特許第5974891号(P5974891)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱瓦斯化学株式会社の特許一覧

特許5974891保存安定性に優れたS−アデノシル−L−メチオニン含有乾燥酵母組成物及びその製造方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5974891
(24)【登録日】2016年7月29日
(45)【発行日】2016年8月23日
(54)【発明の名称】保存安定性に優れたS−アデノシル−L−メチオニン含有乾燥酵母組成物及びその製造方法
(51)【国際特許分類】
   C12N 1/16 20060101AFI20160809BHJP
   C12N 1/18 20060101ALI20160809BHJP
   A23L 31/10 20160101ALN20160809BHJP
【FI】
   C12N1/16 H
   C12N1/18
   !A23L31/10
【請求項の数】6
【全頁数】12
(21)【出願番号】特願2012-509677(P2012-509677)
(86)(22)【出願日】2011年4月5日
(86)【国際出願番号】JP2011058652
(87)【国際公開番号】WO2011126030
(87)【国際公開日】20111013
【審査請求日】2014年3月4日
(31)【優先権主張番号】特願2010-88726(P2010-88726)
(32)【優先日】2010年4月7日
(33)【優先権主張国】JP
【前置審査】
(73)【特許権者】
【識別番号】000004466
【氏名又は名称】三菱瓦斯化学株式会社
(74)【代理人】
【識別番号】100078732
【弁理士】
【氏名又は名称】大谷 保
(72)【発明者】
【氏名】高野 健太郎
(72)【発明者】
【氏名】莪山 眞與
【審査官】 竹内 祐樹
(56)【参考文献】
【文献】 国際公開第2008/090905(WO,A1)
【文献】 国際公開第2009/081833(WO,A1)
【文献】 特表2008−541773(JP,A)
【文献】 特開2003−250488(JP,A)
【文献】 特開平07−039370(JP,A)
【文献】 特開昭61−005777(JP,A)
【文献】 特公昭48−008830(JP,B1)
【文献】 国際公開第2009/024605(WO,A1)
【文献】 特表2004−521919(JP,A)
【文献】 国際公開第2007/132831(WO,A1)
【文献】 国際公開第2007/129701(WO,A1)
【文献】 J Bacteriol. 1975 Jan;121(1):267-71.
(58)【調査した分野】(Int.Cl.,DB名)
C12N 1/00−7/08
A23L 31/00−31/15
(57)【特許請求の範囲】
【請求項1】
S−アデノシル−L−メチオニンと、増粘剤を含有するS−アデノシル−L−メチオニン含有乾燥酵母組成物であって、
前記増粘剤が、(1)キサンタンガム、ジェランガム、カードラン、アルギンキサンタンガム、プルラン、及び納豆菌ガムから選択される微生物由来増粘剤、並びに(2)グアーガム、タラガム、ローカストビーンガム、タマリンドガム、及びサイリウムシードガムから選択される種子由来増粘剤のいずれかから選ばれる少なくとも1種であって、
前記S−アデノシル−L−メチオニンが、S−アデノシル−L−メチオニン含有乾燥酵母組成物に対して5.1〜14.6質量%含まれてなり、
前記増粘剤が、S−アデノシル−L−メチオニン含有乾燥酵母組成物に対して4.5〜70質量%含まれてなる、
S−アデノシル−L−メチオニン含有乾燥酵母組成物。
【請求項2】
前記増粘剤が、キサンタンガム、ジェランガム、カードラン、グアーガム、及びタマリンドガムから選ばれる少なくとも1種である、請求項1に記載のS−アデノシル−L−メチオニン含有乾燥酵母組成物。
【請求項3】
前記増粘剤が、キサンタンガム及びジェランガムから選ばれる少なくとも1種である、請求項1又は2に記載のS−アデノシル−L−メチオニン含有乾燥酵母組成物。
【請求項4】
乾燥酵母が、サッカロマイセス属に属する酵母である、請求項1〜3のいずれかに記載のS−アデノシル−L−メチオニン含有乾燥酵母組成物。
【請求項5】
前記サッカロマイセス属に属する酵母がサッカロマイセス・セレビジエである、請求項4に記載のS−アデノシル−L−メチオニン含有乾燥酵母組成物。
【請求項6】
S−アデノシル−L−メチオニン生産能を有する酵母を用い、酵母の菌体培養液より得られる酵母菌体濃縮物に増粘剤を添加した後、乾燥する、S−アデノシル−L−メチオニン含有乾燥酵母組成物の製造方法であって、
前記増粘剤が、(1)キサンタンガム、ジェランガム、カードラン、アルギンキサンタンガム、プルラン、及び納豆菌ガムから選択される微生物由来増粘剤、並びに(2)グアーガム、タラガム、ローカストビーンガム、タマリンドガム、及びサイリウムシードガムから選択される種子由来増粘剤、のいずれかから選ばれる少なくとも1種であって、
S−アデノシル−L−メチオニン含有乾燥酵母組成物に対する前記S−アデノシル−L−メチオニンの含有量が、5.1〜14.6質量%であり、
S−アデノシル−L−メチオニン含有乾燥酵母組成物に対する前記増粘剤の含有量が、4.5〜70質量%である、
S−アデノシル−L−メチオニン含有乾燥酵母組成物の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水溶性の生理活性物質として有用なS−アデノシル−L−メチオニン(以下、SAMeと記す)を高濃度に含む保存安定性に優れた乾燥酵母組成物、及びその製造方法に関する。
【背景技術】
【0002】
SAMeは、生体内に広く存在し、核酸、神経伝達物質、リン脂質、ホルモン、タンパク質などの合成・代謝にて種々のトランスメチラーゼによるメチル化反応のメチル基供与体として重要な役割を演じている水溶性の生理活性物質である。SAMeは、人体の殆ど全ての細胞に見られ、様々な生化学反応における共同因子として働き、メチル基転移、硫黄基転移、およびアミノプロピル基転移の3つの代謝経路により代謝される。例えば、軟骨の維持や脳内物質の生合成に欠かすことの出来ない物質である。近年のSAMeの機能研究より脂肪肝、高脂血症、動脈硬化症、不眠症、アルコール性肝炎、老人性痴呆症などに対する治療効果についても報告されている。このようにSAMeは、重要な生理活性物質であり、欧米諸国において鬱病、肝臓疾患及び関節炎等の治療薬、或いは健康食品として広く利用されている。
【0003】
そのため、SAMeを安価で、簡便に製造供給することが強く望まれる。従来、SAMeの製造方法としては、前駆物質であるL−メチオニンを含有させた培地を用いて醗酵生産する方法、酵母などの微生物より単離精製したSAMe合成酵素(メチオニンアデノシルトランスフェラーゼ)を用い、アデノシン5’−三リン酸(ATP)とL−メチオニンを基質としてSAMeを酵素的に合成する方法及び合成法による方法などが知られている。
【0004】
酵素的合成法については、酵母などの微生物より単離精製したSAMe合成酵素(メチオニンアデノシルトランスフェラーゼ)を用い、アデノシン5’−三リン酸(ATP)とL−メチオニンを基質としてSAMeを酵素的に合成する方法であるが、この方法は、醗酵法と比べ、SAMeの蓄積量が多く、菌体からのSAMe抽出操作が必要ないなどの利点はあるものの、酵素の調製が煩雑であること、得られる酵素の活性が微弱であること、ATP分解酵素等の妨害物質を除去する必要があること、さらには、基質であるATPが極めて高価であるなど様々な問題を有し、必ずしも実用的な方法とは成り得なかった。また、近年の遺伝子工学の発展により、クローン化したSAMe合成酵素遺伝子を用いることによって該酵素の調製がより簡便になり、酵素調製の問題は解決されつつあるものの、依然として高価なATPを基質として使用する必要があるなど、他の実用上の問題は解決されていない。
【0005】
また、SAMeは熱的に不安定で常温においても容易に分解する性質を有することから、医薬品、健康食品として使用する際の大きな障害となっている。その対策として、保存安定性の向上を目的とした多くの試みがなされてきた。例えば、前述した製造方法で得られたSAMeの組成物をクロマトグラフィー等により精製した後、硫酸やp−トルエンスルフォン酸との塩、又はブタンジスルフォン酸との塩等にすることによりSAMeの安定化をはかる方法(例えば、特許文献1参照)、または、精製したSAMeに添加物処理を行い、SAMe組成物として安定化をはかる方法(例えば、特許文献1参照)が一般的で、多くの手間と費用を要するため、治療薬や健康食品として重要なSAMeを安価に製造し提供することは極めて困難なことであった。そして近年、SAMeをより安価で、精製工程が少なく、簡便に製造できるSAMe生産能を有し且つ経口摂取が可能な微生物を用いた、SAMe含有乾燥微生物について研究が行われている。(例えば、特許文献2、非特許文献1参照)しかし、現状では、SAMe含有乾燥微生物は、精製したSAMe、SAMe組成物に比べ保存安定性が低いことが問題となっている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開昭59−51213号公報
【特許文献2】国際公開第2008/090905号
【非特許文献】
【0007】
【非特許文献1】Biochemica et Biophysica Acta, 1573,105-108,(2002)
【非特許文献2】J of Chromatography B,863,94-100(2008)
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の目的は、SAMeを高濃度に含む保存安定性に優れた乾燥酵母組成物を、低コストで簡便に製造できるプロセスを確立することにある。
【課題を解決するための手段】
【0009】
本発明者等は、上記課題を解決するべく、SAMeを高濃度に含有し、かつ安定な状態で長期間保存できる性能的に優れた組成物を経済的に生産できる方法について鋭意検討した結果、SAMe生産能を有し且つ経口摂取が可能な酵母を用いて菌体内にSAMeを高濃度に産生蓄積させた後、培養液より遠心分離等の分離手段で酵母菌体を分離し、得られた酵母菌体濃縮物に増粘剤を添加した後、乾燥させることによって、目的とするSAMeを高濃度に含有し、かつ保存安定性に優れた組成物である乾燥酵母を簡便に収率良く製造できることを見出し、本発明を完成するに至った。また、本発明のSAMe含有乾燥酵母組成物は、保存安定性に加えて、生体吸収性にも優れることを見出し、本発明を完成するに至った。
【0010】
本発明は、
(1)S−アデノシル−L−メチオニンと、増粘剤を含有するS−アデノシル−L−メチオニン含有乾燥酵母組成物、及び
(2) S−アデノシル−L−メチオニン生産能を有する酵母を用い、酵母の菌体培養液より得られる酵母菌体濃縮物に増粘剤を添加した後、乾燥するS−アデノシル−L−メチオニン含有乾燥酵母組成物の製造方法、
を提供する。
【発明の効果】
【0011】
本発明のS−アデノシル−L−メチニオン含有乾燥酵母組成物は、保存安定性に優れ、さらには生体吸収性にも優れるので、破砕して粉末状にしたり、必要に応じて他の生理活性成分や賦型剤等の添加剤を加えて、圧縮打錠して錠剤状の組成物としたり、粉体を顆粒状に造粒したり、造粒した顆粒を詰めてカプセル化するなどして、医薬や健康食品用の水溶性の生理活性物質として有用な組成物を提供できる。
また、S−アデノシル−L−メチオニンを高濃度に含み保存安定性に優れる組成物を、さらに生体吸収性にも優れるSAMe含有乾燥酵母組成物を低コストで簡便に製造する方法を提供できる。
【発明を実施するための形態】
【0012】
本発明に使用される酵母の種類は、SAMe生産能を有し且つ経口摂取可能なものであればよく、例えばサッカロマイセス属に属する酵母が挙げられる。このうち、サッカロマイセス・セレビジエ(Saccharomyces cerevisiae)がより好適である。なお、乾燥酵母には、5'−ヌクレオチド、遊離アミノ酸、抗酸化作用を有し肝機能改善に役立つグルタチオン、免疫力の増進作用や整腸作用を有するβ−グルカンや食物繊維などの有用成分が多く含まれており、健康食品等として広く利用されている。
【0013】
上記酵母を培養する際に使用する炭素源は、酵母が資化し得るものであれば特に制限はなく、例えば、グルコース、蔗糖、澱粉、廃糖蜜等の炭水化物、エタノール等のアルコール、又は酢酸等の有機酸が挙げられる。窒素源も、使用する酵母が資化し得るものであれば特に制限はなく、例えば、アンモニア、硝酸、尿素等の無機体窒素化合物、又は酵母エキス、麦芽エキス等の有機体窒素化合物を含むものが挙げられる。また、無機塩類としては、リン酸、カリウム、ナトリウム、マグネシウム、カルシウム、鉄、亜鉛、マンガン、コバルト、銅、モリブデン等の塩が用いられる。さらには、SAMeの骨格構成にあずかるメチオニン、アデニン、アデノシルリボヌクレオシドを添加し培養することもできる。
【0014】
培地として、L−メチオニン含有培地(Shiozaki S.,et all,J.Biotechnology,4,345-354(1986))を用いた。
培地成分としては、スクロース、酵母エキス、L−メチオニン、尿素、グリシン、リン酸二水素カリウム、硫酸マグネシウム七水和物、ビオチン、塩化カルシウム二水和物、及び微量金属塩を含む培地に植菌し、スクロース又は/及びエタノール等の炭素源を流加しつつ、好気的に培養することによりSAM含有菌体を得ることができる。
培養温度及び培養液のpHは使用する酵母の種類よって異なるが、培養温度としては20〜35℃の範囲を、培養液のpHとしてはpH4〜7の範囲を挙げることができる。
また、菌体内のSAMe含量を高めるには、好気的に培養することが好ましい。培養槽は、通気可能で必要に応じ攪拌できるものであればよく、例えば、機械的攪拌培養槽、エアーリフト式培養槽及び気泡塔型培養槽等を利用することができる。
培地の供給方法は、炭素源、窒素源、各種無機塩類、各種添加剤等を、一括若しくは個別に連続的又は間欠的に供給する。例えば、蔗糖、エタノール等の基質は他の培地成分との混合物として培養槽に供給してもよく、また他の培地成分とは別に独立して培養槽に供給してもよい。培養液のpH制御は、酸、アルカリ溶液によって行われる。アルカリとしては窒素源として使用されるアンモニア、尿素、又は非窒素系塩基、例えば、苛性ソーダ、苛性カリ等を用いてpH制御するのが望ましい。酸としては無機酸、例えば、リン酸、硫酸、硝酸、又は有機酸が用いられる。なお、無機塩類であるリン酸塩、カリウム塩、ナトリウム塩、硝酸塩等を用いてpH制御することもできる。
【0015】
このような条件で培養し、目標量のSAMeが酵母菌体中に蓄積された段階で培養液を抜き出し酵母菌体を分離する。分離方法としては、菌体の分離と洗浄が効率的に行える方法であれば特に制限はないが、向流型のイーストセパレーターや分離膜を用いた限外濾過装置が好適な例として挙げられる。
【0016】
ついで、分離した酵母菌体の分離濃縮物に増粘剤を添加する。これによって、乾燥酵母中のSAMeの保存安定性、さらには、生体吸収性が増し、また酵母の乾燥工程での歩留まりも向上し、また乾燥酵母独特の臭気もマスキングされる。添加する増粘剤の量としては、S−アデノシル−L−メチオニン含有乾燥酵母組成物に対する質量比として0.1〜70質量パーセントの範囲になるようにすることが好ましく、0.4〜70質量パーセント範囲になるようにすることがより好ましく、0.7〜70質量パーセント範囲になるようにすることがさらに好ましい。さらにまた、4.5〜70質量パーセント範囲になるようにすることが特に好ましい。0.1質量パーセントを下回ると乾燥酵母中のSAMeの保存安定性が不充分となり、70質量パーセントを超えると無駄であるばかりか乾燥酵母中のSAMeの保存安定性が用量依存的に低下する傾向を示す。
【0017】
本発明において増粘剤とは、増粘作用を有し、いわゆるゲル化剤といわれているような食品に添加可能な各種増粘剤等をいう。
具体的に使用できる増粘剤としては、(1)キサンタンガム、ジェランガム、カードラン、アルギンキサンタンガム、プルラン、及び納豆菌ガムから選択される微生物由来増粘剤、
(2)グアーガム、タラガム、ローカストビーンガム、タマリンドガム、及びサイリウムシードガムから選択される種子由来増粘剤、
(3)セルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、デンプン、及びカルボキシメチル酸ナトリウムから選択される植物由来増粘剤、
(4)カラギーナン、アルギン酸ナトリウム、アルギン酸、及びアルギン酸プロピレングリコールエステルから選択される海藻由来増粘剤、
(5)アラビアガム、トラガントガム、シェラック、及びアラビノガラクタンから選択される樹脂由来増粘剤、
(6)キトサン、及びキチンから選択される甲殻由来増粘剤、及び
(7)ペクチン、マンナン、ヒアルロン酸、コンドロイチン、寒天、コラーゲン、アルブミン、ツェイン、カゼイン、及びカゼインナトリウム等から選ばれる増粘剤が挙げられ、これらから1種以上を選択して用いることができる。
これらのうち、(1)キサンタンガム、ジェランガム、カードラン、アルギンキサンタンガム、プルラン、及び納豆菌ガムから選択される微生物由来増粘剤、
(2)グアーガム、タラガム、ローカストビーンガム、タマリンドガム、及びサイリウムシードガムから選択される種子由来増粘剤、
(5)アラビアガム、トラガントガム、シェラック、及びアラビノガラクタンから選択される樹脂由来増粘剤、
(6)キトサン、及びキチンから選択される甲殻由来増粘剤、及び
(7)ペクチン、マンナン、ヒアルロン酸、コンドロイチン、寒天、コラーゲン、アルブミン、ツェイン、カゼイン、及びカゼインナトリウムから選ばれる増粘剤がより好ましい。
さらに、(1)キサンタンガム、ジェランガム、カードラン、アルギンキサンタンガム、プルラン、及び納豆菌ガム等の微生物由来増粘剤、及び(2)グアーガム、タラガム、ローカストビーンガム、タマリンドガム、及びサイリウムシードガム等の種子由来増粘剤が特に好ましい。
本発明で使用する増粘剤は食品、化粧品、医薬品用途で汎用されており、安全に使用することができる。
【0018】
このようにして増粘剤の添加処理を行った後に、酵母菌体の濃縮物をスプレードライヤによる噴霧乾燥法や凍結乾燥法等の乾燥方法により水分を蒸発させてSAMe含有乾燥酵母組成物とする。
乾燥条件としては、噴霧乾燥法では、入口温度210℃以下、出口温度110℃以下にて乾燥させることが望ましい。凍結乾燥法では、最終棚温度30℃以下にて乾燥させることが望ましい。本発明のSAMe含有組成物は保存安定性の観点から、その水分含量が5.0質量%以下になるようにすることが望ましい。
【0019】
さらには、この乾燥酵母組成物を破砕して粉末状にしたり、粉末状の乾燥酵母に必要に応じて他の生理活性成分や賦形剤等の添加剤を加えた後に圧縮打錠し錠剤状の組成物となし、さらに、その表面を被覆したりすることもできる。
また、粉体を顆粒状に造粒することや、粉体や造粒した顆粒を詰めてカプセル化することもできる。
【実施例】
【0020】
以下、本発明を実施例及び比較例によりさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。
【0021】
実施例1〜4
(a)酵母菌体の培養
前述した公知の培養法に従って、L−メチオニン含有培地(Shiozaki S.,et all,J.Biotechnology,4,345-354(1986))にサッカロマイセス属に属する酵母サッカロマイセス・セレビジエIFO2346を接種し、培養温度27〜29℃で好気的に通気攪拌しながら6日間培養した。その結果、菌体濃度3.5wt%,SAMe含量205mg/g−乾燥酵母の酵母菌体培養液18Lを得た。
(b)酵母菌体の集菌
上記の酵母菌体培養液18Lを連続ロータリー型遠心分離器(日立HIMAC CENTRIFUGE CR10B2)で処理し、菌濃度が乾物換算で18質量%に相当する液状の酵母菌体濃縮物3.4kgを得た。
(c)酵母菌体濃縮物への増粘剤の添加
上記の酵母菌体濃縮物3.4kgにキサンタンガムを該酵母濃縮物中のSAMeに対する質量比として0.02、0.2、2.2、11.1倍量加えて、室温にて30分間攪拌混合し、キサンタンガムを添加した酵母菌体濃縮物を得た。
(d)乾燥酵母の製造
上記のキサンタンガムを添加した酵母菌体濃縮物を凍結乾燥器(日本真空技術株式会社製)の凍結乾燥用ステンレストレーに流し込み−50℃で凍結した後、最終棚段温度25℃の条件で36時間凍結乾燥した。得られた凍結乾燥酵母をさらに粉砕することによって粉末乾燥酵母を得た。このようにして得られた粉末乾燥酵母を密閉ガラス容器中に詰め、40℃、RH75%の加速度試験条件下で保存安定性試験を行った。表1に40℃、RH75%での加速保存安定性試験結果を示した。なお、SAMe残存率は、SAMe含有乾燥酵母より過塩素酸を用いた公知の方法でSAMeを抽出し、液体クロマトグラフィーを用いた比較定量法にて実施した。保存後の臭気の有無については5名のパネラーによる官能検査にて求めた。官能検査の評価方法は、5名のパネラー全員が異臭なしとした場合を「○」、5名のうち1〜2名が異臭があるとした場合を「△」、5名のうち3名以上が異臭ありとした場合を「×」とした。
本発明におけるSAMe測定法は、以下の条件の液体クロマトグラフィーを使用した。
用いられた分析条件
カラム:ナカライ(nacalai tesque) COSMOSIL 4.6φ×100mm
溶離液:0.2M KH2PO4水溶液/メタノール=95/5
流速:0.7mL/min、検出器:UV(260nm)
SAMe保持時間:約150秒
【0022】
実施例5〜8
酵母菌体濃縮物にカードランを用いて、実施例1と同様に処理して、粉末乾燥酵母を得た。得られた粉末乾燥酵母中のSAMe含量、質量、及び得られたSAMe含有乾燥酵母の密閉ガラス容器中、40℃、RH75%の加速条件下での保存安定性試験の結果、官能検査の結果を表1に示す。
【0023】
実施例9
酵母菌体濃縮物にグアーガムを該酵母濃縮物中のSAMeに対する質量比として0.2倍量加えた以外は、実施例1と同様に処理して、粉末乾燥酵母を得た。得られた粉末乾燥酵母中のSAMe含量、質量、及び得られたSAMe含有乾燥酵母の密閉ガラス容器中、40℃、RH75%の加速条件下での保存安定性試験の結果、官能検査の結果を表1に示す。
【0024】
実施例10
酵母菌体濃縮物にタマリンドガムを該酵母濃縮物中のSAMeに対する質量比として0.2倍量加えた以外は、実施例1と同様に処理して、粉末乾燥酵母を得た。得られた粉末乾燥酵母中のSAMe含量、質量、及び得られたSAMe含有乾燥酵母の密閉ガラス容器中、40℃、RH75%の加速条件下での保存安定性試験の結果、官能検査の結果を表1に示す。
【0025】
実施例11
酵母菌体濃縮物にジェランガムを該酵母濃縮物中のSAMeに対する質量比として0.2倍量加えた以外は、実施例1と同様に処理して、粉末乾燥酵母を得た。得られた粉末乾燥酵母中のSAMe含量、質量、及び得られたSAMe含有乾燥酵母の密閉ガラス容器中、40℃、RH75%の加速条件下での保存安定性試験の結果、官能検査の結果を表1に示す。
【0026】
比較例1
酵母菌体濃縮物へキサンタンガムを添加しなかったこと以外は実施例1と同様に処理して、粉末乾燥酵母を得た。得られた粉末乾燥酵母中のSAMe含量、質量、得られたSAMe含有乾燥酵母の密閉ガラス容器中、40℃、RH75%の加速条件下での保存安定性試験の結果、官能検査の結果を表1に示す。
【0027】
比較例2
酵母菌体濃縮物にトレハロースを該酵母濃縮物中のSAMeに対する質量比として2.2倍量加えた以外は、実施例1と同様に処理して、粉末乾燥酵母を得た。得られた粉末乾燥酵母中のSAMe含量、質量、得られたSAMe含有乾燥酵母の密閉ガラス容器中、40℃、RH75%の加速条件下での保存安定性試験の結果、官能検査の結果を表1に示す。
【0028】
【表1】
【0029】
実施例12〜19
200L培養槽を用い、固形分濃度が18.2質量%のSAMe含有酵母濃縮液(SAMe含量3.7質量%)に対する添加物の量を1質量%とし、添加物としてκ−カラギーナン(実施例12)、キサンタンガム(実施例13)、グアーガム(実施例14)、タマリンドガム(実施例15)、カードラン(実施例16)、ジェランガム(実施例17)、アルギン酸(実施例18)、セラオスST−O2(結晶セルロース)(実施例19)を添加し、凍結乾燥後の回収率、SAMe含有量(質量%)40℃で30日、60日後のSAMe残存率を測定した。
実施例12〜19の詳細な実施例の条件は以下のとおりである。
(a)酵母菌体の培養
実施例1と同様の条件で培養し、菌体濃度3.5質量%、SAMe含量201.5mg/g−乾燥酵母の酵母菌体培養液120Lを得た。
(b)酵母菌体の集菌
上記の酵母菌体培養液120Lを連続ロータリー型遠心分離器(日立HIMAC CENTRIFUGE CR10B2)で処理し、菌濃度が乾物換算で18質量%に相当する液状の酵母菌体濃縮物23.4kgを得た。
(c)酵母菌体濃縮物への増粘剤の添加
上記の酵母菌体濃縮物23.4kgに上記の実施例12〜19の増粘剤を該酵母濃縮物中のSAMeに対する質量比として1.0倍量加えて、室温にて30分間攪拌混合し、実施例12〜19の増粘剤を添加した酵母菌体濃縮物を得た。
(d)乾燥酵母の製造
上記の実施例12〜19の増粘剤を添加した酵母菌体濃縮物を凍結乾燥器(日本真空技術株式会社製)の凍結乾燥用ステンレストレーに流し込み−50℃で凍結した後、最終棚段温度25℃の条件で36時間凍結乾燥した。得られた凍結乾燥酵母をさらに粉砕することによって粉末乾燥酵母を得た。このようにして得られた粉末乾燥酵母を密閉ガラス容器中に詰め、40℃、RH75%の加速度試験条件下で保存安定性試験を行った。表2に40℃、RH75%での加速保存安定性試験の結果を示した。なお、SAMe残存率は、前記の方法で測定した。また、SAMe含有酵母濃縮液に対する添加物の混合具合については、目視により分散状況を観察して評価した。添加物の混合具合、凍結乾燥後の回収率、形状、乾燥後SAMe含有量(質量%)、40℃で30日、60日後のSAMe残存率の結果をまとめて表2に示す。
【0030】
【表2】
【0031】
比較例3
L−メチオニンを含まない培地にて培養を行った以外は、実施例1と同様に処理して、粉末乾燥酵母を得た。得られた粉末乾燥酵母中にはSAMeは含有されていなかった。これを用いて以下の実験を行った。
【0032】
性能評価の試験例1〜5、比較性能試験の評価例1、2
実施例2、6、9、10、11、比較例1、及び比較例3で得られた乾燥酵母について、文献記載の方法(非特許文献2)と同様にSD系ラット(雄 8週齢、動物数:各群n=3)を用いて、生体吸収性試験を性能評価の試験例1〜5、比較性能試験の評価例1,2として行った。
吸収性試験は、非特許文献2(J of Chromatography B,863,94-100(2008))の方法を用いて行った。ラットへの乾燥酵母の投与量は、SAMeとして300mg/kg-ラットの投与量になる様に乾燥酵母を蒸留水へ分散した状態でラットに経口投与を行い、経口投与後0.5、2、3、5時間後のラットの血液を採取し、血液は速やかに遠心分離により血漿成分の分離を行い、過塩素酸を用いたSAMe成分の抽出物を、高速液体クロマトグラフィー(HPLC)で、LC−MS−MS法(Liquid chromatography coupled with mass spectrometry)により下記の条件で分析した。その結果、各乾燥酵母ともに経口投与2時間後血漿中SAMe濃度が最も高かった。各乾燥酵母の経口投与2時間後生体吸収性試験の結果を表3に示す。表3より、いずれの試験例も、増粘剤を添加した乾燥酵母の生体吸収性が、評価例1として示す添加処理を行っていない比較例1の乾燥酵母による場合よりも向上することが確認された。
【0033】
なお、生体吸収性試験に用いられた分析機器、条件は以下の通りである。
LC-MS-MS法
LC-MS-MS装置:Thermo社製 Accela、LTQ orbitrap Discovery
HPLC条件
カラム:ジーエルサイエンス社製 Intersil ODS-3(4.6mm×150mm)
流速:0.5mL/min、カラムオーブン:40℃、検出器:UV(260nm)、SAMe保持時間:約145秒、注入量:10μL
溶離液: 2 mmol/Lヘプタフルオロ酪酸水溶液:アセトニトリル=30:70
MS条件
Ion Source:ESI
Ion Polarity Mode: Positive
Scan Mode Type:FTフルマス
Resolution:30000
Mass Range:m/z 360−410
【0034】
【表3】
【産業上の利用可能性】
【0035】
本発明の組成物を用いることによって、S−アデノシル−L−メチオニンを含有する保存安定性に優れた組成物、さらには生体吸収性に優れた組成物として、医薬や健康食品用の生理活性物質として有効に利用できる。
本発明の製造方法は、S−アデノシル−L−メチオニンを高濃度に含み、保存安定性に優れる組成物を、低コストで簡便に製造する方法として利用できる。