【実施例】
【0031】
以下に本発明を実施例により更に具体的に説明するが本発明はその趣旨を逸脱しない限り実施例に限定されるものではない。
なお下記において転化率および収率は次の通りに定義される。
メタクロレイン転化率=(供給したメタクロレインモル数−未反応メタクロレインモル数)/供給したメタクロレインモル数×100
メタクリル酸収率=(生成したメタクリル酸モル数−供給したメタクリル酸モル数)/供給したメタクロレインモル数×100
メタクリル酸選択率=(生成したメタクリル酸モル数―供給したメタクリル酸モル数)/(供給したメタクロレインモル数−未反応メタクロレインモル数)×100
【0032】
実施例1
1)触媒の調製
純水5680mlに三酸化モリブデン800gと五酸化バナジウム40.43g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15〜20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液307.9gと、14.3質量%の酢酸アンモニウム水溶液689.0gを徐々に添加し、15〜20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに6.3質量%の酢酸第二銅水溶液709.9gを徐々に添加し、さらに15〜20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo
10V
0.8P
1.15Cu
0.4Cs
0.3(NH
4)
2.3である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに三酸化アンチモン22.7gと強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo
10V
0.8P
1.15Cu
0.4Cs
0.3(NH
4)
2.3Sb
1.0である。また、このときα=1.1である。
【0033】
2)メタクロレインの部分酸化反応
得られた被覆触媒10.3mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1200hr
−1、反応浴温度310℃で、メタクロレインの酸化反応を実施した。反応は、最初反応浴温度310℃で3時間反応を続け、次いで反応浴温度を350℃に上げ15時間反応を続けた(今後この処理を高温反応処理という)。次いで反応浴温度を310℃に下げて反応成績の測定を行った。結果を表1に示す。
【0034】
吸湿量測定
得られた被覆触媒100gをシャーレに仕込み、25℃にて飽和蒸気圧としたデシケーター内にて24時間静置した。その後、被覆触媒の重量を測定したところ102.39gであった。すなわち吸湿した水の割合は触媒活性成分に対して5.20%、単位時間当たりに乾燥重量100gの触媒活性成分が吸湿した水は0.22g/hとなり、以降この値を吸湿量と表現し、表2に表記する。
【0035】
前記吸湿量測定後の触媒を120℃の乾燥機内にて24時間乾燥し、得られた被覆触媒10.3mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1200hr
−1、反応浴温度310℃で、メタクロレインの酸化反応を実施した。反応は、最初反応浴温度310℃で3時間反応を続け、次いで反応浴温度を350℃に上げ15時間反応を続けた(今後この処理を高温反応処理という)。次いで反応浴温度を310℃に下げて反応成績の測定を行った。結果を表1に示す。
【0036】
実施例2
実施例1において予備焼成温度を290℃とした以外は実施例1と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo
10V
0.8P
1.15Cu
0.4Cs
0.3(NH
4)
2.3Sb
1.0である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
【0037】
実施例3
実施例1において予備焼成顆粒320g、三酸化アンチモン11.35g、強度向上剤(セラミック繊維)45gを均一に混合した以外は実施例1と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo
10V
0.8P
1.15Cu
0.4Cs
0.3(NH
4)
2.3Sb
0.5である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
【0038】
実施例4
実施例1において予備焼成顆粒320g、三酸化アンチモン40.9g、強度向上剤(セラミック繊維)45gを均一に混合した以外は実施例1と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo
10V
0.8P
1.15Cu
0.4Cs
0.3(NH
4)
2.3Sb
1.8である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
【0039】
実施例5
純水5680mlに三酸化モリブデン800gと五酸化バナジウム30.33g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15〜20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液661.3gと、14.3質量%の酢酸アンモニウム水溶液689.0gを徐々に添加し、15〜20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに9.5質量%の酢酸第二銅水溶液232.9gを徐々に添加し、さらに15〜20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo
10V
0.6P
1.15Cu
0.2Cs
0.7(NH
4)
2.3である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo
10V
0.6P
1.15Cu
0.2Cs
0.7(NH
4)
2.3である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
【0040】
実施例6
実施例5において純水をバインダーとして使用した以外は実施例5と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo
10V
0.6P
1.15Cu
0.2Cs
0.7(NH
4)
2.3である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
【0041】
実施例7
実施例5において90質量%エタノール水溶液をバインダーとして使用した以外は実施例5と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo
10V
0.6P
1.15Cu
0.2Cs
0.7(NH
4)
2.3である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
【0042】
実施例8
純水5680mlに三酸化モリブデン800gと五酸化バナジウム30.33g、及び85質量%正燐酸76.87gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15〜20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液321.2gと、50質量%の酢酸アンモニウム水溶液196.86gを徐々に添加し、15〜20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに酢酸第二銅22.18gを徐々に添加し、さらに15〜20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo
10V
0.6P
1.2Cu
0.2Cs
0.3(NH
4)
2.3である。また、このときα=0.7である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応を行なった。結果を表1に示す。
【0043】
比較例1
純水7100mlに三酸化モリブデン1000gと五酸化バナジウム75.81g、85質量%正燐酸88.08g、および酸化銅11.05gを添加し、92℃で3時間加熱攪拌してスラリーを得た。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo
10V
1.2P
1.1Cu
0.2である。この顆粒320gに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに90質量%エタノール水溶液をバインダーとして被覆成形した。次いで得られた成形物を空気流通下において310℃で5時間の本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo
10V
1.2P
1.1Cu
0.2である。また、このときα=0.4である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
【0044】
比較例2
純水10000mlに三酸化モリブデン1000gと五酸化バナジウム37.91g、85重量%燐酸水溶液96.09g、60重量%砒酸水溶液65.73g、酸化第二銅22.1gを添加し、92℃で3時間攪拌してスラリーを得た。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo
10V
0.6P
1.2As
0.4Cu
0.4である。この顆粒320gに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに90質量%エタノール水溶液をバインダーとして被覆成形した。次いで得られた成形物を空気流通下において310℃で5時間の本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo
10V
0.6P
1.2As
0.4Cu
0.4である。また、このときα=0.8である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
【0045】
比較例3
純水5680mlに三酸化モリブデン800gと五酸化バナジウム35.38g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15〜20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液94.49gと、14.3質量%の酢酸アンモニウム水溶液988.6gを徐々に添加し、15〜20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに6.3質量%の酢酸第二銅水溶液465.9gを徐々に添加し、さらに15〜20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo
10V
0.7P
1.15Cu
0.4Cs
0.1(NH
4)
2.3である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo
10V
0.7P
1.15Cu
0.4Cs
0.1(NH
4)
3.3である。また、このときα=0.9である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
【0046】
比較例4
純水5680mlに三酸化モリブデン800gと五酸化バナジウム35.38g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15〜20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液850.32gと、14.3質量%の酢酸アンモニウム水溶液689.0gを徐々に添加し、15〜20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに9.5質量%の酢酸第二銅水溶液233.6gを徐々に添加し、さらに15〜20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo
10V
0.7P
1.15Cu
0.2Cs
1.1(NH
4)
2.3である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo
10V
0.7P
1.15Cu
0.2Cs
1.1(NH
4)
2.3である。また、このときα=1.5である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
【0047】
比較例5
純水5680mlに三酸化モリブデン800gと五酸化バナジウム30.33g、及び85質量%正燐酸76.87gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15〜20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液94.5gと、50質量%の酢酸アンモニウム水溶液196.86gを徐々に添加し、15〜20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに酢酸第二銅11.09gを徐々に添加し、さらに15〜20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo
10V
0.6P
1.2Cu
0.1Cs
0.1(NH
4)
2.3である。また、このときα=0.3である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応を行なった。結果を表1および表2に示す。
【0048】
比較例6
純水5680mlに三酸化モリブデン800gと五酸化バナジウム40.43g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15〜20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液944.8gと、50質量%の酢酸アンモニウム水溶液205.42gを徐々に添加し、15〜20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに酢酸第二銅44.37gを徐々に添加し、さらに15〜20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo
10V
0.8P
1.15Cu
0.4Cs
1.0(NH
4)
2.4である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに三酸化アンチモン21.0gと強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo
10V
0.8P
1.15Cu
0.4Cs
1.0(NH
4)
2.4Sb
1.0である。また、このときα=1.8である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応を行なった。結果を表1に示す。
【0049】
【表1】
【0050】
【表2】
【0051】
【表3】
【0052】
試験例1
実施例1で得られた被覆触媒6.9mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1800hr
−1となるように供給した。反応開始後、メタクロレイン転化率が75%±2%になるように反応浴温度を調節しながらメタクロレインの部分酸化反応を継続した。
反応開始後800時間後のメタクロレイン酸化反応の結果は反応浴温度344℃ホットスポット温度355℃、メタクロレイン転化率75.5%、メタクリル酸収率62.3%、メタクリル酸選択率82.7%であった。
【0053】
試験例2
実施例5で得られた被覆触媒6.9mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1800hr
−1となるように供給した。反応開始後、メタクロレイン転化率が75%±2%になるように反応浴温度を調節しながらメタクロレインの部分酸化反応を継続した。
反応開始後800時間後のメタクロレイン酸化反応の結果は反応浴温度325℃ホットスポット温度336℃、メタクロレイン転化率75.7%、メタクリル酸収率63.4%、メタクリル酸選択率83.8%であった。
【0054】
試験例3
比較例4で得られた被覆触媒6.9mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1800hr
−1となるように供給した。反応開始後、メタクロレイン転化率が75%±2%になるように反応浴温度を調節しながらメタクロレインの部分酸化反応を継続した。
反応開始後800時間後のメタクロレイン酸化反応の結果は反応浴温度346℃ホットスポット温度359℃、メタクロレイン転化率75.1%、メタクリル酸収率58.7%、メタクリル酸選択率78.2%であった。
【0055】
本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
なお、本出願は、2011年11月17日付で出願された日本特許出願(特願2011−251386)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。