(58)【調査した分野】(Int.Cl.,DB名)
前記コントローラ(130、132)は、送信機コントローラ(130)と、受信機コントローラ(132)と、を含み、前記送信機コントローラ(130)及び前記受信機コントローラ(132)は、少なくとも2つの個別の物理デバイスを含む、請求項1から3のいずれか一項に記載の光ワイヤレストランシーバ(100)。
前記光ワイヤレストランシーバ(100)は光ワイヤレスネットワーク(701)により用いられ、前記光ワイヤレスネットワーク(701)は、ビークル(700)の機内客室(702)内で少なくとも1つの電子機器(730〜734)との光ワイヤレス通信を可能にするように構成される、請求項1から5のいずれか一項に記載の光ワイヤレストランシーバ(100)。
【発明を実施するための形態】
【0015】
本明細書において開示される実施形態は、光ワイヤレス通信を可能にする光ワイヤレストランシーバ(wireless optical transceivers)、方法、及びビークルを含む。光ワイヤレストランシーバは、個別の送信用/受信用光サブアセンブリ群を含むことができ、これらの光サブアセンブリは、ボールレンズを用いて、光信号を分散させ、集光させる。これらの光サブアセンブリは、スモールフォームファクタトランシーバマルチソースアグリーメント(SFF MSA)に準拠するように構成されるデバイスの一部とすることができる。SFF MSAに準拠するために、送信用/受信用光サブアセンブリ群は、互いに非常に近接して配置される可能性があり、これによって、送信用光サブアセンブリから送信される信号が、受信用光サブアセンブリから送信される信号と干渉する虞がある。本明細書において開示される実施形態では、このような干渉を抑制するか、または防止するために用いることができる幾つかの手法を例示する。例えば、送信用光サブアセンブリは、受信用光サブアセンブリに対してオフセット配置することにより、送信用光サブアセンブリから送信される信号が、受信用光サブアセンブリから送信される信号と干渉することがないようにすることができる。別の例では、送信用光サブアセンブリ及び受信用光サブアセンブリ群は、離間させることができる。更に別の例では、送信用光サブアセンブリは、信号を、受信用光サブアセンブリが受信する信号の波長とは異なる波長を用いて送信することができる。
【0016】
図1A〜1C、3A〜3B、及び4は、光ワイヤレストランシーバの特定の実施形態を示しており、これらの光ワイヤレストランシーバは、光ワイヤレストランシーバの光送信機または宇宙空間で動作する送信用光サブアセンブリ(F−TOSA)から放出される第1光信号が、光受信機、または宇宙空間で動作する受信用光サブアセンブリ(F−ROSA)が受信する第2光信号と干渉する可能性を防止するために異なるように構成される。比較のために、かつ限定としてではなく、“horizontal”及び“vertical”という用語は、これらの光ワイヤレストランシーバの特定の実施形態を、これらの特定の実施形態が
図1A〜1C、3A〜3B、及び4の図面に現われるときに対比するために用いられる。水平及び垂直という意味は、
図1A〜1C、3A〜3B、及び4に示すこれらの光ワイヤレストランシーバの特定の実施形態を比較するためにのみ用いられ、これらの光ワイヤレストランシーバを使用しているときの特定の向きを指すために用いられるのではない。これらの光ワイヤレストランシーバの特定の実施形態は、
図1A〜1C、3A〜3B、及び4に示す特定の実施形態の向きに関係なく、任意の所望の向きに取り付けることができる。
【0017】
例えば、
図1Aは、F−TOSA110が垂直方向に、F−ROSA120の位置よりも上方の位置まで延在することができる構成の光ワイヤレストランシーバ100の特定の実施形態を示している。従って、光送信機110から送信される光信号は、F−ROSA120に入射しないようにすることができる。
図2は、F−TOSA210及びF−ROSA220が、光ワイヤレストランシーバ200から同じ位置まで垂直方向に延在する構成の光ワイヤレストランシーバ200の特定の実施形態を示している。干渉を防止するために、F−TOSA210は、F−ROSA220側に設定される受信波長とは異なる波長の光信号を送信することができる。
図3Aは、F−TOSA310をF−ROSA320から水平方向に離すことができる構成の光ワイヤレストランシーバ300の特定の実施形態を示している。水平方向に離すことにより、F−TOSA310から送信される光信号が、F−ROSA320に入射しないようにすることができる。また、
図2を参照して更に詳細に説明するように、これらの光ワイヤレストランシーバの特定の実施形態のうちの任意の実施形態では、これらの光ワイヤレストランシーバに使用されるボールレンズの特性は、F−TOSAから送信される分散光信号が、F−ROSAに入射しないように選択することができる。干渉を低減する種々の手法がこれらの図面に別々に例示され、記載されているが;特定の実施形態では、記載されるこれらの手法のうちの2つ以上の手法は、光ワイヤレストランシーバにより併せて用いることができる。
【0018】
図1Aは、光ワイヤレストランシーバ100の特定の例示的な実施形態の側面図である。光ワイヤレストランシーバ100は、プリント配線基板(PWB)102と、F−TOSA110と、F−ROSA120と、送信機コントローラ130と、受信機コントローラ132と、を含むことができる。F−TOSA110及び送信機コントローラ130は集合的に送信機として見なすことができる。F−ROSA120及び受信機コントローラ132は集合的に受信機として見なすことができる。
【0019】
PWB102は、光ワイヤレストランシーバ100の電気基板及び物理基板の両方として機能する略平坦な基板とすることができる。F−TOSA110及びF−ROSA120は、PWB102の第1表面104に取り付けることができる。F−TOSA110及びF−ROSA120はそれぞれ、PWB102の第1表面104から、PWB102の第1表面104に略直角な第1方向150に延在することができる。特定の実施形態では、F−TOSA110は、光源112と、第1ボールレンズ116と、第1ホルダ118と、を含むことができる。光源112は、PWB102に、一対の第1電気リード線114を介して電気的かつ物理的に接続することができる。第1電気リード線114は、第1電気信号111を光源112に供給することができる。第1電気信号111に応答して、光源112は、第1光信号113を生成することができる。光源112は、例えば発光ダイオード(LED)またはレーザとすることができる。以下に更に詳細に説明するように、光源112は、人間の目に見えるスペクトル領域の光を、または赤外光のような人間の目に見えないスペクトル領域の光を生成することができる。
【0020】
光源112は、第1ボールレンズ116の第1表面101の第1部分115に配置され、第1ホルダ118により固定される。第1ホルダ118は、金属により形成することができるので、光源112、第1ボールレンズ116、または両方から吸収される熱を放散することができる。光源112から生成される第1光信号113は、第1ボールレンズ116の第1表面101の第1部分115に供給され、屈折して第1ボールレンズ116の第1表面101の第2部分117から、屈折した、または分散した第1光信号119として出射することができる。第1分散光信号119は、第1光信号113がカバーすることができるエリアよりも広いエリアをカバーすることができる。特定の実施形態では、第1分散光信号119は、第1ボールレンズ116で第1光信号113を屈折させることなく、第1光信号113がカバーすることができる電力半値角よりも大きい電力半値角を有する略円錐形の範囲をカバーすることができる。第1分散光信号119は、第1光信号113の成分を、選択カバレッジゾーン(
図1Aには図示されていない)に位置する1つ以上の受信側機器に送信することができる。
【0021】
特定の実施形態では、F−ROSA120は、受信機122と、第2ボールレンズ126と、第2ホルダ128と、を含むことができる。F−ROSA120は、PWB102に、一対の第2電気リード線124で電気的かつ物理的に接続される検出器122を含むことができる。第2電気リード線124は、第2電気信号121を検出器122から伝送することができる。第2電気信号121は、検出器122によって、集光した第2光信号129を受信すると生成することができる。検出器122は、第2ボールレンズ126の第2表面103の第4部分127に配置することができる。第2ボールレンズ126は、検出器122に隣接する所定の位置に、第2ホルダ128により固定することができる。第2ホルダ128は、金属により形成することができるので、検出器122、第2ボールレンズ126、または両方から吸収される熱を放散することができる。第2光信号123は、第2ボールレンズ126の第2表面103の第3部分125で受信することができる。第2光信号123は、第2ボールレンズ126によって屈折することにより、第2光信号123を集光させて、集光した第2光信号129を生成することができ、この第2集光信号129は、検出器122に集光させることができる。この第2光信号123は、第2ボールレンズ126の第2表面103の第3部分125で受信することができる。第2光信号123は、選択カバレッジゾーン(
図1Aには図示されていない)に位置する1つ以上の送信側電気機器から受信するデータを伝送することができる。
【0022】
送信機コントローラ130は、発信データ131を、コネクタピン群108を介して受信することができる。送信機コントローラ130は、第1電気信号111を生成して光源112を駆動することにより、第1光信号113を変調することができる。受信機コントローラ132は、第2電気信号121を受信することができ、第2電気信号121を復調して着信データ133を生成することができる。着信データ133は、コネクタピン群108に供給することができる。これらのコネクタピン108は、光ワイヤレストランシーバ100を機器(
図1には図示されず)に電気的に接続することができる。当該機器は、
図5及び6を参照しながら更に詳細に説明するように、発信データ131を供給し、着信データ133を受信するように構成することができる。取り付けポスト106を用いて、光ワイヤレストランシーバ100を、光ワイヤレストランシーバ100がコネクタピン群108を介して通信するときの通信先の機器に機械的に接続することができる。
【0023】
送信機コントローラ130及び受信機コントローラ132は、
図1A,1C、及び2〜4における個別の集積回路デバイスとして図示されているが、送信機コントローラ130及び受信機コントローラ132はそれぞれ、複数の集積回路デバイス、または集積回路以外の複数のデバイスによって実現することができる。別の構成として、送信機コントローラ130及び受信機コントローラ132は、1つのデバイスとして実現することもできる。送信機コントローラ130及び受信機コントローラ132は、光ワイヤレストランシーバ100のコントローラとして集合的に動作することができる。
【0024】
特定の実施形態では、光ワイヤレストランシーバ100は、スモールフォームファクタトランシーバマルチソースアグリーメント(SFF MSA)仕様に準拠するように構成される。SFF MSA仕様に従って、PWB102は、1.9インチ以下の長さ140を有することができる。SFF MSA仕様に従って、PWBは、0.5インチ以下の幅152(
図1B)を有することができる。すなわち、約1.9インチ×0.5インチの寸法は、SFF MSA仕様により指示される寸法にほぼ準拠する。更に、特定の実施形態では、PWB102は、配線仕様別ピン配列を含むことができ、この配線仕様別ピン配列で、コントローラ130及び132をコネクタピン群108に接続することにより、SFF MSA仕様に規定される配線仕様別ピン配列にほぼ準拠するようになる。
【0025】
第1ボールレンズ116、第2ボールレンズ126、または両方のボールレンズはそれぞれ、非常に小さい直径142を有することにより、光ワイヤレストランシーバ100が、SFF MSA仕様に準拠することができるようにしている。例えば、1つの実施形態では、第1ボールレンズ116及び第2ボールレンズ126の直径142は、約8mm(例えば、約0.315インチ)であるが、これよりも小さい、または大きいボールレンズを用いてもよい。特定の実施形態では、ボールレンズ116及び126は、大きい屈折率を有するガラスまたは別の材料により形成される。屈折率が大きいことにより、光信号を広く分散させ、収集することができる。特定の実施形態では、PWB102は、約60ミル(例えば、約1.524ミリメートル)のような標準的なPWB厚さ146を有することができる。
【0026】
第1ホルダ118は、第1ボールレンズ116を支持することにより、第1ボールレンズ116の第1表面101の第2部分117が、第2ボールレンズ126の第2表面103の第3部分125を超えて延在することができる。F−TOSA110がこのように、F−ROSA120を超える結果としてオフセットが生じることにより、干渉を低減する、または防止することができる。詳細には、このオフセットによって、F−TOSA110が生成する第1分散光信号119が、F−ROSA120が受信する第2光信号123と干渉するのを防止することができる。例えば、第1ホルダ118は、第1ボールレンズ116の第1表面101の第2部分117を位置決めして、第2ボールレンズ126の第2表面103の第3部分125を超えて、オフセット距離だけ延在することができるようにし、この場合、当該オフセット距離は、第1分散光信号119が、第2ボールレンズ126の第2表面103に入射しないように選択される。特定の実施形態では、当該オフセット距離は、第1ボールレンズ116の直径の少なくとも2分の1とすることができる。
【0027】
例えば、第1分散光信号119が、SFF MSA仕様に準拠するように構成される光ワイヤレストランシーバ100の第2光信号123と干渉するのを防止するために、第1ボールレンズ116の第2部分117は、PWB102の第1表面104から1/2インチ超の第1距離144まで延在することができる。第2ボールレンズ126の第2表面103の第3部分125は、PWB102の第1表面104から1/2インチ未満の第2距離145まで延在することができる。特定の実施形態では、第1ボールレンズ116の直径142が約8mm(例えば、約0.315インチ)である場合、第1ホルダ118が第1ボールレンズ116を支持する位置までの第1距離144は、PWB102の第1表面104よりも約16mm(例えば、約0.6225インチ)だけ超えた距離とすることができる。第2ホルダ128が第2ボールレンズ126を支持する位置までの第2距離145は、第2ボールレンズ116の第2表面103の第3部分125が、PWB102の第1表面104から約12mm(例えば、約0.465インチ)の位置とすることができる。第1距離144と第2距離145との間に結果的に生じる差は、約4mmmであるか、または第1ボールレンズ116の直径142の約2分の1である。
【0028】
図1Bは、
図1Aの光ワイヤレストランシーバ100の特定の実施形態の上面図を示している。
図1Bは、PWB102の第1表面104に配置されるF−TOSA110、F−ROSA120、送信機コントローラ130、及び受信機コントローラ132を示している。
図1Bの上面図は更に、取り付けポスト106及びコネクタピン108を示しており、これらの取り付けポスト106及びコネクタピン108を用いて、光ワイヤレストランシーバ100を別の機器に接続することができる。
【0029】
図1Cは、
図1A及び1Bの光ワイヤレストランシーバ100の特定の実施形態の底面図を示している。底面図は、取り付けポスト106及びコネクタピン108が、PWB102の第2表面105から延在することができる様子を示している。底面図は、第1電気リード線114が、F−TOSA110の光源112をPWB102に電気的かつ物理的に接続することができる様子を示している。底面図は、第2電気リード線124が、F−ROSA120の検出器122をPWB102に電気的かつ物理的に接続することができる様子を示している。底面図は更に、ネジ孔162を使用して、F−TOSA110及びF−ROSA120をPWB102に物理的に固定することができる様子を示している。
【0030】
図2は、光ワイヤレストランシーバ200の第2の実施形態の側面図である。光ワイヤレストランシーバ200は、PWB202と、F−TOSA210と、F−ROSA220と、送信機コントローラ230と、受信機コントローラ232と、を含むことができる。送信機コントローラ230及び受信機コントローラ232は、光ワイヤレストランシーバ200のコントローラとして集合的に動作することができる。送信機コントローラ230は、発信データ(
図2には図示されず)を、コネクタピン群208を介して受信することができる。送信機コントローラ230は、第1電気信号(
図2には図示されず)を生成して光源212を駆動することにより、第1光信号(
図2には図示されず)を変調することができる。受信機コントローラ232は、検出器222が第2光信号(
図2には図示されず)を受信すると生成する第2電気信号(
図2には図示されず)を受信することができる。受信機コントローラ232は、第2電気信号を復調して着信データ(
図2には図示されず)を生成することができる。着信データは、コネクタピン群208に供給することができる。
【0031】
図1の光ワイヤレストランシーバ100のF−TOSA110及びF−ROSA120とは異なり、F−TOSA210及びF−ROSA220は、PWB202の第1表面204から同じ距離244だけ延在することができる。光源212及び検出器222は、PWB202の第1表面204から同じ距離に配置することができる。第1ホルダ218は、第1ボールレンズ216を光源212の上に位置決めすることができる。第2ホルダ228は、第2ボールレンズ226を検出器222の上に位置決めすることにより、F−TOSA210及びF−ROSA220が、PWB202の第1表面204から同じ距離244だけ延在するようにすることができる。光源212が第1光信号を生成して第1ボールレンズ216で分散させるときの初期の送光角度によって異なるが、第1ボールレンズ216の屈折特性によって異なるが、干渉は、F−TOSA210及びF−ROSA220を相対的に位置決めする際にオフセットを持たせることなく防止することができる。別の構成として、または更に、F−TOSA210が生成する第1分散光信号が、F−ROSA220が受信する第2光信号とは異なる波長で送信される場合、第1分散光信号は、第2ボールレンズ226に、干渉を起こすことなく入射することができる。第1分散光信号が、F−ROSA220が受信する第2光信号の第2波長とは異なる第1波長で送信される場合、第1分散光信号は、F−ROSA220に含まれる、または接続されるフィルタによって阻止される。また、別の構成として、または更に、検出器222は、第2光信号の第2波長に応答するが、第1分散光信号の第1波長には応答しないように選択するか、または構成することができる。
【0032】
図3Aは、光ワイヤレストランシーバ300の第3の実施形態の側面図である。光ワイヤレストランシーバ300は、PWB302と、F−TOSA310と、F−ROSA320と、送信機コントローラ330と、受信機コントローラ332と、を含むことができる。F−TOSA310、F−ROSA320、送信機コントローラ330、及び受信機コントローラ332は全て、
図1A〜1C、及び
図2それぞれの光ワイヤレストランシーバ100及び200におけるように、PWB302の第1表面304に取り付けられる。送信機コントローラ330及び受信機コントローラ332は、光ワイヤレストランシーバ300のコントローラとして集合的に動作することができる。送信機コントローラ330は、発信データ(
図3Aには図示されず)を、コネクタピン群308を介して受信することができ、第1電気信号(
図3Aには図示されず)を生成することができる。送信機コントローラ330は、光源312を駆動することにより、第1光信号(
図3Aには図示されず)を変調することができる。受信機コントローラ332は、検出器322が第2光信号(
図3Aには図示されず)を受信すると生成する第2電気信号(
図3Aには図示されず)を受信することができる。受信機コントローラ332は、第2電気信号を復調して着信データ(
図3Aには図示されず)を生成することができる。着信データは、コネクタピン群308に供給することができる。
【0033】
F−TOSA310とF−ROSA320との間隔を大きくすると、第1分散光信号がF−ROSA320で起こす干渉の危険を低減することができる。例えば、F−TOSA310及びF−ROSA320は、光ワイヤレストランシーバ300の両側端部317及び319の方に配置することができる。F−TOSA310とF−ROSA320との間隔を大きくする構成は、
図3Aに示すように、かつ
図1Aを参照して説明したように、F−TOSA310を位置決めして、F−ROSA320の位置を越えて延在する状態で、または延在しない状態で用いることができる。F−TOSA310とF−ROSA320との間隔を空ける構成は、F−TOSA310及びF−ROSA320が、
図2を参照して説明したように、異なる波長で動作するように構成される状態で、または構成されない状態で用いることもできる。
【0034】
図3Bは、
図3Aの光ワイヤレストランシーバ300の特定の実施形態の端面図を示している。
図3Bの端面図は、F−ROSA320に隣接する第2端部319の図である。
図3Bの端面図は、第2ボールレンズ326を支持するホルダ328が、複数の窪み384を含むことができ、ホルダ328が、PWB302の第1表面304に当接する様子を示している。これらの窪み384の各々は、絶縁溝386をホルダ328とPWB302の第1表面304との間に画定して、光ワイヤレストランシーバ300がSFF MSA仕様に容易に準拠することができるようにしている。余裕隙間386により、導電金属により形成することができるホルダ318が、PWB302の第1表面304から延在するSFF MSA仕様準拠コネクタピン群308の延在端部309に接触するのを防止することができる。これらの窪み384を設けて、これらの余裕隙間386をホルダ328に、かつホルダ328の第2端部319の位置に形成するのは、コネクタピン群308がPWB302から、PWB302の第2端部319の位置で延在しているからである。これらの余裕隙間386は、ホルダ328が、導電ピン群308の延在端部309、またはPWB302の第1表面304の他の導電性表面と短絡するか、またはその他として、干渉するのを防止することができる。
【0035】
図4は、光ワイヤレストランシーバ400の第4の実施形態の側面図である。光ワイヤレストランシーバ400は、PWB402と、F−TOSA410と、F−ROSA420と、送信機コントローラ430と、受信機コントローラ432と、を含むことができる。送信機コントローラ430及び受信機コントローラ432は、光ワイヤレストランシーバ400のコントローラとして集合的に動作することができる。送信機コントローラ430は、発信データ(
図4には図示されず)を、コネクタピン群408を介して受信することができる。送信機コントローラ430は、第1電気信号(
図4には図示されず)を生成することにより、光源412を駆動して第1光信号(
図4には図示されず)を変調することができる。受信機コントローラ432は、検出器422が第2光信号(
図4には図示されず)を受信すると生成する第2電気信号(
図4には図示されず)を受信することができる。受信機コントローラ432は、第2電気信号を復調して着信データ(
図4には図示されず)を生成することができる。着信データは、コネクタピン群408に供給することができる。
【0036】
光ワイヤレストランシーバ400のF−TOSA410及びF−ROSA420は、光ワイヤレストランシーバ400の端部401から離れるように、PWB402の表面404及び405に略平行な第1方向450に延在する。これは、例えば第1F−TOSA110及び第1F−ROSA120が、PWB102の第1表面104に略直交する第1方向150に延在する構成の
図1の光ワイヤレストランシーバ100とは異なる。
図4に示す光ワイヤレストランシーバ400の構成により、第1方向450に延在する軸(
図4には図示されず)に沿って延びる範囲の光通信が可能になる。
【0037】
光ワイヤレストランシーバ400では、F−TOSA410は光源412を含むことができる。光源412は、電気リード線414に接続することができ、これらの電気リード線で、光源412をPWB402の端部401の方に、かつPWB402の表面404及び405に略平行な方向を向くように位置決めすることができる。第1ボールレンズ416は、光源412に対して、PWB402の第1表面404に接続される第1ホルダ418によって位置決めすることができる。F−ROSA420は、電気リード線424に接続することができる検出器422を含むことができ、これらの電気リード線424で、検出器422をPWB402の端部401の方に、かつPWB402の表面404及び405に略平行な方向を向くように位置決めすることができる。第2ボールレンズ426は、検出器422に対して、PWB402の第2表面405に接続することができる第2ホルダ428によって位置決めすることができる。
【0038】
特定の例示的な実施形態では、F−TOSA410がPWB402の端部401を越えて延在する第1距離442は、F−ROSA420がPWB402の端部401を越えて延在する第2距離444よりも長くすることができる。
図1Aを参照して既に説明したことであるが、第1距離442と第2距離444との間にオフセットを設けると、F−TOSA410が生成する第1光信号(
図4には図示されず)がF−ROSA420に入射するのを防止することにより干渉を低減することができる。更に、または別の構成として、トランスデューサ412及び422は、光信号を異なる波長で送受信して干渉を防止する(
図2を参照して説明したように)ように選択するか、または構成することができる。ボールレンズ416及び426の屈折特性は、干渉を防止する(
図2を参照して説明したように)ように選択するか、または構成することができる。
【0039】
光ワイヤレストランシーバ400は、SFF MSA仕様に準拠するように構成することができる。SFF MSA仕様に準拠するために、光ワイヤレストランシーバ400は、例えば
図1の光ワイヤレストランシーバ100の取り付けポスト群106及びコネクタピン群108よりも長い取り付けポスト群406及びコネクタピン群408を含むことができる。取り付けポスト群406及びコネクタピン群408をより長くすることにより、取り付け余裕を光ワイヤレストランシーバ400に追加することができる。取り付け余裕を追加することにより、F−ROSA420をPWB402の第2表面405に取り付けることができ、この第2表面405から、取り付けポスト群406及びコネクタピン群408が延在する。
【0040】
図5は、分散光信号507及び517を利用して通信する一対の光ワイヤレストランシーバ501及び511の特定の実施形態を示している。例えば、光ワイヤレストランシーバ501及び511の各々は、
図4の光ワイヤレストランシーバ群400のうちの一方とすることができる。光ワイヤレストランシーバ501及び511は、
図4を参照して説明したように、光ワイヤレストランシーバ501及び511それぞれの端部に取り付けられるF−TOSA503及び513、及びF−ROSA505及び515を含むことができる。
【0041】
第1光ワイヤレストランシーバ501は、第1電気機器502に接続することができる。
図5の実施形態では、第1電気機器502は、第1光ワイヤレストランシーバ501から延在する取り付けポスト群506及びコネクタピン群508に嵌合するソケットを提供することができる。特定の例示的な実施形態では、第1電気機器502は、第1光ワイヤレストランシーバ501を収容するように構成されるソケット509を含むことができる。ソケット509は、SFF MSA仕様にほぼ準拠するように構成することができる。第1電気機器502は更に、配線ジャック550を含むことができ、この配線ジャック550は、コネクタ552に通信ケーブル554の端子で嵌合することができる。第1電気機器502は、メディアコンバータ機器503のような1つ以上の通信部品を含むことができ、このメディアコンバータ機器503は信号群を変換して、光ワイヤレストランシーバ501と、通信ケーブル554の接続先のシステム(
図5には図示されず)との間の通信を可能にする。従って、第1電気機器502は、発信データ(
図5には図示されず)を受信することができ、着信データを、通信ケーブル554を介して送信することができる。配線ジャック550及びコネクタ552によって、RJ45接続方式を用いたイーサネット接続が可能になるが、任意の通信プロトコル及び接続方式を用いることができる。第2光ワイヤレストランシーバ511は、第2電気機器512に接続することができる。第1電気機器502及び第2電気機器512は、例えばビークル(
図5には図示されず)に搭載される個別システム群の間の通信を可能にする。別の構成として、第1電気機器502は、オンボード機器との通信を可能にし、第2電気機器512は、ビークルに搭乗している乗客が使用するパーソナル機器またはポータブル機器との通信を可能にする。
【0042】
図5に示すように、第1F−TOSA503は、第1光ワイヤレストランシーバ501の第1F−ROSA505よりも遠く水平方向に延在することができる。第2光ワイヤレストランシーバ511の第2F−TOSA513もまた、第2光ワイヤレストランシーバ511から、第2光ワイヤレストランシーバ511の第2F−ROSA515よりも遠く延在することができる。
図5では、F−TOSA503及び513がF−ROSA505及び515を越えて延在する距離の差は、オフセット540で表わされる。
図1A及び4を参照して既に説明したことであるが、オフセット540によって、第1F−TOSA503と第1F−ROSA505との干渉、及び第2F−TOSA513と第2F−ROSA515との干渉を防止することができる。例えば、オフセット540が第1F−TOSA503と第1F−ROSA505との間にある結果として、F−TOSA503から送信される第1分散光信号507は、第1光ワイヤレストランシーバのF−ROSA505に入射することができない。同様に、オフセット540が第2F−TOSA513と第2F−ROSA515との間にある結果として、F−TOSA513から送信される第2分散光信号517は、第2F−ROSA515に入射することができない。
【0043】
特定の実施形態では、光ワイヤレストランシーバ501及び511は、整合ペアである。第1光ワイヤレストランシーバ501のF−TOSA503は、第1光ワイヤレストランシーバ501の上側表面523に沿って配置することができる。第2光ワイヤレストランシーバ511のF−ROSA515は、第2光ワイヤレストランシーバ511の上側表面533に沿って配置することができる。それに対応するように、第2光ワイヤレストランシーバ511のF−TOSA513は、第2光ワイヤレストランシーバ511の下側表面535に沿って配置することができ、第1光ワイヤレストランシーバ501のF−ROSA505は、第1光ワイヤレストランシーバ501の下側表面525に沿って配置することができる。F−TOSA503及び513、及びF−ROSA505及び515を互いに相補的に配置することにより、光ワイヤレストランシーバ501と511との間で授受される分散光信号507と517との間の弱め合う干渉を低減することができる。
【0044】
分散光信号507及び517は、人間の目に見えるスペクトルに含まれる光信号を含むことができる。分散光信号507及び517は、高速で変調されることにより、分散光信号507及び517の変調が、人間の視覚で検出することができるよりも高速で行なわれるようになる。別の構成として、これらの分散光信号のうちの一方、または両方は、赤外線信号を利用する場合のような、人間の目に見えるスペクトルに含まれない信号として送信することができる。
【0045】
特定の実施形態では、第1F−TOSA503と第1F−ROSA505との間の干渉、及び第2F−TOSA513と第2F−ROSA515との間の干渉は、F−TOSA503及び513が異なる波長での送信を行なうように構成し、F−ROSA505及び515が異なる波長の信号を受信するように構成することにより低減することができる。例えば、第1F−TOSA503は、第1波長λ
1での送信を行ない、第2F−TOSA513は、第1波長とは異なる第2波長λ
2での送信を行なうことができる。更に、または別の構成として、これらのボールレンズの屈折率は、干渉を防止するように選択することができる(
図2を参照して説明したように)。更に、または別の構成として、F−TOSA503及び513は、F−ROSA505及び515から垂直方向に離間させて干渉を防止することができる(
図3Aを参照して説明したように)。
【0046】
図6は、分散光信号607及び617を利用して通信する一対の光ワイヤレストランシーバ601及び611の別の特定の実施形態を示している。例えば、光ワイヤレストランシーバ601及び611の各々は、
図1A〜1Cの光ワイヤレストランシーバ群100のうちの1つの光ワイヤレストランシーバとする、
図2の光ワイヤレストランシーバ群200のうちの1つの光ワイヤレストランシーバとする、または
図3A〜3Bの光ワイヤレストランシーバ群300のうちの1つの光ワイヤレストランシーバとすることができる。
【0047】
第1光ワイヤレストランシーバ601は、第1電気機器(
図6には図示されず)に接続されることにより、第1システム(
図6には図示されず)と第2光ワイヤレストランシーバ611に接続される第2システム(これも
図6には図示されず)との間の通信を可能にする。例えば、第1光ワイヤレストランシーバ601は、航空機(
図6には図示されず)に搭載されるオンボードシステムに接続することができ、第2光ワイヤレストランシーバ611は、航空機(これも
図6には図示されず)の客室内で使用される第2オンボードシステムまたは電子機器に接続することができる。
【0048】
図6に示すように、第1F−TOSA603は、第1光ワイヤレストランシーバ601の第1F−ROSA605よりも遠く垂直方向(
図6に示す下降方向)に延在することができる。第2光ワイヤレストランシーバ611の第2F−TOSA613もまた、第2光ワイヤレストランシーバ611から、第2光ワイヤレストランシーバ611の第2F−ROSA615よりも遠く延在することができる。
図6では、F−TOSA603及び613がF−ROSA605及び615を越えて延在する距離の差は、オフセット640で表わされる。
図1A、4、及び5を参照して既に説明したことであるが、オフセット640によって、第1F−TOSA603と第1F−ROSA605との間の干渉、及び第2F−TOSA613と第2F−ROSA615との間の干渉を防止することができる。例えば、オフセット640が第1F−TOSA603と第1F−ROSA605との間にある結果として、F−TOSA603から送信される第1分散光信号607は、第1光ワイヤレストランシーバのF−ROSA605に入射することができない。同様に、オフセット640が第2F−TOSA613と第2F−ROSA615との間にある結果として、F−TOSA613から送信される第2分散光信号617は、F−ROSA615に入射することができない。
【0049】
特定の実施形態では、光ワイヤレストランシーバ601及び611は、整合ペアである。
図6の配置を参照するに、第1光ワイヤレストランシーバ601のF−TOSA603が、第1光ワイヤレストランシーバ601の右側端部623に配置される(コネクタピン609から離れて位置する)のに対し、F−ROSA605は、第1光ワイヤレストランシーバ601の左側端部の方に配置される(コネクタピン609に隣接する)。第2光ワイヤレストランシーバ611のF−ROSA615は、第2光ワイヤレストランシーバ611の右側端部631に(コネクタピン619に隣接して)、かつ第1光ワイヤレストランシーバ601のF−TOSA603に対向して配置される。第2光ワイヤレストランシーバ611のF−TOSA613は、第2光ワイヤレストランシーバ611の左側端部633に(コネクタピン619の反対側に)、かつ第1光ワイヤレストランシーバ601のF−ROSA605に対向して配置される。F−TOSA603及び613、及びF−ROSA605及び615を互いに相補的に配置することにより、光ワイヤレストランシーバ601と611との間で授受される分散光信号607と617との間の弱め合う干渉を低減することができる。
【0050】
分散光信号607及び617は、人間の目に見えるスペクトルに含まれる光信号を含むことができる。分散光信号607及び617は、高速で変調されることにより、分散光信号607及び617の変調が、人間の視覚で検出することができるよりも高速で行なわれるようになる。別の構成として、これらの分散光信号607及び617のうちの一方、または両方は、例えば赤外線信号を利用する場合のように、人間の目に見えるスペクトルに含まれない信号として送信することができる。
【0051】
特定の実施形態では、第1F−TOSA603と第1F−ROSA605との間の干渉、及び第2F−TOSA613と第2F−ROSA615との間の干渉は、F−TOSA603及び613が異なる波長での送信を行なうように構成し、F−ROSA605及び615が異なる波長の信号を受信するように構成することにより低減することができる。例えば、第1F−TOSA603は、第1波長λ
1での送信を行なうことができ、第2F−TOSA613は、第1波長とは異なる第2波長λ
2での送信を行なうように構成することができる。更に、または別の構成として、これらのボールレンズの屈折率は、干渉を防止するように選択することができる(
図2を参照して説明したように)。更に、または別の構成として、F−TOSA603及び613は、F−ROSA605及び615から水平方向に離間させて干渉を防止することができる(
図3Aを参照して説明したように)。
【0052】
図7は、民間旅客航空機のようなビークル700の機内客室702の一部703の特定の実施形態の切り欠き図であり、光ワイヤレスネットワーク701によって、1つ以上のオンボードシステム704と、機内客室702内で使用される1つ以上の電子機器730〜734との間の通信が可能になる。機内客室702内で使用される光ワイヤレスネットワーク701は、
図1A〜6を参照して説明した複数の光ワイヤレストランシーバを用いることができる。
【0053】
1つ以上のオンボードシステム704は、機内娯楽(in−flight entertainment:IFE)サーバ、ワイヤレス空対地インターネットサーバ、電話機空対地中継システム、IFE(機内娯楽)サービスまたは他の機内課金サービスの支払システム、または乗客が接続を希望する接続先の他の任意の種類のオンボードシステムと、を含むことができる。1つ以上のオンボードシステム704は更に、客室乗務員をサポートするシステム群を含むことができる。例えば、これらのオンボードシステム704は、食物及び飲料サービス、または他の客室サービスに関するシステム群を含むことができる。電子機器730〜734は、個人用IFE(機内娯楽)機器、ノートブックコンピュータ733のようなパーソナルコンピュータ、スマートフォン734のようなハンドヘルドデバイス、または他の機器を含むことができる。1つ以上のオンボードシステム704は、例えば有線接続を介して第1の複数の光ワイヤレストランシーバ710〜712に接続することができる。1つ以上のオンボードシステム704は、第1電気信号705を第1の複数の光ワイヤレストランシーバ710〜712に供給する。第1の複数の光ワイヤレストランシーバ710〜712は、第1電気信号705を変調して、分散光信号760〜763を生成することができる。分散光信号760〜763は、機内客室702内に放出されて、第2の複数の光ワイヤレストランシーバ750〜754との通信が可能になる。第2の複数の光ワイヤレストランシーバ750〜754は電子機器730〜734に接続することができる。このようにして、オンボードシステム704及び電子機器730〜734は、第1の複数の光ワイヤレストランシーバ710〜712、及び第2の複数の光ワイヤレストランシーバ750〜754を介して通信することができる。
【0054】
光ワイヤレストランシーバ710〜712は、客室灯を含むことにより、または客室灯内に組み込まれることにより、分散光信号760〜762が、客室照明の光源となることができる。光ワイヤレストランシーバ710〜712は、光ワイヤレストランシーバ710及び711のような頭上照明とすることができる、またはこれらの光ワイヤレストランシーバは、乗客の個人用読書灯とすることができる。別の構成として、光ワイヤレストランシーバ710〜712は、分散光信号760〜763を、赤外スペクトル信号のような、可視スペクトルに含まれない信号として送信することができる。更に、または別の構成として、光ワイヤレストランシーバ710〜712は、可視スペクトルに含まれる分散光信号760〜763を、他の客室灯(客室頭上照明または乗客の個人用読書灯のいずれか)が点灯しているときに送信することができ、可視スペクトルに含まれない分散光信号760〜763を、他の客室灯が消灯しているときに送信することができる。
【0055】
個人用IFE機器730〜732は、機内映画または他のIFE(機内娯楽)を、第1分散光信号760〜762を介して放送される信号を受信することができる。第1分散光信号760〜762は、客室照明を提供する頭上式客室照明として機能する第1光ワイヤレストランシーバ710及び711から送信することができる。第1光ワイヤレストランシーバ710及び711のうちの一方は、これらの電子機器のうちの1つよりも多くの電子機器の通信を可能にする。例えば、第1光ワイヤレストランシーバ710は、サービスを個人用IFE機器730及び731に、ノートブックコンピュータ733に提供することができる。個人用IFE機器730〜732は、第1分散光信号760〜762を、第2光ワイヤレストランシーバ750〜752のそれぞれを介して受信することができる。
【0056】
個人用IFE機器730〜732はデータを、第2光ワイヤレストランシーバ750〜752を介して送信することができる。例えば、個人用IFE機器731は娯楽選択データまたは他のデータを、第2光ワイヤレストランシーバ751を介して第1光ワイヤレストランシーバ710に送信することができる。特定の実施形態では、第2光ワイヤレストランシーバ750〜752を介して第1光ワイヤレストランシーバ710〜712に送信されるデータは、可視スペクトルに含まれない波長で送信されることにより、機内客室702内の不要な光源によって引き起こされる乗客のイライラ、または不快感を低減することができる。
【0057】
機内客室702内の光ワイヤレスネットワーク701によって更に、ノートブックコンピュータ733及びスマートフォン734のような他の電子機器との通信が可能になる。ノートブックコンピュータ733及びスマートフォン734が光ワイヤレスネットワークを介して通信を行なう場合、ノートブックコンピュータ733及びスマートフォン734のそれぞれには、第2光ワイヤレストランシーバ753及び754を設ける、取り付けることができる、またはノートブックコンピュータ733及びスマートフォン734をそれぞれ、第2光ワイヤレストランシーバ753及び754に接続することができる。別の構成として、または更に、ジャックを1つ以上の背もたれ740〜742に設けて、ノートブックコンピュータ733及びスマートフォン734が、第2光ワイヤレストランシーバ750〜752のうちの1つの第2光ワイヤレストランシーバのような内蔵型の第2光ワイヤレストランシーバを使用することができるようにする。
図7では、ノートブックコンピュータ733は、データを第2光ワイヤレス信号773に載せて、第2光ワイヤレストランシーバ753を介して送信するものとして図示されている。スマートフォン734は、データを第2光ワイヤレストランシーバ754で、第1光ワイヤレス信号763を介して受信し、データを第2光ワイヤレストランシーバ754から第2光ワイヤレス信号774を介して送信するものとして図示されている。第1光ワイヤレス信号763及び第2光ワイヤレス信号774は、第1光ワイヤレストランシーバ712との間で授受することができる。第1光ワイヤレストランシーバ712は、第2光信号を復調して第2電気信号707を生成することができる。第1光ワイヤレストランシーバ712は、第2電気信号707を1つ以上のオンボードシステム704に、例えば有線接続を介して送信することができる。
【0058】
図8は、複数の第1光ワイヤレストランシーバ810〜813がデータを第1送信側機器811から第2受信側システム881に、複数の第2個別光ワイヤレストランシーバ830〜833を介して、多入力多出力(“MIMO”)伝送により送信する環境の特定の実施形態を示している。複数の第2光ワイヤレストランシーバ830〜833も、データを第2送信側機器861から第1受信側機器831に複数の第1光ワイヤレストランシーバ810〜813を介して送信することができる。複数の第1光ワイヤレストランシーバ810〜813及び複数の第2個別光ワイヤレストランシーバ830〜833は、
図1A〜1C、2、3A〜3B、及び4のそれぞれを参照して説明した光ワイヤレストランシーバ100,200,300,及び400の特定の実施形態のうちの1つ以上の実施形態を含むことができる。光ワイヤレストランシーバ810〜813及び830〜833の各光ワイヤレストランシーバは、信号を所望のカバレッジ範囲内で送受信するように配置することができる。例えば、第1の複数の光ワイヤレストランシーバ810〜813は、カバレッジエリア820〜823を有するものとして図示されている。カバレッジ範囲820〜823は、
図8に示す光ワイヤレストランシーバ810〜813の各光ワイヤレストランシーバについて同一とすることができる電力半値角825によって規定することができるか、またはこれらのカバレッジ範囲は、光ワイヤレストランシーバ810〜813を用いることができる動作環境の性質によって、または光ワイヤレストランシーバ810〜813を用いることができる用途によって異なるが、異なる形状とすることができる。
【0059】
光MIMO(多入力多出力)伝送では、信号は、複数の第1光ワイヤレストランシーバ810〜813と複数の第2光ワイヤレストランシーバ830〜833との間の複数の冗長位置から送信される。前に説明したように、光ワイヤレス通信は、見通し線を、通信しているトランシーバの間に必要とする。しかしながら、
図8の光MIMO伝送では、障害物850が複数の第1光ワイヤレストランシーバ810〜813と複数の第2光ワイヤレストランシーバ830〜833との間の1つ以上の見通し線を遮ってしまう場合、これらの信号はそれでも、複数の第1光ワイヤレストランシーバ810〜813と複数の第2光ワイヤレストランシーバ830〜833との間で授受することができる。障害物850が移動すると、他の見通し線は、他の見通し線がクリアな状態で遮られる。
【0060】
第1の複数の光ワイヤレストランシーバ810〜813から送信されている信号、及び第2の複数の光ワイヤレストランシーバ830〜833から送信されている信号の各信号は冗長信号であるので、複数の受信側光ワイヤレストランシーバ830〜833が受信する信号のインスタンスを1つだけ、第2受信側システム881に供給すればよい。従って、特定の実施形態では、複数の第2光ワイヤレストランシーバ830〜833が受信する信号の出力は、第2受信信号比較器871に入力することができる。第2受信信号比較器871は、複数の第2光ワイヤレストランシーバ830〜833のうちの何れの第2光ワイヤレストランシーバが最大強度の信号を受信したかを判断することができる。次に、最大強度の信号を第2受信側システム881に供給することができる。従って、例えば第2光ワイヤレストランシーバ830,831,及び833がそれぞれ、信号を、障害物のない見通し線890,891,及び893のそれぞれに沿って受信する場合、第2受信信号比較器871は、第2光ワイヤレストランシーバ830,831,及び833のうちの何れの第2光ワイヤレストランシーバが最大強度の信号を受信したかを判断することができ、次に、当該信号を第2受信側システム881に供給することができる。このようにして、第2受信側システム881は、例えば第2光ワイヤレストランシーバ832が、複数の第1光ワイヤレストランシーバ810〜813の全てに至るクリアな見通し線を確保することができず、かつ第2光ワイヤレストランシーバ831が、複数の第1光ワイヤレストランシーバ810〜813のうちの1つの第1光ワイヤレストランシーバに至る斜めの見通し線しか確保できない場合でも、第1送信側システム811から送信される信号を受信することができる。それに対応するようにして、複数の第1光ワイヤレストランシーバ810〜813が受信する信号の出力は、第1受信信号比較器821に入力することができる。第1受信信号比較器821は、複数の第1光ワイヤレストランシーバ810〜813のうちの何れの第1光ワイヤレストランシーバが最大強度の信号を受信したかを判断することができる。次に、最大強度の信号を第1受信側システム831に供給することができる。
【0061】
図9は、光ワイヤレス通信をビークル内で行なう方法900の特定の例示的な実施形態のフロー図である。光ワイヤレス通信は、
図1A〜1C、2、3A〜3B、及び4のそれぞれの光ワイヤレストランシーバ100,200,300,及び400のうちの1つ以上の光ワイヤレストランシーバのような光ワイヤレストランシーバを用いて行なうことができる。方法900は、例えば
図5の第1光ワイヤレストランシーバ501、及び第2光ワイヤレストランシーバ511のような一対の光ワイヤレストランシーバによって実行することができる。方法900は、
図7を参照して説明したように、ビークル内で実行することができる。
【0062】
ステップ902では、第1電気信号をビークルのオンボードシステムから受信することができる。例えば、第1電気信号は、
図1Aを参照して説明したように、コネクタピン群108に供給される発信データ131を含むことができる。
図5を参照して説明したように、第1光ワイヤレストランシーバ501は、第1電気信号を、オンボードシステムに通信ケーブル554を介して接続される第1電気機器502から受信することができる。ステップ904では、第1電気信号を第1波長の第1変調光信号に変換することができる。例えば、第1電気信号は、第1光信号113に、
図1Aの送信機コントローラ130及び光源112により変換することができる。第1変調光信号の変調は、人間の目では殆ど検出できない。例を挙げると、第1波長は、可視スペクトルに殆ど含まれないので、人間の目では検出できない。別の例では、第1変調光信号は、高い周波数で変調されるので、第1波長が可視スペクトルに含まれるかどうかに関係なく、第1変調光信号の変調は、人間の目では検出できない。
【0063】
ステップ906では、第1変調光信号を屈折させて、第1分散光信号を生成することができる。例えば、
図1の第1変調光信号113は、第1ボールレンズ116の第1表面101の第1部分115に供給することができる。第1ボールレンズ116は、第1変調光信号113を屈折させて、第1分散光信号119を、第1ボールレンズ116の第1表面101の第2部分117で生成することができる。ステップ908では、第1分散光信号をビークルの機内客室のボリューム内に送信することができる。第1分散光信号は、機内客室の電子機器により、第1見通し光伝送路を介して検出可能である。例えば、
図7の第1分散光信号760は、第1光ワイヤレストランシーバ710から、ビークル700の機内客室702内に送信される。
図8を参照して説明したように、第1分散光信号は、略円錐形を有する範囲820〜823全体に送出することができる。
【0064】
ステップ910では、第2波長の第2光信号を、第2見通し光伝送路を介して、電子機器から受信することができる。第2光信号は人間の目では検出できない。例えば、
図7の電子機器731のような電子機器は、第2光信号771を、第1光ワイヤレストランシーバ710に送信することができる。ステップ912では、第2光信号を収束させて、第2収束光信号を生成することができる。例えば、
図1Aの第2光信号123は、第2ボールレンズ126の第2表面103の第3部分125に入射する。第2ボールレンズ126は、第2光信号123を収束させて、第2収束光信号129を検出器122に供給することができる。
【0065】
ステップ914では、第2収束光信号129を復調して、第2電気信号を生成することができる。例えば、
図1Aの検出器122、及び受信機コントローラ132は、第2収束光信号129を復調して、コネクタピン群108に供給される着信データ133を生成することができる。ステップ916では、第2電気信号をオンボードシステムに供給することができる。例えば、
図7の第1光ワイヤレストランシーバ712は、第2光信号774を受信し、変調して第2電気信号707を生成した後、第2電気信号707を1つ以上のオンボードシステム704に供給することができる。
【0066】
本明細書において説明される実施形態の例示は、種々の実施形態の構造の概要を理解できるために行なわれる。これらの例示は、本明細書において説明される構造または方法を利用する装置及びシステムの構成要素及び特徴の全てについての包括的な説明として利用されてはならない。他の多くの実施形態が存在することは、この技術分野の当業者には、本開示を精読すれば明らかである。他の実施形態を利用し、本開示から導き出すことにより、構造的かつ論理的な代替及び変更を本開示の範囲から逸脱しない限り行なうことができる。例えば、方法ステップは、これらの図に示される順番とは異なる順番で実施することができる、または1つ以上の方法ステップは、省略することができる。従って、本開示及びこれらの図は、例示として捉えられるべきであり、限定として捉えられるべきではない。
【0067】
更に、特定の実施形態を本明細書において例示し、記載してきたが、同じ、または同様の結果を達成するためにこの後続いて考案されるいずれの構成も、開示された特定の実施形態の代わりに用いることができることを理解されたい。本開示は、種々の実施形態に関するこの後に続くあらゆる、かつ全ての適応形態または変形形態を含むものである。これらの上記実施形態の組み合わせ、及び本明細書において詳細には説明されていない他の実施形態が存在することは、この技術分野の当業者であれば、本説明を精読すれば明らかである。
【0068】
本開示の要約は、要約が請求項の範囲または意味を解釈する、または規定するために用いられることがないという理解の下に提示される。更に、これまでの詳細な説明において、種々の特徴をグループ化してまとめるか、または単一の実施形態の中で記載することにより、本開示を簡素化することができる。本開示は、請求される実施形態が、各請求項に明示的に列挙されるよりも多くの特徴を必要とするという意図を表わしているものとして解釈されるべきではない。多くの特徴を必要とするのではなく、以下の請求項が示しているように、請求される主題は、開示されるこれらの実施形態の全ての実施形態の特徴群の全てよりも少ない特徴にある。