニオ基)の対イオンが塩化物であるため、1mol/L水酸化ナトリウム水溶液中に2日間浸漬させ脱気した純水で洗浄することにより、水酸化物型へ変換した。
<溶液化>
陰イオン交換樹脂の膜を0.04g秤量して細かく刻み、5質量%になるように溶媒(DMF:クロロホルム=1:4)を加えた。なお、このとき、陰イオン交換樹脂を、先にDMFで溶解し、その後、クロロホルムで希釈した。
【0296】
その後、撹拌して溶解させることにより、陰イオン交換樹脂の溶液を得た。
【0297】
実施例2
第2オリゴマーの合成において、4,4’−ビス(ヒドロキシフェニル)スルフィド(3.68g、16.84mmol)に代えて、4,4’−ビス(ヒドロキシフェニル)オキシド(4,4’−ジヒドロキシジフェニルエーテル)(3.41g、16.84mmol)を用いた以外は、実施例1と同様にして、陰イオン交換樹脂の膜、および、陰イオン交換樹脂の溶液を得た。
【0298】
なお、実施例2においては、第2オリゴマーとして、上記式(21a)で示される白色の第2オリゴマー(m=4)を収率80%で得た。
【0299】
また、陰イオン交換樹脂前駆体ポリマーとして、上記式(23a)で示される白色の陰イオン交換樹脂前駆体ポリマー(n=5、m=4、l=2.14)を収率91%で得た。
【0300】
比較例1
<第1オリゴマーの合成>
ビス(4−フルオロフェニル)スルホン(以下、FPS)10.000g(分子量254.2、39.331mmol)、4,4’−ジヒドロキシベンゾフェノン(以下、DHBP)7.9300g(分子量214.2、37.018mmol)、および、炭酸カリウム13.589g(分子量138.21、98.328mmol)を秤量し、300mLの三口ナスフラスコに入れた。次いで、三口ナスフラスコの壁面を洗浄しながら、DMAcを160mL入れ、三口ナスフラスコに、強制撹拌機、40mLのトルエンを入れたディーンスタックトラップを取付けた。150℃に加熱し、3時間後にディーンスタックトラップを外し、170℃で3時間反応させた。次いで、エンドキャップ剤のFPS0.5000g(1.9666mmol)を入れ、さらに1時間撹拌した。次いで、パスツールピペットを用いてスターラー上に置いたビーカー中の熱水中へ、細かな膜状で全体に分散するように滴下した。次いで、メンブレンフィルターを用いて吸引ろ過し、熱水で洗浄した。その後、メンブレンフィルターで吸引ろ過し、熱メタノールで洗浄した後、再度吸引ろ過し、80℃で真空乾燥させた。これにより下記式(26)で示されるn=16のオリゴマーを得た。
【0301】
【化51】
【0302】
<第2オリゴマーの合成>
BHF7.7524g(22.124mmol)、FPS5.000g(19.666mmol)および炭酸カリウム7.6444g(55.310mmol)を秤量し、300mLの三口ナスフラスコに入れた。次いで、三口ナスフラスコの壁面を洗浄しながら、DMAcを80mL入れ、三口ナスフラスコに、強制撹拌機、20mLのトルエンを入れたディーンスタックトラップを取付けた。140℃に加熱し、2時間撹拌した後、ディーンスタックトラップを外し、165℃で2時間反応させた。次いで、エンドキャップ剤のBHF0.3876g(1.1062mmol)を入れ、さらに1時間撹拌した。得られたポリマーは第1オリゴマーと同様の方法で精製した。これにより、下記式(27)で示されるm=11のオリゴマーを得た。
【0303】
【化52】
【0304】
<陰イオン交換樹脂前駆体ポリマーの合成>
第1オリゴマー7.4300g([−F]=20.000mmol)、第2オリゴマー6.7817g([−OH]=20.000mmol)、炭酸カリウム3.4553g(25.000mmol)、炭酸カルシウム25.048g(分子量100.2、250.00mmol)、DMAc100mLおよびトルエン25mLを300mLの三口ナスフラスコに入れた。強制撹拌を取付け、オイルバスを145℃に加熱して、3時間後にディーンスタックトラップを取り外し、160℃で5時間反応させた。100mLのDMAcで希釈した後、パスツールピペットを用いてスターラー上に置いたビーカー中の熱水中へ滴下した。次いで、メンブレンフィルターを用いて吸引ろ過し、熱水で洗浄した。その後、メンブレンフィルターで吸引ろ過し、熱メタノールで洗浄した後、再度吸引ろ過し、80℃で真空乾燥させた。これにより、下記式(28)で示される陰イオン交換樹脂前駆体ポリマー(n=16、m=11)を得た。
【0305】
【化53】
【0306】
<陰イオン交換基導入>
(クロロメチル化反応)
陰イオン交換樹脂前駆体ポリマー1.0000g(第2オリゴマー換算1.0374mmol)を秤量して反応容器に入れ、テトラクロロエタン(以下、TCE)の0.05mol/L水溶液20mL(1.000mmol)を追加し、35℃で30分撹拌し、溶解させた。
【0307】
次いで、得られた溶液に塩化亜鉛0.1414g(1.0374mmol)の1.0mLのテトラヒドロフラン溶液、および、陰イオン交換樹脂前駆体ポリマー40倍モル(フルオレン基に対して)のクロロメチルメチルエーテル(分子量80.51、41.496mmol)を加え、35℃で120時間撹拌した。得られた混合液を、パスツールピペットを用いてメタノール中に滴下し、撹拌および洗浄した。その後、上澄みを捨て、メタノールを追加して更に洗浄し、メンブレンフィルターで吸引ろ過した後、50℃で真空乾燥させた。
(製膜)
クロロメチル化されたポリマー1.000gを25mLのTCEに溶解し、0.45μmのPTFEメンブレンフィルターでろ過した後、得られたろ液を容器に流し込み、60℃で乾燥させた。これにより50±5μmの膜を作製した。
(四級化反応)
クロロメチル化された陰イオン交換樹脂前駆体ポリマーの膜を、容器に入れ、トリメチルアミン水溶液(濃度30質量%)を、膜が浸るまで入れた。
【0308】
次いで、容器に蓋をして2日間室温で保管し、その後、膜を超純水で数回撹拌洗浄した後、乾燥させた。
【0309】
次いで、水酸化カリウム水溶液(濃度1mol/L)中に膜を浸漬し、室温で2晩補完した後、超純水で数回撹拌洗浄した後、乾燥させた。
【0310】
これにより、陰イオン交換樹脂の膜を得た。
【0311】
参考例1
<第1オリゴマーの合成>
2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン(=ヘキサフルオロビスフェノール)2.5000g(分子量336.23、7.435mmol)、炭酸カリウム2.0502g(分子量138.21、14.87mmol)、ジメチルアセトアミド(以下、DMAc)15.24mL、および、トルエン5mLを、100mLの三口ナスフラスコに入れた。
【0312】
次いで、三口ナスフラスコに、強制撹拌機、トルエンを入れたディーンスタックトラップおよびN
2ガスチューブを取り付け、オイルバスで160℃まで加熱し、撹拌することにより、上記化合物における末端水酸基と炭酸カリウムとの反応により生じる水を除去した。
【0313】
次いで、オイルバスを80℃まで冷却し、デカフルオロビフェニル2.6084g(分子量334.1、7.807mmol)を入れ、撹拌し、2.5時間後にエンドキャップ剤のデカフルオロビフェニル0.2608g(0.7807mmol)を入れ、さらに0.5時間撹拌した。
【0314】
次いで、オイルバスからナスフラスコを上げ、DMAcで希釈した後、得られた希釈液を、パスツールピペットを用いてスターラー上に置いたビーカー中の熱水中へ、細かな膜状で全体に分散するように滴下した。
【0315】
次いで、メンブレンフィルターを用いて吸引ろ過し、熱メタノールで洗浄した。その後、メンブレンフィルターで吸引ろ過し、再度熱メタノールで洗浄した後、再度吸引ろ過し、50℃で真空乾燥させた。
【0316】
これにより、上記式(18)で示される第1オリゴマー(n=30)を得た。
<第2オリゴマーの合成>
9,9−ビス(4−ヒドロキシフェニル)フルオレン(以下、BHF)2.9498g(分子量350.4、8.4184mmol)、デカフルオロビフェニル2.5000g(分子量334.1、7.483mmol)および炭酸カリウム2.9088g(分子量138.21、21.0459mmol)を秤量し、100mLの三口ナスフラスコに入れた。
【0317】
次いで、三口ナスフラスコの壁面を洗浄しながら、DMAcを20mL入れ、三口ナスフラスコに、強制撹拌機、シクロヘキサンを入れたディーンスタックトラップ、冷却管およびN
2ガスチューブを取り付け、シクロヘキサン2mLを加えた。
【0318】
次いで、オイルバスを85℃に加熱し、オイル面とフラスコ内の液面が同じ高さになるようにして、撹拌を開始し、1.5時間後にエンドキャップ剤のBHF0.2812g(0.8418mmol)を入れ、さらに1時間撹拌した。
【0319】
その後、オイルバスからナスフラスコを上げ、DMAcで希釈した後、得られた希釈液を、パスツールピペットを用いてスターラー上に置いたビーカー中の熱水中へ、細かな膜状で全体に分散するように滴下した。
【0320】
次いで、メンブレンフィルターを用いて吸引ろ過し、熱水で洗浄した。その後、メンブレンフィルターで吸引ろ過し、熱メタノールで洗浄した後、再度吸引ろ過し、50℃で真空乾燥させた。
【0321】
これにより、下記式(29)で示される第2オリゴマー(m=8)を得た。
【0322】
【化54】
【0323】
<陰イオン交換樹脂前駆体ポリマーの合成>
第1オリゴマー0.5000g([−F]=0.0528mmol)、第2オリゴマー0.1610g([−OH]=0.0528mmol)および炭酸カリウム0.0091g(分子量138.21、0.066mmol)を秤量し、100mLの三口ナスフラスコに入れた。
【0324】
次いで、三口ナスフラスコにDMAc2mLを加え、強制撹拌機および冷却管を取り付け、オイルバスによって80℃まで加熱し、撹拌した。なお、撹拌子が回りにくくなったらDMAcを少量追加し、撹拌した。
【0325】
2.5時間後、オイルバスからナスフラスコを上げ、DMAcで希釈した後、得られた希釈液を、パスツールピペットを用いてスターラー上に置いたビーカー中の熱水中へ、細かな膜状で全体に分散するように滴下した。
【0326】
次いで、メンブレンフィルターを用いて吸引ろ過した後、熱水で洗浄した。その後、メンブレンフィルターで吸引ろ過し、熱メタノールで洗浄した後、再度吸引ろ過し、50℃で真空乾燥した。
【0327】
これにより、下記式(30)で示される陰イオン交換樹脂前駆体ポリマー(n=30、m=8、l=1.06)を得た。
【0328】
【化55】
【0329】
<陰イオン交換基導入>
(クロロメチル化反応)
陰イオン交換樹脂前駆体ポリマー1.0000g(第2オリゴマー換算0.362mmol)を秤量して反応容器に入れ、テトラクロロエタンの0.04574mol/L水溶液7.91mL(0.362mmol)に溶解させた。
【0330】
次いで、得られた溶液に塩化亜鉛の0.5mol/Lテトラヒドロフラン溶液0.724mL(0.362mmol)、および、陰イオン交換樹脂前駆体ポリマーの80倍モル(フルオレン基に対して)のクロロメチルメチルエーテル(分子量80.51、28.96mmol)を加え、50℃で撹拌した。
【0331】
2日後、得られた混合液を、パスツールピペットを用いてメタノール中に滴下し、撹拌および洗浄した。その後、上澄みを捨て、メタノールを追加して更に洗浄し、メンブレンフィルターで吸引ろ過した後、50℃で真空乾燥させた。
【0332】
これにより、陰イオン交換樹脂前駆体ポリマーをクロロメチル化した。
(製膜)
クロロメチル化された陰イオン交換樹脂前駆体ポリマーをスクリュー管に入れ、DMAcに溶解させた。
【0333】
なお、陰イオン交換樹脂前駆体ポリマーの量は、次式により算出した。
必要質量(g)=キャスト容器面積(cm
2)×膜厚(cm)×1.5(g/cm
3)
次いで、桐山ロートおよび桐山ろ紙を用いて溶液をろ過した後、得られたろ液を容器に流し込み、45℃で乾燥させた。完全に乾燥したことを確認した後、容器に純水を流し込み、端からスパチュラで丁寧に剥がすことにより、クロロメチル化された陰イオン交換樹脂前駆体ポリマーの膜を得た。
(四級化反応)
クロロメチル化された陰イオン交換樹脂前駆体ポリマーの膜を、容器に入れ、トリメチルアミン水溶液(濃度30質量%)を、膜が浸るまで入れた。
【0334】
次いで、容器に蓋をして2日間室温で保管し、その後、膜を超純水で数回撹拌洗浄した後、乾燥させた。
【0335】
次いで、水酸化カリウム水溶液(濃度1mol/L)中に膜を浸漬し、室温で2晩補完した後、超純水で数回撹拌洗浄した後、乾燥させた。
【0336】
これにより、下記式(31)で示される陰イオン交換樹脂(n=30、m=8、l=1.06)の膜を得た。
【0337】
【化56】
【0338】
(式中、A’およびA’’は、少なくとも一方が、CH
2N
+(CH
3)
3OH
−を示し、他方が、CH
2N
+(CH
3)
3OH
−または水素原子を示す。)
<溶液化>
陰イオン交換樹脂の膜を0.04g秤量して細かく刻み、5質量%になるように溶媒(DMF:クロロホルム=1:4)を加えた。なお、このとき、陰イオン交換樹脂を、先にDMFで溶解し、その後、クロロホルムで希釈した。
【0339】
その後、撹拌して溶解させることにより、陰イオン交換樹脂の溶液を得た。
【0340】
比較例2
アニオン交換膜−電極接合体のセルユニットを作製した。
【0341】
具体的には、アニオン交換膜−電極接合体の製造では、まず、コバルト系触媒と陰イオン交換樹脂(電極触媒層形成用バインダー、市販の炭化水素系アニオン交換樹脂)の溶液とを混合し、得られた混合物を、アルコール類などの有機溶媒に適宜分散させて、インクを調製した。
【0342】
その後、得られたインクを、比較例1において得られた陰イオン交換膜(燃料電池用電解質層)の一方側表面に直接塗布して、前記一方側表面にカソード側電極(Co系電池電極触媒層)を一体的に形成させた。
【0343】
次いで、ニッケル系触媒と上記の陰イオン交換樹脂とを混合し、得られた混合物を、アルコール類などの有機溶媒に適宜分散させて、インクを調製した後、得られたインクを、比較例1において得られた陰イオン交換膜の他方側表面に直接塗布して、前記他方側表面にアノード側電極(Ni系電池電極触媒層)を一体的に形成させた。
【0344】
これにより、アニオン交換膜−電極接合体を作製した。
【0345】
得られたアニオン交換膜−電極接合体の両面に、ガス拡散層となる導電性多孔質体のカーボンシートを接合し、燃料電池の単セルユニットを作製した。
【0346】
参考例2
電極触媒層形成用バインダーとして、参考例1で得られた陰イオン交換樹脂の溶液を用い、また、燃料電池用電解質層として、参考例1で得られた陰イオン交換樹脂の膜を用いた以外は、比較例2と同様にして、アニオン交換膜−電極接合体、および、燃料電池の単セルユニットを作製した。
(陰イオン交換樹脂の評価)
各実施例および参考例において得られた陰イオン交換樹脂のイオン交換基容量を上記式(24)に従って算出した。
【0347】
また、各実施例および参考例において得られた陰イオン交換樹脂のイオン伝導度および含水率を、下記の方法に従って評価した。
【0348】
すなわち、純水を入れたビーカーをウォーターバスに浸し、ウォーターバスの温度を60℃に設定した。そのビーカー中に、2cm×2cmの大きさに切り出した陰イオン交換樹脂の膜を入れ、純水に漬けて吸水させた。
【0349】
このとき、吸水前後の陰イオン交換樹脂の膜の質量を測定し、その吸水前後における質量増加量(吸水後の質量−吸水前の質量)を水の質量として算出し、含水率を測定した。
【0350】
その後、白金電極のついたガラスセル2枚で、電極が内側となり、それらの間が1cmになるように膜を挟み、ダブルクリップで留めることにより、試験セルを作製した。
【0351】
次いで、試験セルを上記のビーカーに再び入れ、電極をLCRハイテスタ(日置電機社)のワニ口クリップで挟み、LCRハイテスタの周波数θが小さくなるように調節し、安定したところで抵抗値を読み取った。
【0352】
その後、ビーカーから試験セルを取り出し、電極と膜とが接触している長さ(電極長さ)と膜厚とを測定し、以下の式によりイオン伝導度(OH
−伝導度)を計算した。
イオン伝導度(mS/cm)=1000×電極間距離(cm)/抵抗値(Ω)×電極長さ(cm)×膜厚(cm)
なお、イオン伝導度は、30℃、40℃、60℃および80℃において測定した。
【0353】
測定結果を、表1に示す。
【0354】
【表1】
【0355】
(燃料電池の電気特性評価)
比較例2および参考例2で得られた燃料電池の単セルユニットの燃料極側に、水加ヒドラジン(濃度5質量%〜20質量%)と水酸化カリウム水溶液(濃度1mol/L)の混合溶液を2mL/minで、加湿した酸素を500mL/minで流し込み、80℃で運転した。比較例2の燃料電池(単セルユニット)についての結果を
図2に、参考例2の燃料電池(単セルユニット)についての結果を
図3に示す。
(考察)
図2および
図3から、参考例1の陰イオン交換樹脂を用いた燃料電池は、比較例1の陰イオン交換樹脂を用いた燃料電池に比べ、電気特性に優れることが確認された。
【0356】
また、表1から、各実施例の陰イオン交換樹脂は、参考例1の陰イオン交換樹脂に比べ、含水率および電気特性に優れることが確認された。