特許第5979559号(P5979559)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人電気通信大学の特許一覧

<>
  • 特許5979559-高効率電力増幅器 図000007
  • 特許5979559-高効率電力増幅器 図000008
  • 特許5979559-高効率電力増幅器 図000009
  • 特許5979559-高効率電力増幅器 図000010
  • 特許5979559-高効率電力増幅器 図000011
  • 特許5979559-高効率電力増幅器 図000012
  • 特許5979559-高効率電力増幅器 図000013
  • 特許5979559-高効率電力増幅器 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5979559
(24)【登録日】2016年8月5日
(45)【発行日】2016年8月24日
(54)【発明の名称】高効率電力増幅器
(51)【国際特許分類】
   H03F 1/02 20060101AFI20160817BHJP
   H03F 3/21 20060101ALI20160817BHJP
   H03F 3/60 20060101ALI20160817BHJP
   H03H 7/38 20060101ALI20160817BHJP
   H01P 1/212 20060101ALI20160817BHJP
   H01P 7/08 20060101ALI20160817BHJP
【FI】
   H03F1/02
   H03F3/21
   H03F3/60
   H03H7/38 Z
   H01P1/212
   H01P7/08
【請求項の数】14
【全頁数】16
(21)【出願番号】特願2013-531380(P2013-531380)
(86)(22)【出願日】2012年8月29日
(86)【国際出願番号】JP2012071909
(87)【国際公開番号】WO2013031865
(87)【国際公開日】20130307
【審査請求日】2015年6月26日
(31)【優先権主張番号】特願2011-186626(P2011-186626)
(32)【優先日】2011年8月29日
(33)【優先権主張国】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成22年度、総務省、戦略的情報通信研究開発推進制度(SCOPE)委託事業、産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】504133110
【氏名又は名称】国立大学法人電気通信大学
(74)【代理人】
【識別番号】100102864
【弁理士】
【氏名又は名称】工藤 実
(72)【発明者】
【氏名】神山 仁宏
(72)【発明者】
【氏名】石川 亮
(72)【発明者】
【氏名】本城 和彦
【審査官】 ▲高▼橋 義昭
(56)【参考文献】
【文献】 特開2009−081605(JP,A)
【文献】 特開2011−066839(JP,A)
【文献】 特開2001−111362(JP,A)
【文献】 特開平07−094974(JP,A)
【文献】 特開昭62−274906(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H03F 1/02
H01P 1/212
H01P 7/08
H03F 3/21
H03F 3/60
H03H 7/38
(57)【特許請求の範囲】
【請求項1】
電流および電圧に基本角周波数を有する基本波成分を含む入力電力を増幅して出力電力を出力するトランジスタと、
前記トランジスタの後段に接続された出力電力処理回路部と
を具備し、
前記出力電力処理回路部は、
前記出力電力の基本波成分におけるインピーダンス整合を行う出力整合回路部と、
前記出力電力のうち、前記基本角周波数の整数倍である複数の高調波角周波数をそれぞれ有する複数の高調波成分を無効電力化するように形成された出力高調波処理回路部と
を具備し、
前記出力高調波処理回路部は、前記複数の高調波成分のうち少なくとも1つにおいて、前記無効電力化を、前記出力電力における電流および電圧の位相を直交させることで実現するように形成されている
高効率電力増幅器。
【請求項2】
請求項1に記載の高効率電力増幅器において、
前記出力高調波処理回路部は、
所定の次数の高調波で短絡することで前記所定の次数の高調波成分における前記無効電力化を実現する位相調整回路部
を具備する
高効率電力増幅器。
【請求項3】
請求項2に記載の高効率電力増幅器において、
前記出力高調波処理回路部は、
他の次数の高調波で短絡することで前記他の次数の高調波成分における前記無効電力化を実現する他の位相調整回路部
をさらに具備し、
前記出力電力処理回路部は、
前記トランジスタの出力部と、後段の負荷との間に接続された主線路部
をさらに具備し、
前記位相調整回路部と、前記他の位相調整回路とは、前記主線路部における複数の接続点にそれぞれ接続されている
高効率電力増幅器。
【請求項4】
請求項1〜3のいずれかに記載の高効率電力増幅器において、
前記トランジスタの出力等価電流源から、前記出力電力処理回路部の後段側を見たインピーダンスが、前記基本波成分については共役整合されていて、かつ、前記無効電力化を施された前記高調波成分については純リアクタンスとなる
高効率電力増幅器。
【請求項5】
請求項1〜3のいずれかに記載の高効率電力増幅器において、
前記トランジスタの出力等価電流源から、前記出力電力処理回路部の後段側を見たインピーダンスが、前記無効電力化を施された前記高調波成分については純リアクタンスとなり、かつ、前記基本波成分については直流投入電力に等しい有効電力成分に相当する力率に設定されている
高効率電力増幅器。
【請求項6】
請求項1〜3のいずれかに記載の高効率電力増幅器において、
前記無効電力化される前記複数の高調波成分は、
前記基本角周波数の2倍の角周波数を有する2次高調波成分と、
前記基本角周波数の3倍の角周波数を有する3次高調波成分と、
前記基本角周波数の4倍の角周波数を有する4次高調波成分と
を含む
高効率電力増幅器。
【請求項7】
請求項1〜6のいずれかに記載の高効率電力増幅器において、
前記出力高調波処理回路部は、
前記基本波成分の実質的な電気長に換算して前記トランジスタの出力部から4分の1波長離れた位置に接続されて、前記複数の高調波成分のうちの少なくとも1つについて、前記少なくとも1つの高調波成分における電圧または電流の一方の振幅をゼロレベルにするように形成された先端開放型スタブ
を具備する
高効率電力増幅器。
【請求項8】
請求項1〜7のいずれかに記載の高効率電力増幅器において、
前記出力高調波処理回路部は、
前記複数の高調波の少なくとも1つを無効電力化する分布定数回路部
を具備する
高効率電力増幅器。
【請求項9】
請求項8に記載の高効率電力増幅器において、
前記分布定数回路部は、
無効電力化される高調波の1/4波長の電気長を有する先端開放スタブ
を具備する
高効率電力増幅器。
【請求項10】
請求項8に記載の高効率電力増幅器において、
前記分布定数回路部は、
無効電力化される複数の高調波のそれぞれにおける1/4波長の電気長を有する複数の先端開放スタブを具備し、
前記複数の先端開放スタブのそれぞれにおける一方の端部は、前記出力高調波処理回路部における一点に共通接続されている
高効率電力増幅器。
【請求項11】
請求項1〜10のいずれかに記載の高効率電力増幅器において、
前記トランジスタの前段に接続された入力電力処理回路部
をさらに具備し、
前記入力電力処理回路部は、
前記基本波電力のインピーダンス整合を行う入力整合回路部と、
前記複数の高調波電力のうち少なくとも1つにおいて、無効電力化を行う入力高調波処理回路部と
を具備する
高効率電力増幅器。
【請求項12】
請求項1〜11のいずれかに記載の高効率電力増幅器において、
前記トランジスタは、
GaN(窒化ガリウム)HEMT(高電子移動度トランジスタ)
を具備する
高効率電力増幅器。
【請求項13】
請求項1〜12のいずれかに記載の高効率電力増幅器において、
前記出力高調波処理回路部は、
前記複数の高調波電力の少なくとも1つを無効電力化する集中定数回路部
を具備する
高効率電力増幅器。
【請求項14】
請求項1〜13のいずれかに記載の
出力高調波処理回路部。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電力増幅器に係り、特に、電力増幅器内での高調波の平均消費電力を抑制することで電力効率を高めた電力増幅器に係る。
【背景技術】
【0002】
電力増幅では、電力効率の向上が重要である。トランジスタを用いる電力増幅器で、所望の基本周波数を有する電力を増幅すると、トランジスタは非線形素子であるため、基本周波数を有する基本波成分の他に、基本周波数の整数倍の周波数を有する不要な高調波成分が生じる。この不要な高調波成分が電力増幅器内で消費されると、電力増幅器の付加電力効率が下がってしまう。
【0003】
高調波成分を制御し、付加電力効率の低下を抑制する方法として、F級増幅および逆F級増幅を用いる方法が知られている。F級増幅および逆F級増幅では、時間領域において、トランジスタの出力側の電圧および電流が分離している。より具体的には、F級増幅では、電圧は矩形波であり、電流は正弦半波であり、電圧および電流が交互にゼロレベルになる。逆F級増幅では反対に、電流は矩形波であり、電圧は正弦半波であり、やはり電圧および電流が交互にゼロレベルになる。
【0004】
図1Aは、F級増幅器の、トランジスタに流れ込む電流と、トランジスタの出力端子に生じる電圧とにおける時間変化の一例を示すグラフ群である。ここで、トランジスタに流れ込む電流は、例えばドレーン電流であり、また、トランジスタの出力端子に生じる電圧は、例えばドレーンソース間電圧である。図1Aのグラフ群は、トランジスタに流れ込む電流を示す第1のグラフ1Aiと、トランジスタの出力端子に生じる電圧を示す第2のグラフ1Avとを含んでいる。図1Aにおいて、横軸は基本周波数の周期を単位とした時間経過を示しており、縦軸は電流および電圧の振幅を示している。第1のグラフ1Aiに示す電流i(t)と、第2のグラフ1Avに示す電圧vds(t)とは、以下の式(1)によって表される。
【0005】
【数1】
【0006】
図1Aの例に示したように、F級増幅器のトランジスタは、ドレーンソース間電圧が発生している時にはドレーン電流がゼロレベルとなり、反対にドレーン電流が発生している時にはドレーンソース間電圧がゼロレベルとなるように形成されている。したがって、F級増幅器のトランジスタの内部で消費される電力はゼロであり、同じく平均消費電力もゼロである。その結果、F級増幅器では、理論的には100%の電力効率が得られることになる。この特徴については、逆F級増幅器も同様である。
【0007】
上記に関連して、特許文献1(特許4335633号)には、F級増幅回路およびF級増幅器用付加回路に係る発明が開示されている。このF級増幅回路は、トランジスタと、このトランジスタの後段に接続された負荷回路とを具備している。負荷回路は、第1リアクタンス二端子回路と、第2リアクタンス二端子回路とを具備している。各々のインピーダンスは、必要に応じて、偶数次高調波において零点、ならびに奇数次高調波において極を有する。
【0008】
また、特許文献2(特開2011−55152号公報)には、増幅回路に係る発明が開示されている。この増幅回路は、トランジスタと、このトランジスタの後段に接続された高調波処理回路と、この高調波処理回路の後段に接続された共振回路部とを具備している。このトランジスタは、電流源と、ドレーンソース間容量と、ドレーンインダクタンスとを有する等価回路として表現可能である。この高調波処理回路は、各段が並列容量および直列インダクタを具備するn段の梯子型回路を有する。ここで、nは1以上の整数である。この共振回路部は、共振周波数が互いに異なる2n+1個の共振器を有する。これら2n+1個の共振器の共振周波数は、高調波処理回路の出力部を短絡した場合に、トランジスタのドレーン出力部および接地面の間に形成されるn+1個の極およびn個の零点の周波数にそれぞれ一致する。これら2n+1個の共振器のうち、2n個の共振器の共振周波数は、2次から2n+1次の高調波の周波数にそれぞれ一致している。
【0009】
また、特許文献3(特開2011−66839号公報)には、マイクロ波高調波処理回路に係る発明が開示されている。このマイクロ波高調波処理回路は、直列伝送線路と、この直列伝送線路の出力端子に1点で並列接続された複数の並列先端開放スタブとを有する。この直列伝送線路は、入力端子がトランジスタの出力端子に接続されていて、所定の電気長を有する。これら複数の並列先端開放スタブは、2次以上でn次までの高調波に対してそれぞれが所定の電気長を持つ。ここで、nは任意の整数であって、複数の並列先端開放スタブの総数はn−1個である。このマイクロ波高調波処理回路は、第1伝送線路層と、第2伝送線路層と、接地層と、ビアとを有する。この第1伝送線路層は、直列伝送線路とn−1個の並列先端開放スタブの内の2つの並列先端開放スタブが1つの接続点で接続されて構成されている。この第2伝送線路層は、これら2つの並列先端開放スタブを除くn−3個の並列先端開放スタブが1つの接続点で接続されて構成されている。この接地層は、第1伝送線路層と、第2伝送線路層との間に配置されている。このビアは、第1伝送線路層における接続点と、第2伝送線路層における接続点とを電気的に接続する。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特許4335633号
【特許文献2】特開2011−55152号公報
【特許文献3】特開2011−66839号公報
【0011】
【非特許文献1】P. Colantonio, F.Gianni, R. Giofre, E. Limiti, A. Serino, M. Peroni, P. Romanini, and C. Proietti, “A C−band high0efficiency second−harmonic−tuned hybrid power amplifier in GaN technology”, IEEE Trans. Microw. Theory Tech., vol. 54, no.6 pp. 2713−2722. June 2006
【非特許文献2】Y. Hao, L. Yang, X. Ma, J. Ma, M. Cao, C. Pan, C. Wang, and J. Zhang, “High−Performance Microwave Gate−Recessed AlGaN/AlN/GaN MOS−HEMT With 73% Power−Added Efficiency”, IEEE Electron Device Lett., vol. 32, no. 5, pp. 626−628. May 2011
【非特許文献3】R. Negra, and W. Bachtold, “BiCMOS MMIC class−E power amplifier for 5 to 6GHz wireless communication systems”, in Proc. 35th Eur. Microw. Conf., Paris, France, Oct. 2005, pp. 445−448.
【非特許文献4】Y. Tsuyama, K. Yamanaka, K. Namura, S. Chaki, and N. Shinohara, “Internally−matched GaN HEMT high efficienty power amplifier for SPS”, IEEE MTT−S Int. Microw. Works. Dig., Kyoto, Japan, May 2011, pp.41−44.
【非特許文献5】K. Kuroda, R. Ishikawa, K. Honjo, “Parasitic compensation design technique for a C−band GaN HEMT class−F amplifier”, IEEE Trans. Microw. Theory Tech., vol. 58, no. 11 pp.2741−2750, Nov. 2010.
【発明の概要】
【0012】
このように、F級増幅器および逆F級増幅器は、きわめて優れた電力効率を実現するものである。しかし、実際には、電流および電圧を完全に分離するためには、高調波成分として大きな振幅が必要となり、すなわち、高周波性能のより高いトランジスタが必要となる。また、F級増幅器および逆F級増幅器は、回路損失の影響を受けやすいので、特にマイクロ波帯域では理想状態の実現が比較的困難となる場合がある。
【0013】
本発明の目的は、マイクロ波帯域を含む高周波帯域においても比較的実現しやすい高効率電力増幅器を提供することである。
【0014】
以下に、(発明を実施するための形態)で使用される番号を用いて、課題を解決するための手段を説明する。これらの番号は、(特許請求の範囲)の記載と(発明を実施するための形態)との対応関係を明らかにするために付加されたものである。ただし、それらの番号を、(特許請求の範囲)に記載されている発明の技術的範囲の解釈に用いてはならない。
【0015】
本発明による高効率電力増幅器は、トランジスタ(10)と、出力電力処理回路部(30)とを具備する。ここで、トランジスタ(10)は、電流および電圧に基本角周波数成分を有する入力電力を増幅して出力電力を出力する。出力電力処理回路部(30)は、トランジスタ(10)の後段に接続されている。出力電力処理回路部(10)は、出力整合回路部(32)と、出力高調波処理回路部(31)とを具備する。ここで、出力整合回路部(32)は、出力電力の基本角周波数成分におけるインピーダンス整合を行う。出力高調波処理回路部(31)は、出力電力のうち、基本角周波数の整数倍である複数の高調波角周波数をそれぞれ有する複数の高調波成分を無効電力化するように形成されている。出力高調波処理回路部(31)は、複数の高調波成分のうち少なくとも1つにおいて、無効電力化を、出力電力における電流および電圧の位相を直交させることで実現するように形成されている。
【0016】
本発明による高効率電力増幅器では、トランジスタの後段に、出力電力の高調波成分を無効電力化する出力電力処理回路部を設けている。この出力電力処理回路部は、高調波成分の少なくとも一部を、その電流および電圧の位相を直交させることで無効電力化する。これにより、マイクロ波帯域を含む高周波帯域においても比較的容易に高効率の電力増幅器を実現することが出来る。
【図面の簡単な説明】
【0017】
図1A図1Aは、F級増幅器の、トランジスタに流れ込む電流と、トランジスタの出力端子に生じる電圧とにおける時間変化の一例を示すグラフ群である。
図1B図1Bは、高調波毎に位相が直交するときの、トランジスタに流れ込む電流と、トランジスタの出力端子に生じる電圧とにおける時間変化の一例を示すグラフ群である。
図2図2は、本発明の実施形態による高効率電力増幅器の基本的な構成を示す回路図である。
図3図3は、本発明の実施形態による高効率電力増幅器の構成の実装例を示す回路図である。
図4A図4Aは、本発明の実施形態による入力電力処理回路部の平面図である。
図4B図4Bは、本発明の実施形態による出力電力処理回路部の平面図である。
図5図5は、本発明の実施形態による高効率電力増幅器の特性を測定して得られた結果を示すスミスチャートである。
図6図6は、本発明の実施形態による高効率電力増幅器の、5.7Ghz帯における電力効率を測定した結果を示すグラフ群である。
【発明を実施するための形態】
【0018】
添付図面を参照して、本発明による高効率電力増幅器を実施するための形態を以下に説明する。
【0019】
(実施形態)
トランジスタ内の消費電力を抑制する手法として、F級増幅器や逆F級増幅器のように、トランジスタに流れ込む電流と、トランジスタの出力端子に生じる電圧とを時間領域で分離してトランジスタによる消費電力を零化する手法のほかに、高調波の電流および電圧の位相を直交させて無効電力化する手法が考えられる。本発明による高効率電力増幅器では、高調波の電流および電圧の位相を直交させる手法を、F級増幅器や逆F級増幅器の手法に併せて利用することで、もしくは単独で利用することで、トランジスタ内の高調波消費電力の抑制を行う。
【0020】
図1Bは、高調波毎に位相が直交するときの、トランジスタに流れ込む電流と、トランジスタの出力端子に生じる電圧とにおける時間変化の一例を示すグラフ群である。図1Bのグラフ群は、トランジスタに流れ込む電流を示す第1のグラフ1Biと、トランジスタの出力端子に生じる電圧を示す第2のグラフ1Bvとを含んでいる。図1Bにおいて、横軸は基本周波数の周期を単位とした時間経過を示しており、縦軸は電流および電圧の振幅を示している。第1のグラフ1Biに示す電流i(t)と、第2のグラフ1Bvに示す電圧vds(t)とは、以下の式(2)によって表される。
【0021】
【数2】
なお、上記式(2)は、より現実的な以下の式(3)において、位相差「Φ」がゼロである場合を表している。
【数3】
【0022】
図1Bの例に示したように、電流にも、電圧にも、ゼロレベルを保つ期間は特に無い。しかし、電流および電圧を積算したトランジスタ内消費電力の時間積分はゼロになり、すなわち理論的には100%の電力効率を有する電力増幅器が得られる。ただし、本発明の高効率電力増幅器では、所望の基本波以外の高調波のそれぞれにおいて、電流および電圧の位相差が、理想的な値である±90°から多少ずれていても、後述するように、ドレーン効率が実測で90%を超える極めて高い電力効率が得られた。
【0023】
図2は、本発明の実施形態による高効率電力増幅器の基本的な構成を概念的に示す回路図である。図2に示された高効率電力増幅器の構成要素について説明する。図2に示された高効率電力増幅器は、トランジスタ10と、電源回路部20と、出力電力処理回路部30と、入力部50と、出力部60とを具備している。
【0024】
電源回路部20は、電源21と、インピーダンス回路部22とを具備している。トランジスタ10は、ドレーン11と、ゲート12と、ソース13とを具備している。出力電力処理回路部30は、出力高調波処理回路部31と、出力整合回路部32とを具備している。
【0025】
なお、図2の例では、トランジスタ10としてGaN(窒化ガリウム)HEMT(High Electron Mobility Transistor:高電子移動度トランジスタ)を用いているが、本発明はこの例に限定されない。例えば、トランジスタ10として、バイポーラトランジスタや、MOS(Metal Oxide Semiconductor:金属酸化膜半導体)FET(Field Effect Transistor:電界効果トランジスタ)などを用いても良い。ただし、その場合は必要に応じて周囲の回路を適宜に変更するものとする。
【0026】
図2に示した高効率電力増幅器の構成要素の接続関係について説明する。入力部50は、トランジスタ10のゲート12に接続されている。電源21における一方の端部は、接地されている。電源21における他方の端部は、インピーダンス回路部22における一方の端部に接続されている。インピーダンス回路部22における他方の端部は、トランジスタ10のドレーン11と、出力高調波処理回路部31の入力部とに共通接続されている。トランジスタ10のソース13は、接地されている。出力高調波処理回路部31の出力部は、出力整合回路部32の入力部に接続されている。出力整合回路部32の出力部は、出力部60に接続されている。なお、図2では、出力整合回路部32は接地されているが、接地されていなくても良い。また、出力部60は、図2に示したように、外部の負荷40に接続されていても良い。
【0027】
図2に示した高効率電力増幅器の動作について説明する。トランジスタ10は、ゲート12から、基本角周波数ωを有する入力電力を入力する。トランジスタ10は、電源回路部20から電力を供給されつつ、入力電力を増幅し、増幅された出力電力をドレーン11から出力する。ここで、図2でドレーン11を流れる電流2iは、出力電力の電流i(t)を示し、同じく図2でドレーン11およびソース13の間の電圧2vは、出力電力の電圧vds(t)を示している。
【0028】
このとき、トランジスタ10から出力される出力電力には、基本角周波数ωを有する基本波成分のみならず、基本角周波数ωの整数倍の角周波数を有する高調波成分もが含まれているのが一般的である。これらの高調波成分が増幅器内で消費されてしまうと、増幅器の効率が低下してしまう。
【0029】
そこで、本実施形態による出力高調波処理回路部31は、トランジスタ10の後段に接続されて、出力電力の高調波成分の大部分を無効電力化する。図2に示した例では、出力高調波処理回路部31は、第1〜第3の高調波処理回路部を含んでいる。ここで、第1の高調波処理回路部は、出力電力のうち、基本角周波数ωの2倍の角周波数2ωを有する2次高調波成分を無効電力化する。同様に、第2の高調波処理回路部は、出力電力のうち、基本角周波数ωの3倍の角周波数3ωを有する3次高調波成分を無効電力化する。さらに、第3の高調波処理回路部は、出力電力のうち、基本角周波数ωの4倍の角周波数4ωを有する4次高調波成分を無効電力化する。なお、無効電力化された高調波成分は、高効率電力増幅器の内部で消費される訳ではなく、最終的には基本波成分として出力されるので、無効電力化は電力増幅の効率向上に寄与することになる。
【0030】
なお、これらの高調波処理回路部が、どの高調波成分を無効電力化するかは、自由に選択可能であって、上記に説明で用いた例は本発明を限定しない。高調波ごとの振幅は、トランジスタ10の特性に大きく依存するので、当然ながら、無効電力化する対象として振幅の大きい高調波を優先的に選ぶことが望ましい。あえて極端な例を挙げれば、偶数次高調波成分ばかりを無効電力化しても構わない。
【0031】
従来技術では、これらの高調波成分の消費電力を抑制するにあたって、高調波ごとに、電圧および電流が交互にゼロレベルとなるように調整する、F級増幅器や逆F級増幅器の手法が用いられている。本発明は、この手法を否定するものでは決してないが、高調波成分の抑制をさらに推し進めるために、高調波ごとに、電圧および電流の位相が直交するように調整する無効電力化の手法を、高調波の一部または全てに導入する。すなわち、制御対象として選んだ高調波のうち、その一部については電圧および電流の位相を直交させることで無効電力化し、残りについてはF級増幅器や逆F級増幅器の手法を用いてトランジスタ内での消費電力を零化する。例えば、4次以降の高調波成分については電圧および電流の位相を直交させることで無効電力化し、2次および3次の高調波成分についてはF級増幅器や逆F級増幅器の手法を用いてトランジスタ内での消費電力を零化する。あるいは、奇数次(偶数次)の高調波成分については電圧および電流の位相を直交させることで無効電力化し、偶数次(奇数次)の高調波成分についてはF級増幅器や逆F級増幅器の手法を用いてトランジスタ内での消費電力を零化する。もしくは、制御対象として選んだ高調波の全てを、電圧および電流の位相を直交させることで無効電力化しても良い。
【0032】
高調波成分の消費電力の抑制に2種類の手法を混在させることで、出力高調波処理回路部31または出力電力処理回路部30の設計にさらなる自由度をもたらす効果も得られる。特に、F級増幅または逆F級増幅の消費電力零化にマイクロストリップ線路を用いる場合は、複数の先端開放型スタブを同一の接続点に集める必要が生じる場合があり、それらの配置には幾何学的な困難が発生し得る。ここで、先端開放型スタブを接続するべき位置は、所望の基本波成分の電気長に換算して、トランジスタ10の出力部(図3の場合はドレーン11)から4分の1波長の距離にある。この距離は、厳密には、トランジスタ10の寄生容量を考慮して、4分の1波長より多少短い。しかし、電流および電圧の位相を直交するためにマイクロストリップ線路を用いる場合は、複数の先端開放型スタブを、主線路部34の任意の位置にそれぞれ配置した複数の接続点に分散することが可能であり、それらの配置に幾何学的な困難が発生しにくい。
【0033】
出力整合回路部32は、出力電力の基本波成分について、後段とのインピーダンス整合を行う。インピーダンス整合は、従来技術と同様であるので、さらなる詳細な説明を省略する。ただし、出力整合回路部32は、必要に応じて出力高調波処理回路部31と一体化して出力電力処理回路部30を構成しても構わない。
【0034】
位相が直交するような調整によって、全ての高調波において電流および電圧の位相差が±90度に保たれることが理想的である。この場合、理論的な効率は100%となる。ただし、実際には、効率をいくらか犠牲にすることで、位相差に多少の誤差を許容するものとする。その許容範囲は、基本波の振幅と、各次高調波の振幅との比率などに依存する。
【0035】
基本波成分の位相差がゼロである場合には、直流投入電力を増やせば良い。一方、直流投入電力が与条件である場合には、基本波成分の位相差を調整すれば良い。
【0036】
トランジスタ10を、出力等価電流源を含む等価回路として考える場合、出力電力の基本波成分についてインピーダンス整合を行うことで、この出力等価電流源から負荷40側を見たインピーダンスは、基本波においては共役整合となる。また、出力電力の高調波成分について無効電力化を行うことで、この出力等価電流源から負荷40側を見たインピーダンスは、この高調波成分において純リアクタンスとなる。
【0037】
トランジスタ10の出力等価電流源から、出力電力処理回路部30の後段側を見たインピーダンスが、無効電力化を施された高調波成分については純リアクタンスとなり、かつ、基本波成分については直流投入電力に等しい有効電力成分に相当する力率に設定されているようにしても良い。
【0038】
図3は、本発明の実施形態による高効率電力増幅器の実装例を示す回路図である。図3の高効率電力増幅器は、図2に示した本発明の実施形態による高効率電力増幅器に、2つの変更を加えたものに等しい。第1の変更点は、本発明の実施形態による出力電力処理回路部30を具体化し、マイクロストリップ線路などの分布定数回路で形成した出力電力処理回路部33としたことである。第2の変更点は、トランジスタ10のゲート12と、入力部50との間に、マイクロストリップ線路などの分布定数回路で形成した入力電力処理回路部70を追加したことである。
【0039】
なお、図3では、簡単のために、電源21と、外部の負荷40とを省略している。本実施形態による高効率電力増幅器におけるその他の構成については、図2に示した本発明の実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
【0040】
図4Aは、本発明の実施形態の実装例による入力電力処理回路部70の平面図である。図4Aに示した入力電力処理回路部70は、主線路部71と、入力基本波整合回路部72と、入力高調波処理回路部73とを具備している。ここで、入力基本波整合回路部72と、入力高調波処理回路部73とは、先端開放スタブである。
【0041】
主線路部71は、一方の端部が入力部50に接続されており、他方の端部がトランジスタ10のゲート12に接続されている。入力基本波整合回路部72は、一方の端部が主線路部71に接続されている。入力高調波処理回路部73は、一方の端部が主線路部71に接続されている。ここで、主線路部71において、入力部50との接続部と、入力基本波整合回路部72との接続部と、入力高調波処理回路部73との接続部と、トランジスタ10のゲート12との接続部とは、この順番に配置されている。
【0042】
入力基本波整合回路部72は、入力部50から供給される入力電力のうち、所望の基本角周波数ωを有する基本波成分について、インピーダンス整合を行う。
【0043】
入力高調波処理回路部73は、トランジスタ10の出力側に生じた電圧の2次の高調波成分のうち、トランジスタ10内にある帰還容量を介したトランジスタ10の入力側への帰還成分に対して位相調整を行う。ここで、対象を2次高調波成分に絞っているのは、基本波成分を除いた高調波成分のうち、振幅が大きいため、効果が一番大きいことが一般的に期待されるからである。したがって、2次高調波成分よりも大きい振幅を有する高次高調波が存在するなら、2次高調波成分の代わりにこの高次高調波成分を位相調整の対象とすることが好ましい。このように、入力高調波処理回路部73は、2よりも高次の高調波を取り扱っても構わないし、また、複数の高次高調波成分を位相調整するために複数の入力高調波処理回路部73を設けても構わない。なお、図4Aの例では、入力高調波処理回路部73の形状は扇型であるが、これはあくまでも一例であって本発明を限定しない。
【0044】
図4Bは、本発明の実施形態の実装例による出力電力処理回路部33の平面図である。図4Bに示した出力電力処理回路部33は、主線路部34と、第1の出力高調波処理回路部35と、第2の出力高調波処理回路部36と、第3の出力高調波処理回路部37と、出力基本波整合回路部38とを具備している。ここで、第1の出力高調波処理回路部35と、第2の出力高調波処理回路部36と、第3の出力高調波処理回路部37と、出力基本波整合回路部38とは、それぞれ先端開放スタブである。
【0045】
主線路部34は、一方の端部がトランジスタ10のドレーン11に接続されており、他方の端部が出力部60に接続されている。第1の出力高調波処理回路部35と、第2の出力高調波処理回路部36と、第3の出力高調波処理回路部37とは、それぞれにおける一方の端部が、主線路部34における共通接続部に共通接続されている。出力基本波整合回路部38は、一方の端部が主線路部34に接続されている。ここで、主線路部34において、トランジスタ10のドレーン11との接続部と、第1〜第3の出力高調波処理回路部35〜37との共通接続部と、出力基本波整合回路部38との接続部と、出力部60との接続部とは、この順番に配置されている。
【0046】
なお、共通接続部に共通接続された複数の出力高調波処理回路部35〜37と、この共通接続部の両側に伸びる主線路部34の両部分は、相互の影響を抑えるために、なるべく等角度で接続されていることが望ましい。
【0047】
図4Aに示した入力電力処理回路部70と、図4Bに示した出力電力処理回路部33とを製作し、その特性を測定した結果について説明する。
【0048】
図5は、本発明の実施形態の実装例による高効率電力増幅器の特性を測定して得られた結果を示すスミスチャートである。図5のスミスチャートには、理論値を表す合計4個の点51a、52a、53aおよび54aと、実測地を表す合計4個の点51b、52b、53bおよび54bとが示されている。点51aは、基本波成分の理論値を表す。点52aは、2次高調波成分の理論値を表す。点53aは、3次高調波成分の理論値を表す。点54aは、4次高調波成分の理論値を表す。点51bは、基本波成分の実測値を表す。点52bは、2次高調波成分の実測値を表す。点53bは、3次高調波成分の実測値を表す。点54bは、4次高調波成分の実測値を表す。
【0049】
これらの点51b、52b、53bおよび54bからは、電圧Vnと、電流Inと、電圧Vnおよび電流Inの位相差θnとが読み取れる。ここで、nは1〜4の整数を表し、1は基本波成分を示し、2〜4は2次〜4次高調波成分を示す。基本波成分および2次〜4次高調波成分のそれぞれにおける電圧Vnと、電流Inと、位相差θnとの実測値を、下記の「表1」に示す。なお、下記の「表1」には、図5のスミスチャートに示されない5次高調波成分も示されている。
【0050】
【表1】
【0051】
「表1」から読み取れるように、出力電力の無効電力化が施されている2次〜4次高調波成分については、電圧および電流の位相差の絶対値が86.7°〜99°の範囲に収まっており、すなわちほぼ直交していることが確認される。言い換えれば、電圧および電流の位相差の絶対値が90°であれば、力率がゼロになり完全に無効電力化されるが、2次〜4次高調波成分はこの状態に近い。しかし、無効電力化の対象外である5次高調波成分についてはこの限りではない。すなわち、電圧および電流の位相差の絶対値がゼロまたは180°であれば、力率が100%になり完全に有効電力化されるが、5次高調波成分はこの状態に近い。また、所望の基本波成分については、電圧および電流の位相差の絶対値が120.4°であり、無効電力化されていないことが確認される。この位相差は、有効電力と無効電力の入り混じった状態を表し、現実的には十分に効果があると言える。
【0052】
図6は、本発明の実施形態の実装例による高効率電力増幅器の、5.7Ghz帯における電力効率を測定した結果を示すグラフ群である。図6のグラフ群は、第1〜第3のグラフ6a〜6cを含んでいる。第1のグラフ6aは、入力電力Pinに対する出力電力Poutをデシベル(dBm)で表している。第2のグラフ6bは、入力電力Pinに対する付加電力効率PAEをパーセント(%)で表している。第3のグラフ6cは、入力電力Pinに対するドレーン効率ηをパーセント(%)で表している。
【0053】
図6の測定では、90.7%のドレーン効率と、79.5%の付加電力効率とが、5.7GHz帯で得られた。この結果を、従来技術による電力増幅器の場合と比較する。下記の「表2」は、本発明の実施形態の実装例による高効率電力増幅器の測定結果と、第1〜第5の従来技術による電力増幅器の測定結果とを示している。
【0054】
【表2】
【0055】
上記の「表2」において、第1の従来技術は、「P. Colantonio, F.Gianni, R. Giofre, E. Limiti, A. Serino, M. Peroni, P. Romanini, and C. Proietti, “A C−band high0efficiency second−harmonic−tuned hybrid power amplifier in GaN technology”, IEEE Trans. Microw. Theory Tech., vol. 54, no.6 pp. 2713−2722. June 2006」に記載されている。第2の従来技術は、「Y. Hao, L. Yang, X. Ma, J. Ma, M. Cao, C. Pan, C. Wang, and J. Zhang, “High−Performance Microwave Gate−Recessed AlGaN/AlN/GaN MOS−HEMT With 73% Power−Added Efficiency”, IEEE Electron Device Lett., vol. 32, no. 5, pp. 626−628. May 2011」に記載されている。第3の従来技術は、「R. Negra, and W. Bachtold, “BiCMOS MMIC class−E power amplifier for 5 to 6GHz wireless communication systems”, in Proc. 35th Eur. Microw. Conf., Paris, France, Oct. 2005, pp. 445−448.」に記載されている。第4の従来技術は、「Y. Tsuyama, K. Yamanaka, K. Namura, S. Chaki, and N. Shinohara, “Internally−matched GaN HEMT high efficienty power amplifier for SPS”, IEEE MTT−S Int. Microw. Works. Dig., Kyoto, Japan, May 2011, pp.41−44.」に記載されている。第5の従来技術は、「K. Kuroda, R. Ishikawa, K. Honjo, “Parasitic compensation design technique for a C−band GaN HEMT class−F amplifier”, IEEE Trans. Microw. Theory Tech., vol. 58, no. 11 pp.2741−2750, Nov. 2010.」に記載されている。
【0056】
上記の「表2」から読み取れるように、ドレーン効率で比較すると、従来技術の中で最高値だった79.9%(第5の従来技術)を、本発明の実施形態の実装例による高効率電力増幅器では、実に10%以上もの大幅な改善が実現されている。
【0057】
本発明の実施形態による高効率電力増幅器の他の実装例としては、図2に示した本発明の実施形態による高効率電力増幅器に、次の変更を加えたバリエーションもある。すなわち、出力電力処理回路部を、キャパシタやインダクタンスなどの集中定数回路を用いて形成する。本実施形態による高効率電力増幅器のその他の構成および動作は、図2に示した本発明の実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
【0058】
上記のような変更を加えることで、本実施形態による高効率電力増幅器は、メガヘルツ帯域を用いる電気自動車の非接触型充電システムにおける電力送信装置などでも利用し易くなる。
【0059】
以上に説明した本発明の各実施形態は、技術的に矛盾しない範囲において、自由に組み合わせることが可能である。例えば、図3に示した実施形態の実装例による高効率電力増幅器において、入力電力処理回路部と、出力電力処理回路部とを、実施形態の他の実装例で説明した集中定数回路を用いて形成しても構わない。
図1A
図1B
図2
図3
図4A
図4B
図5
図6