(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
[1]第1実施形態の給湯機について説明する。
図1に示すように、室外ユニット10、水熱交ユニット20、給湯タンクユニット30が相互に配管接続される。これら室外ユニット10、水熱交ユニット20、給湯タンクユニット30に制御部50が配線接続され、その制御部50に操作・表示部51が配線接続される。
【0012】
そして、室外ユニット10および水熱交ユニット20における配管接続により、次のヒートポンプ式冷凍サイクルが構成される。
【0013】
11は冷媒を吸込んで圧縮する圧縮機で、その圧縮機11の吐出口に四方弁12および開閉弁たとえば二方弁21を介して水熱交換器22の一端が配管接続され、その水熱交換器22の他端に開閉弁たとえばパルスモータバルブ(PMV)23および減圧器たとえば電動膨張弁13を介して室外熱交換器14の一端が配管接続される。そして、室外熱交換器14の他端が四方弁12を介して圧縮機11の吸込口に配管接続される。
【0014】
加熱運転では、実線矢印で示すように、圧縮機11から吐出される高温の冷媒(ガス冷媒)が四方弁12および二方弁21を通って水熱交換器22に流れ、その水熱交換器22で湯水との熱交換により液化する冷媒がパルスモータバルブ23および電動膨張弁(例えばパルスモータバルブ)13を通って室外熱交換器14に流れる。室外熱交換器14に流れた冷媒はそこで外気から熱を汲み上げて気化し、この気化した冷媒が四方弁12を通って圧縮機11に吸込まれる。この加熱回路の形成により、水熱交換器22を通る湯水が加熱される。
【0015】
二方弁21は、通電のオンとオフに応じて開放と閉成が切換わる電磁式のもので、加熱回路の形成時に開き、後述の除霜回路の形成時に閉じて水熱交換器22に対する冷媒の流通をヒートポンプ式冷凍サイクルのガス側配管において遮断する。パルスモータバルブ23は、入力される駆動パルス電圧の数に応じて開度が連続的に変化するもので、加熱回路の形成時に全開し、後述する除霜回路の形成時に全閉して水熱交換器22に対する冷媒の流通をヒートポンプ式冷凍サイクルの液側配管において遮断する。
【0016】
このような構成のヒートポンプ式冷凍サイクルにおいて、パルスモータバルブ23と電動膨張弁13との間の液側配管から、四方弁12と二方弁21との間のガス側配管にかけて、逆止弁(チェック弁ともいう)24aを含む除霜回路形成用のバイパス路24が接続される。
【0017】
四方弁12の切換え、二方弁21の閉成、およびパルスモータバルブ23の全閉により、破線矢印で示すように、圧縮機11の吐出冷媒が四方弁12を通って室外熱交換器14に直接的に流れ、その室外熱交換器14を経た冷媒が電動膨張弁13、バイパス路24、および四方弁12を通って圧縮機11に吸込まれる除霜回路が形成される。この除霜回路の形成により、室外熱交換器14に着いた霜が圧縮機11から供給される高温冷媒の熱によって除去される。
【0018】
一方、給湯タンクユニット30は給湯タンク31を有し、その給湯タンク31の下部と上部に入水配管41および出水配管42がそれぞれ接続される。入水配管41は、給水源の水を給湯タンク31の下部に導く。出水配管42は、給湯タンク31内の上部の湯を負荷へ導く。
【0019】
この給湯タンク31の下部から水熱交換器22の水流路の一端にかけて入水配管32が接続され、その水熱交換器22の水流路の他端から給湯タンク31の上部にかけて出水配管33が接続される。そして、入水配管32に、給水用の循環ポンプ27が設けられる。この循環ポンプ27の運転により、給湯タンク31内の湯水が水熱交換器22を通って循環する。
【0020】
また、室外ユニット10において、圧縮機11の吐出口と四方弁12との間の吐出側配管に、圧縮機11の吐出冷媒温度Tdを検知する冷媒温度センサ15が取付けられる。四方弁12と圧縮機11の吸込口との間の吸込側配管に、圧縮機11への吸込み冷媒温度Tsを検知する冷媒温度センサ16が取付けられる。室外熱交換器14の近傍に、外気温度Toを検知する外気温度センサ17が配設される。室外熱交換器14に、その熱交換器温度Teを検知する熱交温度センサ18が取付けられる。
【0021】
水熱交ユニット20において、水熱交換器22にその熱交換器温度Tcを検知する熱交温度センサ25が取付けられる。水熱交換器22とパルスモータバルブ23との間の液側配管に、冷媒温度Txを検知する冷媒温度センサ26が取付けられる。入水配管32に、水熱交換器22に流入する湯水の温度Twiを検知する水温度センサ28が取付けられる。出水配管33に、水熱交換器22からの流出する湯水の温度Twoを検知する水温度センサ29が取付けられる。
【0022】
給湯タンクユニット30において、給湯タンク31内に湯加熱用の電気ヒータ34が配設される。給湯タンク31の下部に、給湯タンク31内の湯水の温度Ttを検知する水温度センサ35が取付けられる。
【0023】
制御部50は、マイクロコンピュータおよびその周辺回路からなり、記憶手段として揮発性メモリであるRAM(ランダム・アクセス・メモリ)52を有するとともに、そのRAM52の動作用電源として電界コンデンサ53を有する。
【0024】
そして、制御部50は、主要な機能として次の(1)〜(5)の手段を有する。
(1)圧縮機11の吐出冷媒が四方弁12、二方弁21、水熱交換器22、パルスモータバルブ23、電動膨張弁13、室外熱交換器14、および四方弁12を通って圧縮機11に戻る加熱回路を形成しながら循環ポンプ27を運転する加熱運転と、二方弁21およびパルスモータバルブ23を閉じた状態で圧縮機11の吐出冷媒が四方弁12、室外熱交換器14、電動膨張弁13、バイパス路24、四方弁12を通って圧縮機11に戻る除霜回路を形成する除霜運転とを、選択的に実行する第1制御手段。
【0025】
(2)除霜運転時、冷媒温度センサ26の検知温度Txが設定値以下に低下した場合に循環ポンプ27を運転する第2制御手段。
【0026】
(3)上記第2制御手段により運転される循環ポンプ27の回転数を冷媒温度センサ26の検知温度Txに応じて制御する第3制御手段。
【0027】
(4)上記第3制御手段の制御による回転数を水温度センサ28の検知温度Twiに応じて補正する第4制御手段。
【0028】
(5)除霜運転時、冷媒温度センサ26の検知温度txが上記設定値より低い所定値未満に低下した場合に、圧縮機11の運転を中断しかつパルスモータバルブ23を一旦全開して全閉し(イニシャライズ処置)、この全閉後に圧縮機11の運転を再開する第5制御手段。
【0029】
つぎに、
図2のフローチャートを参照しながら動作について説明する。
負荷側の給湯栓が開放されると、給湯タンク31内の上部に存する湯が出水配管42を通って負荷へ流れる。これに伴い、給水源の水が入水配管41を通って給湯タンク31内の下部に補給される。
【0030】
給湯タンク31内の湯水の温度Ttが水温度センサ35で検知されており、その検知温度Ttが操作・表示部51の操作による設定温度を下回ると、圧縮機11が起動して加熱回路が形成されるとともに、循環ポンプ27が運転される。この加熱回路および循環ポンプ27による加熱運転により、給湯タンク31内の湯水が加熱される。加熱が進んで水温度センサ35の検知温度Ttが設定温度以上に上昇すると、圧縮機11が停止して加熱回路の形成が解除されるとともに、循環ポンプ27が停止される。
【0031】
加熱運転時、外気温度が低いと、蒸発器として機能する室外熱交換器14の表面に徐々に霜が付着する。この着霜に伴い、室外熱交換器14の温度Teが低下していく。
【0032】
室外熱交換器14の温度Teは熱交温度センサ18で検知されており、その検知温度Teが設定値(例えば0℃)以下に低下してその状態が所定時間にわたり継続する除霜条件が成立すると(ステップ101のYES)、除霜回路が形成されて室外熱交換器14に対する除霜運転が開始される(ステップ102)。
【0033】
この除霜運転時、循環ポンプ27が停止されて水熱交換器22に対する湯水の循環が止まるとともに、二方弁21が閉成されてパルスモータバルブ23が全閉される。すなわち、室外熱交換器14での除霜によって温度低下した冷媒が水熱交換器22に流入しないよう、パルスモータバルブ23が全閉される。また、除霜回路ではバイパス路24を経て四方弁12に向かう冷媒の流れがあって、二方弁21が開いたままでは水熱交換器22を介してパルスモータバルブ23に負圧が加わり、その負圧によってパルスモータバルブ23に冷媒漏れが生じる可能性があることから、そのような不具合を防ぐべく、二方弁21が閉成される。
【0034】
ただし、パルスモータバルブ23にゴミが挟まったり、パルスモータバルブ23の開度制御に際しての駆動パルス電圧供給にパルス数ずれが生じた場合など、全閉しているはずのパルスモータバルブ23から冷媒が漏れることがある。この場合、漏れた冷媒が水熱交換器22に流入し、水熱交換器22が凍結に至る可能性がある。
【0035】
このような不具合が生じないよう、除霜運転時、パルスモータバルブ23と水熱交換器22との間の液側配管における冷媒温度センサ26の検知温度Txに基づく循環ポンプ制御が実行される(ステップ200)。
【0036】
この循環ポンプ制御では、冷媒温度センサ26の検知温度Txとその検知温度Txに対して定めた複数のゾーンa,b,c,d,eとの対応関係を定めた
図3の温度ゾーン条件、およびそのゾーンごとに循環ポンプ27の回転数を定めた
図4の回転数設定条件が用いられる。
【0037】
図3の温度ゾーン条件では、検知温度Txが上昇変化するときのゾーン境界と下降変化するときのゾーン境界との間に、1Kの温度差(ヒステリシス)が確保されている。例えば、検知温度Txの上昇変化に際しては、−25℃がeゾーンからdゾーンへの境界点となり、−5℃がdゾーンからcゾーンへの境界点となり、0℃がcゾーンからbゾーンへの境界点となり、10℃がbゾーンからaゾーンへの境界点となる。検知温度Txの下降変化に際しては、9℃がaゾーンからbゾーンへの境界点となり、−1℃がbゾーンからcゾーンへの境界点となり、−6℃がcゾーンからdゾーンへの境界点となり、−26℃がdゾーンからeゾーンへの境界点となる。
【0038】
すなわち、検知温度Txがaゾーンにあれば(ステップ201のYES)、パルスモータバルブ23に冷媒漏れが生じていないとの判断の下に、循環ポンプ27の回転数が零に設定される(ステップ202)。
【0039】
検知温度Txがaゾーンより低いbゾーンに低下すると(ステップ203のYES)、パルスモータバルブ23に少量の冷媒漏れが生じているとの判断の下に、循環ポンプ27が1300rpmの回転数で運転される(ステップ204)。この循環ポンプ27の運転により、給湯タンク31内の湯水が水熱交換器22に流れて、パルスモータバルブ23の冷媒漏れによる水熱交換器22の温度低下が抑制される。
【0040】
検知温度Txがbゾーンより低いcゾーンに低下した場合は(ステップ205のYES)、パルスモータバルブ23の冷媒漏れが上記少量より多いとの判断の下に、循環ポンプ27が2600rpmの回転数で運転される(ステップ206)。この回転数アップにより、水熱交換器22に流れる湯水の量が上記bゾーンの場合より増える。これにより、パルスモータバルブ23の冷媒漏れが上記少量より多くても、それによる水熱交換器22の温度低下が抑制される。
【0041】
検知温度Txがcゾーンより低いdゾーンに低下した場合は(ステップ207のYES)、パルスモータバルブ23の冷媒漏れが上記少量よりもっと多いとの判断の下に、循環ポンプ27が3420rpmの回転数で運転される(ステップ208)。この回転数アップにより、水熱交換器22に流れる湯水の量が上記cゾーンの場合よりも多くなる。これにより、パルスモータバルブ23の冷媒漏れが多くても、それによる水熱交換器22の温度低下が抑制される。
【0042】
このように、水熱交換器22の温度低下を抑制できるので、水熱交換器22の凍結を未然に防止できる。ひいては、給湯タンク31内の湯水を確実に加熱することができ、給湯機としての信頼性が向上する。
【0043】
検知温度Txがdゾーンより低いeゾーンまで低下した場合は(ステップ207のNO)、パルスモータバルブ23の冷媒漏れがかなり多いとの判断の下に、圧縮機11の運転が中断され、その状態でパルスモータバルブ23が一旦全開まで駆動されてから全閉まで駆動されるイニシャライズ処置が実行され、その全閉後に圧縮機11の運転が再開される(ステップ209)。
【0044】
パルスモータバルブ23の冷媒漏れの原因が同パルスモータバルブ23におけるゴミの挟み込みであれば、そのゴミがイニシャライズ処置によって全開したときに押し流される。この押し流しにより、パルスモータバルブ23は確実に全閉するようになり、冷媒漏れが解消される。
【0045】
パルスモータバルブ23の冷媒漏れが、パルスモータバルブ23に対する駆動パルス電圧供給のパルス数ずれに起因するものであれば、イニシャライズ処置によってパルスモータバルブ23が一旦全開まで駆動されてから全閉まで駆動されることで、駆動パルス電圧供給のパルス数ずれが解消される。これにより、以後のパルスモータバルブ23は確実に全閉し、冷媒漏れが解消される。
【0046】
パルスモータバルブ23の冷媒漏れが解消されることで、水熱交換器22の凍結を未然に防止できる。ひいては、給湯タンク31内の湯水を確実に加熱することができる。
【0047】
一方、循環ポンプ27の運転および回転数制御に際し、給湯タンク31から水熱交換器22に流入する湯水の温度Twiが水温度センサ28で検知されており、その検知温度Twiに基づき、ステップ200の循環ポンプ制御による回転数制御値が補正される。
【0048】
この補正に際しては、水温度センサ28の検知温度Twiとその検知温度Twiに対して定めた複数のゾーンA,Bとの対応関係を定めた
図6の温度ゾーン条件、およびそのゾーンごとに回転数補正値を定めた
図7の回転数補正条件が用いられる。
【0049】
図6の温度ゾーン条件では、検知温度Twiが上昇変化するときのゾーン境界と下降変化するときのゾーン境界との間に、1Kの温度差(ヒステリシス)が確保されている。例えば、検知温度Twiの上昇変化に際しては、5℃がTwi使用範囲外ゾーンからAゾーンへの境界点となり、10℃がAゾーンからBゾーンへの境界点となる。検知温度Twiの下降変化に際しては、9℃がBゾーンからAゾーンへの境界点となり、5℃がAゾーンからTwi使用範囲外ゾーンへの境界点となる。
【0050】
すなわち、検知温度Twiが10℃未満のAゾーンであれば(ステップ201のYES)、回転数補正値が1.0倍となり、回転数制御値は補正されない。検知温度Twiが10℃を超えてBゾーンに入ると(ステップ201のNO)、回転数補正値が0.6倍となる。例えば、回転数制御値が1300rpmの場合は、循環ポンプ27の実際の回転数が0.6倍の780rpmに設定される。回転数制御値が2600rpmの場合は、循環ポンプ27の実際の回転数が0.6倍の1560rpmに設定される。回転数制御値が3420rpmの場合は、循環ポンプ27の実際の回転数が0.6倍の2052rpmに設定される。
【0051】
検知温度Twiが10℃より高い場合は、水熱交換器22に流れる湯水の量を多少は減らしても水熱交換器22の温度低下を抑制できるとの判断の下に、循環ポンプ27の回転数を削減方向に補正するようにしている。この補正により、循環ポンプ27の運転に要する電力をできるだけ削減することができ、省エネルギー効果が得られる。
【0052】
室外熱交換器14の除霜が進んで、熱交温度センサ18の検知温度Teが設定値たとえば8℃を超えると(ステップ212のYES)、除霜回路の形成が解除されて除霜運転が終了する(ステップ103)。この終了に伴い、水温度センサ35の検知温度Ttに応じて、加熱運転が適宜に再開される。
【0053】
[2]第2実施形態について説明する。
制御部50は、第1実施形態の(1)〜(5)の手段に加えてさらに次の(6)(7)の手段を有する。
(6)加熱運転から除霜運転への少なくとも最初の移行時、パルスモータバルブ23を所定開度たとえば100パルス分の開度に開いて循環ポンプ27を所定回転数たとえば3420rpmで運転しながら、冷媒温度センサ26の検知温度に基づいて同冷媒温度センサ26の異常の有無をチェックし、異常なしの場合に除霜運転を継続するとともにチェックの完了の旨をチェック完了フラグ・オンとしてRAM52に保持し、異常ありの場合は除霜運転を含む全ての運転を停止(異常停止)する第6制御手段。
【0054】
(7)加熱運転時、チェックの完了の旨(チェック完了フラグ・オン)がRAM52に保持されている場合、冷媒温度センサ26の検知温度Txの変化に基づいて同冷媒温度センサ26の異常の有無を簡易的にチェックし、異常なしの場合はRAM52の内容(チェック完了フラグ・オン)をそのまま保持し、異常ありの場合はRAM52の内容(チェック完了フラグ・オン)を消去する第7制御手段。
【0055】
制御部50内のRAM52は、センサ異常チェックの完了の旨をチェック完了フラグ・オンとして保持する記憶手段として機能する。また、RAM52は、電源スイッチのオフによる電源遮断や商用交流電源の瞬時停電があった場合でも電界コンデンサ53に残電荷によって12時間程度は記憶内容を保持することが可能である。
【0056】
他の構成については、第1実施形態と同じなので、その説明は省略する。
【0057】
動作については、
図7のフローチャートに示すように、除霜運転開始のステップ102と循環ポンプ制御のステップ200との間に、冷媒温度センサ26の異常の有無をチェックするセンサ異常チェック制御のステップ300が加わる。
【0058】
すなわち、加熱運転時、熱交温度センサ18で検知される室外熱交換器14の温度Teが設定値(例えば0℃)以下に低下してその状態が所定時間にわたり継続する除霜条件が成立すると(ステップ101のYES)、除霜回路が形成されて室外熱交換器14に対する除霜運転が開始される(ステップ102)。この除霜運転の開始に伴い、冷媒温度センサ26の異常の有無をチェックするセンサ異常チェック制御が実行される(ステップ300)。
【0059】
まず、RAM52のチェック完了フラグがオンであるか否かが監視される(ステップ301)。加熱運転が電源スイッチのオン直後の運転あるいは商用交流電源の瞬時停電が解除した直後の運転で、その開始までの時間経過が長かった場合には、電解コンデンサ53の残電荷が無くなってRAM52の内容が消去された状態にある。この場合、RAM52のチェック完了フラグはオフの状態を示す。
【0060】
RAM52のチェック完了フラグがオフであれば(ステップ301のNO)、加熱運転から除霜運転への最初の移行であるとの判断の下に、パルスモータバルブ23が所定開度たとえば100パルス分の開度まで開かれるとともに(ステップ302)、循環ポンプ27が起動されてその回転数が所定回転数たとえば3420rpmに設定される(ステップ303)。
【0061】
100パルス分の開度とは、パルスモータバルブ23に100発の駆動電圧パルスを供給して、室外熱交換器14から流出する低温冷媒が少量だけパルスモータバルブ23に通す開度のことである。そして、このときの低温冷媒の流れ込みによる水熱交換器22の温度低下を抑制するべく、循環ポンプ27を起動してその循環ポンプ27を3420rpmの回転数で運転し、給湯タンク31内の湯水を水熱交換器22に循環させるようにしている。
【0062】
このパルスモータバルブ23の100パルス分の開に伴い、冷媒温度センサ26の検知温度Txが異常判定用の設定値である例えば−5℃未満に低下するか否かが判定される(ステップ304)。検知温度Txが−5℃未満に低下すれば(ステップ304のYES)、冷媒温度センサ26が正常であるとの判断の下に、かつ冷媒温度センサ26に対するチェックが完了したとの判断の下に、RAM52のチェック完了フラグがオンされる(ステップ306)。
【0063】
検知温度Txが−5℃未満に低下しなくても(ステップ304のNO)、現時点の検知温度Txが今回の除霜開始前の冷媒温度センサ26の検知温度Tx0より低くてその差が25Kを超えていれば(ステップ305のYES)、冷媒温度センサ26が正常であるとの判断の下に、かつ冷媒温度センサ26に対するチェックが完了したとの判断の下に、RAM52のチェック完了フラグがオンされる(ステップ306)。
【0064】
このチェック完了フラグのオンに伴い、除霜運転に伴う循環ポンプ制御が実行される(ステップ200)。この循環ポンプ制御については第1実施形態と同じなので、その説明は省略する。
【0065】
室外熱交換器14の除霜が進んで、熱交温度センサ18の検知温度Teが設定値たとえば8℃を超えると、除霜回路の形成が解除されて除霜運転の終了となる(ステップ103)。この終了に伴い、水温度センサ35の検知温度Ttに応じて、加熱運転が適宜に再開される。
【0066】
加熱運転の再開後、除霜条件が成立すると(ステップ101のYES)、2回目の除霜運転が開始される(ステップ102)。このとき、RAM52のチェック完了フラグはオンとなっているので(ステップ301のYES)、ステップ302からのチェック処理が実行されることなく、循環ポンプ制御が実行される(ステップ200)。
【0067】
一方、最初の除霜運転時、検知温度Txが−5℃未満に低下しないまま(ステップ304のNO)、あるいは現時点の検知温度Txと今回の除霜開始前の冷媒温度センサ26の検知温度Tx0との差が−25Kを超えないまま(ステップ305のYES)、除霜運転の開始から3分が経過した場合には(ステップ307のYES)、冷媒温度センサ26が異常であるとの判断の下に、圧縮機11が停止されて今回の除霜運転を含む全ての運転が停止(異常停止)され且つその停止の旨が操作・表示部51で表示される(ステップ308)。冷媒温度センサ26の異常として、冷媒温度センサ26の検知機能そのものの故障、配管に対する冷媒温度センサ26の取付けが振動等により外れてしまう故障、冷媒温度センサ26の検知信号を伝達する信号線の切断などがある。
【0068】
給湯機の使用者は、全ての運転が停止したことの原因を操作・表示部51の表示から把握し、点検および修理等のメンテナンスをメーカーや販売店に依頼する。このメンテナンスが実施されるまで、異常停止の状態が保持される。
【0069】
したがって、冷媒温度センサ26に異常が生じたまま除霜運転が継続することはなく、水熱交換器22の凍結を確実に防止できる。ひいては、給湯タンク31内の湯水を確実に加熱することができる。
【0070】
なお、検知温度Txが−5℃未満に低下しないまま(ステップ304のNO)、あるいは現時点の検知温度Txと今回の除霜開始前の冷媒温度センサ26の検知温度Tx0との差が−25Kを超えないまま(ステップ305のYES)、さらには除霜運転の開始から3分が経過しないまま(ステップ307のNO)、室外熱交換器14の除霜が進んで、熱交温度センサ18の検知温度Teが設定値たとえば8℃を超えることがある(ステップ309のYES)。この場合は、冷媒温度センサ26に対するチェックがまだ完了せず保留であるとして、RAM52のチェック完了フラグのオフ状態が継続される(ステップ310)。そして、除霜回路の形成が解除されて除霜運転が終了する(ステップ103)。この終了に伴い、水温度センサ35の検知温度Ttに応じて、加熱運転が適宜に再開される。
【0071】
加熱運転の再開後、再び除霜運転が開始された場合には、RAM52のチェック完了フラグのオフ状態が継続しているので(ステップ301のNO)、上記ステップ302からのチェック処理が繰り返される。
【0072】
ところで、RAM52のチェック完了フラグ・オンは、電源スイッチのオフや商用交流電源の瞬時停電にかかわらず、電界コンデンサ53の残電荷により12時間程度は保持される。このため、電源スイッチのオンあるいは瞬時停電の解除によって加熱運転が開始(圧縮機11が起動)された後、チェックの完了の旨を表わすチェック完了フラグ・オンがRAM52に保持された状態にあれば、除霜運転が開始されてもチェック処理が実行されず、冷媒温度センサ26の想定外の異常を見逃してしまう可能性がある。
【0073】
そこで、センサ異常チェック制御では、加熱運転時(ステップ311のYES)、チェックの完了の旨を表わすチェック完了フラグ・オンがRAM52に保持されている場合に(ステップ312のYES)、冷媒温度センサ26に対する簡易的なチェック処理を実行する。
すなわち、加熱運転の開始直後(圧縮機11の起動直後)の冷媒温度センサ26の検知温度(水熱交換器22から流出してパルスモータバルブ23に向かって流れる冷媒の温度)をTxaとし、加熱運転中の冷媒温度センサ26の検知温度(同じく水熱交換器22から流出してパルスモータバルブ23に向かって流れる冷媒の温度)をTxbとし、その検知温度の変化(=Txb−Txa)が3Kを超えていれば(ステップ313のYES)、冷媒温度センサ26は冷媒温度を適正に捕えていて異常はないとの判断の下に、RAM52のチェック完了フラグ・オンがそのまま保持される(ステップ314)。
【0074】
ただし、検知温度の変化(=Txb−Txa)が3Kを超えないまま(ステップ313のYES)、加熱運転の開始から所定時間たとえば5分が継続した場合には(ステップ315のYES)、冷媒温度センサ26に冷媒温度を適正に捕えることのできない何らかの異常が生じているとの判断の下に、RAM52のチェック完了フラグ・オンが消去される(ステップ316)。つまり、RAM52のチェック完了フラグがオフとなる。
【0075】
このチェック完了フラグのオフにより、加熱運転から除霜運転に移行した際に、ステップ302からのチェック処理が実行されて冷媒温度センサ26の異常の有無が確認される。
【0076】
したがって、加熱運転中に冷媒温度センサ26に想定外の異常が生じたとしても、それを見逃すことなく、確実に検出することができる。これにより、水熱交換器22の凍結を防止するための循環ポンプ制御の信頼性が向上する。
【0077】
[3]変形例
上記各実施形態では、循環ポンプ制御における回転数として1300rpm、2600rpm、3420rpmの3段階を設定したが、その回転数の値および段階数について限定はなく、循環ポンプ27の容量、入水配管32や出水配管33の径、水熱交換器22の容量などに応じて適宜に定めればよい。
【0078】
その他、各実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。