【実施例】
【0026】
以下、本発明の実施例を図に基づいて詳説する。
図1は、プロジェクタ10の外観斜視図である。尚、本実施例において、左右とは投影方向に対しての左右方向を示し、前後とは光線束の進行方向に対しての前後方向を示す。プロジェクタ10は、
図1に示すように、略直方体形状であって、本体ケースの前方の側板とされる正面パネル12の側方に投影口を覆うレンズカバー19を有すると共に、この正面パネル12には複数の排気孔17を設けている。更に、図示しないがリモートコントローラからの制御信号を受信するIr受信部を備えている。
【0027】
又、本体ケースである上面パネル11にはキー/インジケータ部37が設けられ、このキー/インジケータ部37には、電源スイッチキーや電源のオン又はオフを報知するパワーインジケータ、投影のオン、オフを切りかえる投影スイッチキー、光源装置や表示素子又は制御回路等が過熱したときに報知をする過熱インジケータ等のキーやインジケータが配置されている。
【0028】
更に、本体ケースの背面には、背面パネルにUSB端子や画像信号入力用のD−SUB端子、S端子、RCA端子等を設ける入出力コネクタ部及び電源アダプタプラグ等の各種端子20が設けられている。尚、図示しない本体ケースの側板である右側パネル14、及び、
図1に示した側板である左側パネル15の下部近傍には、各々複数の吸気孔18が形成されている。
【0029】
次に、プロジェクタ10のプロジェクタ制御手段について
図2のブロック図を用いて述べる。プロジェクタ制御手段は、制御部38、入出力インターフェース22、画像変換部23、表示エンコーダ24、表示駆動部26等から構成され、入出力コネクタ部21から入力された各種規格の画像信号は、入出力インターフェース22、システムバス(SB)を介して画像変換部23で表示に適した所定のフォーマットの画像信号に統一するように変換された後、表示エンコーダ24に出力される。
【0030】
又、表示エンコーダ24は、入力された画像信号をビデオRAM25に展開記憶させた上でこのビデオRAM25の記憶内容からビデオ信号を生成して表示駆動部26に出力する。
【0031】
表示駆動部26は、表示エンコーダ24から出力された画像信号に対応して適宜フレームレートで空間的光変調素子(SOM)である表示素子51を駆動するものであり、光源装置63から射出された光線束を光源側光学系を介して表示素子51に入射することにより、表示素子51の反射光で光像を形成し、投影側光学系とする投影系レンズ群を介して図示しないスクリーンに画像を投影表示する。尚、この投影側光学系の可動レンズ群97は、レンズモータ45によりズーム調整やフォーカス調整のための駆動が行われる。
【0032】
又、画像圧縮伸長部31は、画像信号の輝度信号及び色差信号をADCT及びハフマン符号化等の処理によりデータ圧縮して着脱自在な記録媒体とされるメモリカード32に順次書き込む記録処理を行なう。更に、画像圧縮伸長部31は、再生モード時にメモリカード32に記録された画像データを読み出し、一連の動画を構成する個々の画像データを1フレーム単位で伸長し、この画像データを画像変換部23を介して表示エンコーダ24に出力し、メモリカード32に記憶された画像データに基づいて動画等の表示を可能とする処理を行なう。
【0033】
制御部38は、プロジェクタ10内の各回路の動作制御を司るものであって、CPUや各種セッティング等の動作プログラムを固定的に記憶したROM及びワークメモリとして使用されるRAM等により構成されている。
【0034】
本体ケースの上面パネル11に設けられるメインキー及びインジケータ等により構成されるキー/インジケータ部37の操作信号は、直接に制御部38に送出され、リモートコントローラからのキー操作信号は、Ir受信部35で受信され、Ir処理部36で復調されたコード信号が制御部38に出力される。
【0035】
尚、制御部38にはシステムバス(SB)を介して音声処理部47が接続されている。この音声処理部47は、PCM音源等の音源回路を備えており、投影モード及び再生モード時には音声データをアナログ化し、スピーカ48を駆動して拡声放音させる。
【0036】
又、制御部38は、光源制御回路41に画像信号に応じて赤色、緑色、青色の波長域光を射出する各発光装置の光源72を時分割制御させている。更に、制御部38は、冷却ファン駆動制御回路43に光源装置63等に設けた複数の温度センサによる温度検出を行わせ、この温度検出の結果から冷却ファンの回転速度を制御させている。又、制御部38は、冷却ファン駆動制御回路43にタイマー等によりプロジェクタ本体の電源OFF後も冷却ファンの回転を持続させ、更に、温度センサによる温度検出の結果によってはプロジェクタ本体の電源をOFFにする等の制御も行う。
【0037】
そして、これらのROM、RAM、ICや回路素子は、後述する主制御基板としての制御回路基板103や電源回路ブロック101に組み込まれ、制御系の主制御基板とした制御回路基板103と電力系の電源回路ブロック101等が取付けられる光源制御回路基板102とを分けて形成している。
【0038】
次に、このプロジェクタ10の内部構造について述べる。
図3は、プロジェクタ10の内部構造を示す平面模式図である。プロジェクタ10は、
図3に示すように、右側パネル14の近傍に電源回路ブロック101等を取付けた光源制御回路基板102が配置され、略中央にはシロッコファンタイプのブロア110が配置され、このブロア110の近傍に制御回路基板103が配置され、正面パネル12の近傍には光源装置63が配置され、左側パネル15の近傍には光学系ユニット70が配置されている。又、プロジェクタ10は、筐体内を区画用隔壁120により背面パネル13側の吸気側空間室121と正面パネル12側の排気側空間室122とに気密に区画されており、ブロア110は、吸込み口111が吸気側空間室121に位置し排気側空間室122と吸気側空間室121の境界に吐出口113が位置するように配置されている。
【0039】
光学系ユニット70は、光源装置63の近傍に位置する照明側ブロック78と、背面パネル13側に位置する画像生成ブロック79と、照明側ブロック78と左側パネル15との間に位置する投影側ブロック80との3つのブロックから構成された略コの字形状である。
【0040】
この照明側ブロック78は、光源装置63から射出された光を画像生成ブロック79が備える表示素子51に導光する光源側光学系62の一部を備えている。この照明側ブロック78が有する光源側光学系62としては、光源装置63から射出された光線束を均一な強度分布の光束とする導光装置75や、導光装置75を透過した光を集光する集光レンズ等がある。
【0041】
画像生成ブロック79は、光源側光学系62として、導光装置75から射出された光線束の光軸方向を変更する光軸変更ミラー74と、この光軸変更ミラー74により反射した光を表示素子51に集光させる複数枚の集光レンズと、これらの集光レンズを透過した光線束を表示素子51に所定の角度で照射する照射ミラー84と、を有している。更に、画像生成ブロック79は、表示素子51とするDMDを備え、この表示素子51の背面パネル13側には表示素子51を冷却するための表示素子冷却装置53が配置されて、表示素子51が高温となることを防止している。
【0042】
投影側ブロック80は、表示素子51で反射されて画像を形成する光をスクリーンに放出する投影側光学系90のレンズ群を有している。この投影側光学系90としては、固定鏡筒に内蔵する固定レンズ群93と可動鏡筒に内蔵する可動レンズ群97とを備えてズーム機能を備えた可変焦点型レンズとされ、レンズモータにより可動レンズ群97を移動させることによりズーム調整やフォーカス調整を可能としている。
【0043】
又、プロジェクタ10の内部構造において、吸気側空間室121内には光源装置63と比較して低温である部材が配置されるものであり、具体的には、光源制御回路基板102と、ブロア110と、制御回路基板103と、光学系ユニット70の画像生成ブロック79と、光学系ユニット70の投影側ブロック80と、光学系ユニット70の照明側ブロック78における集光レンズと、が配置されている。
【0044】
一方、排気側空間室122内には、比較的高温となる光源装置63と、光学系ユニット70の照明側ブロック78が備える導光装置75と、排気温低減装置114とが配置されている。
【0045】
そして、本発明に係る光源装置63は、励起エネルギー源72からの励起用光線を受けて各々波長域の異なる光を導光装置75に射出する三個の発光装置64から構成されるものであり、具体的には、赤色の波長域光を発光する赤色蛍光体が配置されて赤色の波長域光を射出する赤色発光装置64Rと、緑色の波長域光を発光する緑色蛍光体が配置されて緑色の波長域光を射出する緑色発光装置64Gと、青色の波長域光を発光する青色蛍光体が配置されて青色の波長域光を射出する青色発光装置64Bとから構成されている。
【0046】
又、各発光装置64は、当該発光装置64から射出される光の光軸が導光装置75の光軸と直交するように配置されている。そして、ブロアの吐出口113の近傍に赤色発光装置64Rが配置され、正面パネル12の近傍に青色発光装置64Bが配置され、赤色発光装置64Rと青色発光装置64Bの間に緑色発光装置64Gが配置されている。
【0047】
又、各発光装置64には、励起エネルギー源72が備えられており、この励起エネルギー源72からの励起用光線が各発光装置64が備える蛍光体に照射されることにより、各色の波長域光が発光装置64より出射されることとなる。この励起エネルギー源72は、赤色、緑色、青色の波長域光よりも波長の短い可視光である紫色の波長域光或いは紫外領域の波長域光(紫外線)を射出する発光ダイオード又はレーザー発光器とされるものである。
【0048】
尚、各励起エネルギー源72を全て同一仕様とする場合に限らず、各蛍光体から所定の波長域光が生成されるような励起用光線を射出することができるものであればよく、例えば、赤色及び緑色発光装置64R,64Gには赤色及び緑色の波長域よりも波長の短い青色の波長域光を励起用光線として射出可能な励起エネルギー源72を採用してもよい。又、各発光装置64に複数種類の励起エネルギー源72を配置して、状況に応じて切り換えて使うこととしてもよい。
【0049】
又、この光源装置63は、
図4に示すように、光の三原色である赤色、緑色、青色の所定波長域光を生成する三個の発光装置64と、各発光装置64から射出される光線束の光軸を変換する光軸変換装置としての反射ミラー140やダイクロイックミラー141と、レンズと、から構成される集光光学系を備えている。
【0050】
この集光光学系は様々な構成を採用することができるものであるが、本実施例においては、各発光装置64の光の出射方向に光軸変換装置を配置して、各発光装置64からの光線束の光軸の向きを一致させると共に導光装置75の光軸と同一となるように90度変換している。具体的には、赤色光を反射し赤色光以外の光を透過する第一ダイクロイックミラー141aが赤色発光装置64Rと導光装置75の光軸とが交差する位置に配置され、緑色光を反射し緑色光以外の光を透過する第二ダイクロイックミラー141bが緑色発光装置64Gと導光装置75の光軸とが交差する位置に配置され、光を反射する反射ミラー140が青色発光装置64Bと導光装置75の光軸とが交差する位置に配置されている。
【0051】
そして、この集光光学系は、各発光装置64からの光線束を導光装置75に集光させて導くために集光レンズとしてのレンズ群148や、凸レンズ163を備え、更に、赤色、緑色、青色の光線束を導光装置75の入射面に集光させる導光装置入射レンズ164を備えている。
【0052】
このように集光光学系を構成することで、赤色発光装置64Rから射出された赤色光は、レンズ群148により集光され凸レンズ163に照射され、該凸レンズ163によって集光された光が第一ダイクロイックミラー141aで反射した後、導光装置入射レンズ164によって導光装置75の入射面に集光されることとなる。
【0053】
又、緑色発光装置64Gから射出された緑色光は、レンズ群148により集光されて第二ダイクロイックミラー141bに入射し、第二ダイクロイックミラー141bで反射した後、凸レンズ163により集光されて第一ダイクロイックミラー141aに照射され、第一ダイクロイックミラー141aを透過した後、導光装置入射レンズ164によって導光装置75の入射面に集光されることとなる。
【0054】
そして、青色発光装置64Bから射出された青色光は、レンズ群148により集光されて反射ミラー140に照射され、反射ミラー140で反射した後、凸レンズ163により集光されて第二ダイクロイックミラー141bに照射され、第二ダイクロイックミラー141bを透過した後、更に凸レンズ163により集光されて第一ダイクロイックミラー141aに照射され、第一ダイクロイックミラー141aを透過した後、導光装置入射レンズ164によって導光装置75の入射面に集光されることとなる。
【0055】
したがって、この光源装置63の三個の発光装置64が光源制御回路41によって時分割制御されることで、所定波長領域の光線束が導光装置75に順次入射され、導光装置75に入射した光線束が光源側光学系62によって表示素子51に誘導されることとなる。これにより、各励起エネルギー源72の照射タイミングに合せて表示素子51がデータに応じて各色の光を時分割表示することで、投影側光学系90を介してスクリーンにカラー画像を生成することができる。
【0056】
次に、赤色発光装置64R及び緑色発光装置64G、青色発光装置64Bとされた発光装置64の構造について述べる。発光装置64は、直方体形状のケース130と、該ケース130の両端部に接続される循環路としての循環水管138と、ケース130及び循環水管138内に封入される冷媒を循環させるポンプ136と、を有している。又、冷媒は、光透過性の高い水やフッ素系不凍液体などの流体である。
【0057】
又、この発光装置64の循環水系統には、冷媒を冷却する冷却器137が備え付けられている。この冷却器137は、例えば、空冷式のラジエータ(放熱器)であって、プロジェクタ10の冷却ファンからの送風によって冷媒を冷却可能に構成されているものである。
【0058】
つまり、この発光装置64は、ケース130、ポンプ136及び冷却器137に循環水管138が接続されて循環水系統を構成することにより、冷却器137によって冷媒を冷却し、ポンプ136によって冷媒を循環させて、常に低温状態の冷媒をケース130に送給することができるようになっている。
【0059】
そして、この発光装置64は、励起用光線を受けて吸収することにより励起されて所定の波長域光を発光する蛍光体131がケース130内の所定位置に配置されて、ケース130に流入する冷媒と直接に接するようになっている。
【0060】
具体的には、この蛍光体131は、
図5に示すように、ケース130の励起用光線透過部132上に配置され、循環水管138の入口部が所定の角度で形成されることにより、流入する冷媒135の噴出流が斜めに蛍光体131の面に当たって、蛍光体131の表面から熱を十分に奪うことができるようになっている。尚、冷媒135の噴出流を蛍光体131の面に当てることなくケース130内に導入して蛍光体131周囲に流れを作ることで蛍光体131を冷却してもよいが、このように冷媒135の噴出流を蛍光体131の面に当てることにより、より効果的な冷却ができる。
【0061】
そして、この発光装置64のケース130には、励起エネルギー源72からの励起用光線を入射する励起用光線透過部132が励起エネルギー源72側の面に配置され、対向する反対側の面に蛍光体131が発する波長域光を出射する発光透過部133が配置されている。
【0062】
この励起用光線透過部132と発光透過部133はガラス等の光透過性を有する矩形板であって、当該矩形板より幅の狭い矩形開口が形成された蓋板によって保持されている。又、このケース130は、側板端部に装着されるOリング139によって、内部が水密とされている。
【0063】
又、励起用光線透過部132には、励起用光線を透過し、且つ、蛍光体131が発する波長域光を反射するダイクロイック層132aが形成され、発光透過部133には、励起用光線を反射し、且つ、蛍光体131が発する波長域光を透過するダイクロイック層133aが形成されている。尚、励起用光線透過部132における励起用光線の入射面側には、図示しない無反射コート層がコーディングにより形成されている。
【0064】
そして、ケース130の励起用光線透過部132と発光透過部133を除く内側全面には、光を反射する反射層134が形成されている。尚、この反射層134は、ケース130の部材を金属として鏡面に仕上げる或いは銀蒸着等を施すことで形成されることもある。
【0065】
次に、励起エネルギー源72から射出される励起用光線とケース130から射出され導光装置75に入射される光について説明する。励起エネルギー源72から励起用光線がケース130の励起用光線透過部132に照射されると、当該励起用光線は、励起用光線透過部132の入射面の無反射コート層を励起エネルギー源72側へほとんど反射されることなく透過して励起用光線透過部132に入射する。
【0066】
そして、励起用光線透過部132を透過した励起用光線は、ダイクロイック層132aを透過して蛍光体131に照射される。この蛍光体131は、当該励起用光線を吸収して所定の波長域光を全方位に射出するものである。即ち、赤色発光装置64Rの赤色蛍光体131からは赤色の波長域光が射出され、緑色発光装置64Gの緑色蛍光体131からは緑色の波長域光が射出され、青色発光装置64Bの青色蛍光体131からは青色の波長域光が射出される。
【0067】
そして、蛍光体131から発光透過部133側に射出される光は発光透過部133を透過してそのまま集光光学系を介して導光装置75に入射し、発光透過部133以外の部分であるケース130の内面や励起用光線透過部132に射出される光はケース130内面の反射層134や励起用光線透過部132のダイクロイック層132aによって反射され、発光透過部133を介して当該反射光の多くが発光装置64からの射出光として導光装置75に入射されることとなる。
【0068】
更に、励起用光線透過部132を透過し、直接に発光透過部133に射出された励起用光線はダイクロイック層133aによって反射されて蛍光体131に吸収される。又、ケース130の内面に照射された励起用光線も、反射層134によって反射されて、蛍光体131に吸収される。これにより、発光装置64を効果的に明るく発光させることができ、導光装置75に多くの光を入射させることができる。
【0069】
このように、この発光装置64は、蛍光体131をケース130内に配置して、循環する低温状態の冷媒135と直接に接するようにすることで、蛍光体131を効果的に冷却することができる。更に、冷媒135の噴出流が蛍光体131の面に当たる位置に当該蛍光体131を配置させることにより、より効果的な冷却効果が期待できる。つまり、この発光装置64は、強制対流により熱伝達率を向上させて、効率のよい冷却を行うことができる。又、この発光装置64は、温度の上昇した冷媒135を循環水管138からの放熱更には冷却器137によって冷却することができるため、常にケース130に流入する冷媒135を低温状態に保つことができる。そして、蛍光体131と励起エネルギー源72の間に蛍光体131冷却用の構造体等が配置されることもないため、蛍光体131に励起用光線を十分に吸収させて発光させることができる。更に、ケース130の励起用光線透過部132及び発光透過部133を除く内面には、反射層134が形成されているため、蛍光体131を効果的に冷却するために冷媒135が流れるケース130の内部容積を大きくした場合でも、励起用光線及び蛍光体131からの発光光を反射して発光透過部133側へ導光するため、発光光の利用効率を更に向上させて発光装置64を効果的に明るく発光させることができる。これにより、蛍光体131を効率よく冷却して蛍光体131の発光効率の低下を抑制し、長期間にわたって高い性能を維持することのできる発光装置64と、複数個の発光装置64により構成される光源装置63と、この光源装置63を備えるプロジェクタ10を提供することができる。
【0070】
そして、このプロジェクタ10は、プロジェクタ10に内蔵される光源装置63を、赤色、緑色及び青色の波長域光を射出可能とする三個の発光装置64R,64G,64Bで構成し、各発光装置64の光軸を光軸変換装置で同一の光軸として導光装置75の光軸と一致させているため、各発光装置64の冷媒135をポンプ136によって循環させると共に各発光装置64の励起エネルギー源72から射出する励起用光線を順次点滅させると、ケース130の発光透過部133から射出される赤色、緑色及び青色の波長域光が導光装置75に順次入射され、各励起エネルギー源72の照射タイミングに合せてプロジェクタ10の表示素子51がデータに応じて各色の光を時分割表示することにより、スクリーンにカラー画像を生成することができる。
【0071】
尚、各発光装置64は、光源制御回路41によって順次点滅するように構成する場合に限ることなく、組み合わせて各色光を合成して導光装置75に照射させることとしてもよい。例えば、赤色、緑色、青色発光装置64R,64G,64Bから同時に各色光を射出すれば、各色光が合成されて形成される白色光を導光装置75に照射させることにより輝度を向上させることができる。更に、赤色、緑色、青色の点灯時間比率を変更して輝度の低い色の点灯時間を長くするなどにより、色の配合等の色合いを調整することも容易に可能となる。
【0072】
そして、発光透過部133には、励起用光線を反射し蛍光体131からの発光光を透過するダイクロイック層133aが形成されているため、励起用光線を反射させて蛍光体131に照射させることができるため、励起用光線の利用効率を向上させることができると共に、励起用光線が導光装置75側に出射されてプロジェクタ10の外部に射出されることを防止することができる。
【0073】
又、励起用光線透過部132に励起用光線を透過し蛍光体131からの発光光を反射するダイクロイック層132aを形成することで、蛍光体131からの発光光を導光装置75側へ反射して導光装置75に入射する光量を増加させることができる。
【0074】
又、励起用光線透過部132の励起用光線入射面に無反射コート層が形成されているため、励起エネルギー源72から射出される励起用光線の利用効率を向上させることができる。
【0075】
更に、励起エネルギー源72として発光ダイオード又はレーザー発光器を採用することにより、従来の放電ランプ等を光源装置とするプロジェクタに比べて、電力消費を抑えることができると共に小型化を図ることができる。
【0076】
又、発光装置64は、光の三原色である赤色、緑色及び青色の波長域光を生成する三個の発光装置64で構成する場合に限定することなく、様々な組み合わせを採用することができる。例えば、黄色等の補色の波長域光を生成する発光装置64を光源装置63に更に組込んでもよい。これにより、光源装置63の輝度を上げて色再現性の向上を図ることもできる。
【0077】
そして、蛍光体131の配置位置と、循環水管138の出入口の配設位置は、
図5に示したように、蛍光体131を励起用光線透過部132上に配置する場合に限定することなく、様々な形態を採用することができる。
【0078】
例えば、蛍光体131は、
図6に示すように、ケース130を励起用光線透過部132側と発光透過部133側とに区分するように配置されることもある。このとき、ケース130の励起用光線透過部132側と発光透過部133側は各々水密とされている。そして、このケース130には、循環水管138の出入口が励起用光線透過部132側と発光透過部133側の夫々に設けられている。
【0079】
そして、この発光装置64は、前述と同様に循環水管138の入口部を所定の角度で形成し、流入する冷媒135の噴出流が蛍光体131の両面に当たるように構成されている。これにより、蛍光体131を両面から効率的に冷却することができるため、より長期にわたって性能を維持することができる。尚、より効果的に冷却するために、例えば、
図6における発光透過部133側の冷媒の流れを逆にし、励起用光線透過部132側と発光透過部133側の夫々の冷媒の流れの方向を対向するように構成してもよい。
【0080】
又、蛍光体131は、
図7に示すように、ケース130の略中央に配置され、蛍光体131の周囲に流路が形成されていることもある。この発光装置64のケース130は、蛍光体131が格子によって保持されて、この格子の間隙を冷媒135が通過することができるように構成されている。
【0081】
この発光装置64は、流入される冷媒135の噴出流が蛍光体131の一方の面に当たるように、且つ、一部の冷媒135が蛍光体131の周囲から発光透過部133側に流れ、更に蛍光体131を回り込んで蛍光体131の周囲から励起用光線透過部132側に戻って出口部から流出されるように構成されるものである。
【0082】
これにより、循環水管138の出入口を夫々一つとして発光装置64をコンパクトにすると共に、蛍光体131を効率よく冷却することができる。
【0083】
尚、循環水管138の出口の位置は、流入される冷媒135の速度やケース130の大きさなどの条件によっては、入口の位置と対向するように配置せずに、発光透過部133側に配置することもある。
【0084】
又、循環水管138の出入口を一つずつ配置せずに、蛍光体131の配置位置に対して励起用光線透過部132側と発光透過部133側の夫々に設けて、蛍光体131の両面に冷媒135の噴出流を当てて直接的に冷却することで冷却効率を向上させることもできる。
【0085】
そして、本発明は、以上の実施例に限定されるものでなく、発明の要旨を逸脱しない範囲で自由に変更、改良が可能である。例えば、この発光装置64は、冷却器137を備える場合に限定されることなく、熱伝導性の高い銅やアルミニウム等から形成される循環水管138からの放熱によって、冷媒135を冷却させることもできる。尚、この場合、循環水管138は、長く形成すると共に外面に冷却ファンからの送風を噴き当てるなどすることによって、冷却効率を向上させることができるため、好適である。
【0086】
又、冷却器137に送風する送風機は、プロジェクタ10等の機器に配置される冷却ファンとする場合に限るものでもなく、各冷却器137に個別に装着することとしてもよい。更に、冷媒135を容易に出し入れすることのできるように、循環路にはリザーバータンクを設けることもある。
【0087】
又、発光装置64のケース130に形成される励起用光線透過部132及び発光透過部133については、一方の面に励起用光線透過部132を形成し、対向する他方の面に励起エネルギー源72の光軸と当該発光装置64からの射出光の光軸とが同一となるように発光透過部133を形成したが、これに限定されることなく、励起用光線透過部132に対して発光透過部133をずらして形成してもよいし、対向する面ではなく、一方を側面に形成することとしてもよい。
【0088】
そして、励起エネルギー源72は、励起用光線透過部132に照射することのできる位置に配置されていればよいため、励起エネルギー源72からの励起用光線の光軸を励起用光線透過部132の面に対して直交させるように配置する場合に限ることなく、所定の角度で励起用光線が入射されるように配置してもよい。
【0089】
そして、プロジェクタ10に実装する光源装置63としては、発光装置64を複数個配置する場合に限定することなく、白色の波長域光を生成可能とする蛍光体131を有する単一の白色発光装置64を備え、この白色発光装置64からの白色光をカラーホイールで着色する構成とすることもできる。これにより、プロジェクタ10の設計自由度を向上させることができる。
【0090】
又、上記実施例の発光装置64は、発光透過部133を数センチメートル程度としてプロジェクタ10に組み込むこととしたが、プロジェクタ10に実装する場合に限られることなく、露光装置などの様々な機器に実装して用いることができる。そして、この発光装置64は、赤色、緑色及び青色を組み合わせて用いることに限定されるものでもなく、単色を発光する発光装置64を照明装置に組み込んで、多数の単色発光装置64から構成されるイルミネーション照明装置や単色のスポットライトを照射可能な照明装置、更には面光源としての照明装置、液晶パネルのバックライトとしての照明装置等種々の照明装置や表示装置に実装して用いることもできる。
【0091】
そして、励起エネルギー源72は、不可視光線としての紫外線や、可視光線としての紫色等の波長域光を射出可能とするものに限定されることなく、励起用光線としてより高エネルギーを用いるものとして、X線や電子線を射出可能な励起エネルギー源72を採用することもできる。この場合、蛍光体131からの発光光をミラーやプリズム等により進行方向を90度変化させ、励起エネルギー源72から蛍光体131の方向において、ミラーやプリズム等の先に遮蔽板を設けるなどシールドを施して高輝度の光を得るようにする。