特許第5979860号(P5979860)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 旭化成株式会社の特許一覧

特許5979860長繊維強化ポリアミド樹脂組成物ペレット及び成形品
<>
  • 特許5979860-長繊維強化ポリアミド樹脂組成物ペレット及び成形品 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5979860
(24)【登録日】2016年8月5日
(45)【発行日】2016年8月31日
(54)【発明の名称】長繊維強化ポリアミド樹脂組成物ペレット及び成形品
(51)【国際特許分類】
   C08L 77/06 20060101AFI20160818BHJP
   C08K 7/02 20060101ALI20160818BHJP
   C08J 5/04 20060101ALI20160818BHJP
   C08G 69/26 20060101ALI20160818BHJP
【FI】
   C08L77/06
   C08K7/02
   C08J5/04
   C08G69/26
【請求項の数】8
【全頁数】30
(21)【出願番号】特願2011-268966(P2011-268966)
(22)【出願日】2011年12月8日
(65)【公開番号】特開2013-119609(P2013-119609A)
(43)【公開日】2013年6月17日
【審査請求日】2014年10月31日
(73)【特許権者】
【識別番号】000000033
【氏名又は名称】旭化成株式会社
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】渡邊 克史
(72)【発明者】
【氏名】佐々木 幸義
【審査官】 山村 周平
(56)【参考文献】
【文献】 特開2010−265381(JP,A)
【文献】 特開2005−263828(JP,A)
【文献】 特開2011−016987(JP,A)
【文献】 特開2011−016989(JP,A)
【文献】 特開平07−118522(JP,A)
【文献】 特開平11−228816(JP,A)
【文献】 国際公開第2007/105497(WO,A1)
【文献】 特開2009−270057(JP,A)
【文献】 特開平04−016309(JP,A)
【文献】 特開平05−162124(JP,A)
【文献】 特開2002−234999(JP,A)
【文献】 特開平11−071518(JP,A)
【文献】 欧州特許第01010726(EP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 77/00−77/12
C08K 3/00−13/08
C08G 69/00−69/50
C08J 5/00−5/24
(57)【特許請求の範囲】
【請求項1】
(A):(a)アジピン酸とヘキサメチレンジアミンとからなる単位と、
(b)イソフタル酸とヘキサメチレンジアミンとからなる単位と、
を、含むポリアミドであって、
当該ポリアミド中における全カルボン酸成分中のイソフタル酸成分比率(x)が、0.
05≦(x)≦0.5であり、
かつ、下記式(1)で示される(Y)が、−0.3≦(Y)≦0.8である(A)ポリ
アミド100質量部と、
(Y)=[(EG)−(x)]/[1−(x)] ・・・(1)
(前記式(1)中、(EG)は、(A)ポリアミド中に含有されている全カルボキシル末
端基中のイソフタル酸末端基比率を示し、下記式(2)で示される。
(EG)=イソフタル酸末端基量/全カルボキシル末端基量 ・・・(2))
(B):長繊維強化ポリアミド樹脂組成物ペレット中における重量平均繊維長が当該長繊
維強化ポリアミド樹脂組成物ペレットの長さと実質上同一である(B)繊維状強化材10
0〜250質量部と、
を、含有する長繊維強化ポリアミド樹脂組成物ペレット。
【請求項2】
前記式(1)で示される(Y)が、0.05≦(Y)≦0.8である、請求項1に記載
の長繊維強化ポリアミド樹脂組成物ペレット。
【請求項3】
前記全カルボン酸成分中のイソフタル酸成分比率(x)、前記イソフタル酸末端基量、
及び前記全カルボキシル末端基量が、核磁気共鳴法(NMR)により求めた値である、請
求項1又は2に記載の長繊維強化ポリアミド樹脂組成物ペレット。
【請求項4】
前記(B)繊維状強化材が5〜20μmの平均繊維径を有するガラス繊維である、請求
項1乃至3のいずれか一項に記載の長繊維強化ポリアミド樹脂組成物ペレット。
【請求項5】
ペレット長が5〜30mmである、請求項1乃至4のいずれか一項に記載の長繊維強化
ポリアミド樹脂組成物ペレット。
【請求項6】
請求項1乃至5のいずれかに一項に記載の長繊維強化ポリアミド樹脂組成物ペレットの
製造方法であって、
アジピン酸、イソフタル酸、及びヘキサメチレンジアミンを重合する際に、重合系内の
内部温度が240℃以上になるまで内部圧力を1.5〜5.0MPaに保った後、加熱を
続けた状態で、圧力を徐々に抜き、最終内部温度が250℃以上になるように、常圧
又は減圧下で重縮合してポリアミドを得る工程と、
連続した強化用繊維を引きながら得られたポリアミドを含浸する工程と、
を、含む、長繊維強化ポリアミド樹脂組成物ペレットの製造方法。
【請求項7】
(A):(a)アジピン酸とヘキサメチレンジアミンとからなる単位と、
(b)イソフタル酸とヘキサメチレンジアミンとからなる単位と、
を、含むポリアミド100質量部と、
(B)繊維状強化材100〜250質量部と、
を、含有する長繊維強化ポリアミド樹脂組成物ペレットを用いて成形を行う際に、
前記(A)ポリアミド中における全カルボン酸成分中のイソフタル酸成分比率(x)が
、0.05≦(x)≦0.5であり、
かつ、下記式(1)で示される(Y)が、−0.3≦(Y)≦0.8であり、
(Y)=[(EG)−(x)]/[1−(x)]・・・(1)
(前記式(1)中、(EG)は、(A)ポリアミド中に含有されている全カルボキシル末
端基中のイソフタル酸末端基比率を示し、下記式(2)で示される。
(EG)=イソフタル酸末端基量/全カルボキシル末端基量・・・(2))
前記長繊維強化ポリアミド樹脂組成物ペレット中における前記(B)繊維状強化材の重
量平均繊維長が当該ペレットの長さと実質上同一である、長繊維強化ポリアミド樹脂組成
物ペレットを使用することにより、
成形品の外観安定性を向上させる方法。
【請求項8】
(A):(a)アジピン酸とヘキサメチレンジアミンとからなる単位と、
(b)イソフタル酸とヘキサメチレンジアミンとからなる単位と、
を、含むポリアミドであって、
当該ポリアミド中における全カルボン酸成分中のイソフタル酸成分比率(x)が、0.
05≦(x)≦0.5であり、
かつ、下記式(1)で示される(Y)が、−0.3≦(Y)≦0.8である(A)ポリ
アミド100質量部と、
(Y)=[(EG)−(x)]/[1−(x)] ・・・(1)
(前記式(1)中、(EG)は、(A)ポリアミド中に含有されている全カルボキシル末
端基中のイソフタル酸末端基比率を示し、下記式(2)で示される。
(EG)=イソフタル酸末端基量/全カルボキシル末端基量 ・・・(2))
(B)繊維状強化材100〜250質量部と、を含み、
前記(B)繊維状強化材が1mm以上の重量平均繊維長で分散してなる成形品。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、長繊維強化ポリアミド樹脂組成物ペレット及び成形品に関する。
【背景技術】
【0002】
ポリアミド樹脂は、成形加工性、機械物性、耐薬品性に優れていることから、従来から、衣料用、産業資材用、自動車用、電気・電子用又は工業用等の様々な部品材料として広く用いられている。
【0003】
近年、ポリアミド樹脂を用いた成形体は、生産性を向上させるために、成形温度を高くし、金型温度を下げて行うハイサイクル成形条件で成形する場合がある。
また、ポリアミド樹脂は自動車分野で広く採用されているが、このような用途では、使用環境が熱的、力学的に厳しく、特にドアミラー等に代表される自動車外装部品では衝撃特性と、表面外観性との両方を要求される場合が多いのが現状である。
【0004】
一方、高温条件下で成形を行うと、ポリアミド樹脂の分解が発生したり、流動性変化が生じたりすることにより安定して成形体が得られない場合があるという問題がある。
よって、特に、上述したようなハイサイクル成形時の成形品表面外観の安定性、更には耐衝撃特性を向上させた、過酷な成形条件下においても物性変化が少ないポリアミド樹脂が要求されている。
【0005】
このような要求に応えるため、成形体の表面外観及び機械特性を向上させることができる材料として、イソフタル酸成分を導入したポリアミド66/6Iからなるポリアミドが開示されている(例えば、特許文献1乃至4参照。)。
また、耐衝撃性を改良することができる材料として、テレフタル酸成分と、イソフタル酸成分とを導入したポリアミド6T/6Iからなるポリアミド開示されている(例えば、特許文献5参照。)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平6−32976号公報
【特許文献2】特開平6−32980号公報
【特許文献3】特開平7−118522号公報
【特許文献4】特開2000−219808号公報
【特許文献5】特開2000−191771号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、前記特許文献1乃至4に開示された技術で製造されたポリアミドは、ポリアミド66/6I中の6I鎖単位が、ポリアミド鎖中でブロックに共重合されている比率が高いため、一般的な成形条件下での成形品の表面外観性は改良されるものの、ハイサイクル成形条件のような過酷な成形条件下では、成形表面の外観が低下、及び外観安定性が低下してしまうという問題を有している。
【0008】
また、特許文献1乃至4に開示された技術で製造されたポリアミドは、弾性率等の機械特性は改良されるものの、前記の通り、ポリアミド66/6I中の6I鎖単位が、ポリアミド鎖中でブロックに共重合されている比率が高いため、そのポリマー構造起因により、すなわちポリアミド鎖中でブロックに共重合されている6I鎖単位の比率が高い構造を有していることにより、耐衝撃特性が低下してしまう問題がある。
【0009】
さらに、前記特許文献5に開示された製造技術で製造されたポリアミドは、耐衝撃特性は改良されるものの、成形表面外観性が低下する問題を有している。
【0010】
上述したように、従来技術で得られるポリアミド66/6Iでは、ポリアミド66/6I中の6I鎖単位が理想的なランダム共重合体に比べて、ブロックに共重合されている比率が高いため、機械特性のバランスを保持しつつ、成形品表面外観の安定性を維持し、耐衝撃特性を向上させることが困難であり、成形品表面外観の安定性、耐衝撃特性に優れ、かつ過酷な成形条件下で成形した場合においても物性変化が少ないポリアミドは未だ知られていないのが実情である。
【0011】
従来において、ポリアミド樹脂の強度を向上させるために、ガラス繊維等の繊維状強化材を配合することが知られており、チョップドストランド等の短繊維を押出機で混練した繊維強化ポリアミド樹脂組成物がある。これに対し、近年の更に高度な機械的強度等の要求に応える方法として、例えば、連続した強化繊維を引きながら溶融したポリアミド樹脂に含浸させる、プルトルージョン法によって得られる長繊維強化ポリアミド樹脂組成物が検討されている。しかしながら、このような長繊維強化ポリアミド樹脂において、樹脂成分がポリアミド66では、押出時及び成形時の流動性が十分でない場合があり、成形品の表面外観が悪化する場合があるという問題を有している。このような問題は長繊維強化ポリアミド樹脂組成物に特有の問題であり、成形加工性及び表面外観性の改善が切望されている。
【0012】
そこで本発明においては、上記事情に鑑み、過酷な成形条件下において成形した場合においても、成形品の表面外観の安定性が良好で、耐衝撃特性に優れた長繊維強化ポリアミド樹脂組成物ペレット及び成形品を提供することを主な目的とする。
【課題を解決するための手段】
【0013】
本発明者らは、上記課題を解決するために鋭意検討を行った結果、(a)アジピン酸とヘキサメチレンジアミンとからなる単位と、(b)イソフタル酸とヘキサメチレンジアミンとからなる単位とを含む(A)ポリアミドにおいて、ポリアミド中における全カルボン酸成分中のイソフタル酸成分比率(x)の範囲を特定し、かつ、(EG)=イソフタル酸末端基量/全カルボキシル末端基量としたときの、ポリアミド66/6I中の6I鎖単位がブロック化した指標である(Y)、{(Y)=[(EG)−(x)]/[1−(x)]}の値の数値範囲を特定したポリアミド(A)を含有する長繊維強化ポリアミド樹脂組成物ペレットが、前記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下の通りである。
【0014】
〔1〕
(A):(a)アジピン酸とヘキサメチレンジアミンとからなる単位と、
(b)イソフタル酸とヘキサメチレンジアミンとからなる単位と、
を、含むポリアミドであって、
当該ポリアミド中における全カルボン酸成分中のイソフタル酸成分比率(x)が、0.
05≦(x)≦0.5であり、
かつ、下記式(1)で示される(Y)が、−0.3≦(Y)≦0.8である(A)ポリ
アミド100質量部と、
(Y)=[(EG)−(x)]/[1−(x)] ・・・(1)
(前記式(1)中、(EG)は、(A)ポリアミド中に含有されている全カルボキシル末
端基中のイソフタル酸末端基比率を示し、下記式(2)で示される。
(EG)=イソフタル酸末端基量/全カルボキシル末端基量 ・・・(2))
(B):長繊維強化ポリアミド樹脂組成物ペレット中における重量平均繊維長が当該長繊
維強化ポリアミド樹脂組成物ペレットの長さと実質上同一である(B)繊維状強化材10
0〜250質量部と、
を、含有する長繊維強化ポリアミド樹脂組成物ペレット。
〔2〕
前記式(1)で示される(Y)が、0.05≦(Y)≦0.8である、前記〔1〕に記
載の長繊維強化ポリアミド樹脂組成物ペレット。
〔3〕
前記全カルボン酸成分中のイソフタル酸成分比率(x)、前記イソフタル酸末端基量、
及び前記全カルボキシル末端基量が、核磁気共鳴法(NMR)により求めた値である、前
記〔1〕又は〔2〕に記載の長繊維強化ポリアミド樹脂組成物ペレット。
〔4〕
前記(B)繊維状強化材が5〜20μmの平均繊維径を有するガラス繊維である、前記
〔1〕乃至〔3〕のいずれか一に記載の長繊維強化ポリアミド樹脂組成物ペレット。
〔5〕
ペレット長が5〜30mmである、前記〔1〕乃至〔4〕のいずれか一に記載の長繊維
強化ポリアミド樹脂組成物ペレット。
〔6〕
前記〔1〕乃至〔5〕のいずれかに一に記載の長繊維強化ポリアミド樹脂組成物ペレッ
トの製造方法であって、
アジピン酸、イソフタル酸、及びヘキサメチレンジアミンを重合する際に、重合系内の
内部温度が240℃以上になるまで内部圧力を1.5〜5.0MPaに保った後、加熱を
続けた状態で、圧力を徐々に抜き、最終内部温度が250℃以上になるように、常圧又は減圧下で重縮合してポリアミドを得る工程と、
連続した強化用繊維を引きながら得られたポリアミドを含浸する工程と、
を、含む、長繊維強化ポリアミド樹脂組成物ペレットの製造方法。
〔7〕
(A):(a)アジピン酸とヘキサメチレンジアミンとからなる単位と、
(b)イソフタル酸とヘキサメチレンジアミンとからなる単位と、
を、含むポリアミド100質量部と、
(B)繊維状強化材100〜250質量部と、
を、含有する長繊維強化ポリアミド樹脂組成物ペレットを用いて成形を行う際に、
前記(A)ポリアミド中における全カルボン酸成分中のイソフタル酸成分比率(x)が
、0.05≦(x)≦0.5であり、
かつ、下記式(1)で示される(Y)が、−0.3≦(Y)≦0.8であり、
(Y)=[(EG)−(x)]/[1−(x)]・・・(1)
(前記式(1)中、(EG)は、(A)ポリアミド中に含有されている全カルボキシル末
端基中のイソフタル酸末端基比率を示し、下記式(2)で示される。
(EG)=イソフタル酸末端基量/全カルボキシル末端基量・・・(2))
前記長繊維強化ポリアミド樹脂組成物ペレット中における前記(B)繊維状強化材の重
量平均繊維長が当該ペレットの長さと実質上同一である、長繊維強化ポリアミド樹脂組成
物ペレットを使用することにより、
成形品の外観安定性を向上させる方法。
〔8〕
(A):(a)アジピン酸とヘキサメチレンジアミンとからなる単位と、
(b)イソフタル酸とヘキサメチレンジアミンとからなる単位と、
を、含むポリアミドであって、
当該ポリアミド中における全カルボン酸成分中のイソフタル酸成分比率(x)が、0.
05≦(x)≦0.5であり、
かつ、下記式(1)で示される(Y)が、−0.3≦(Y)≦0.8である(A)ポリ
アミド100質量部と、
(Y)=[(EG)−(x)]/[1−(x)] ・・・(1)
(前記式(1)中、(EG)は、(A)ポリアミド中に含有されている全カルボキシル末
端基中のイソフタル酸末端基比率を示し、下記式(2)で示される。
(EG)=イソフタル酸末端基量/全カルボキシル末端基量 ・・・(2))
(B)繊維状強化材100〜250質量部と、を含み、
前記(B)繊維状強化材が1mm以上の重量平均繊維長で分散してなる成形品。
【発明の効果】
【0015】
本発明によれば、過酷な成形条件下において成形した場合においても、表面外観が安定しており、かつ耐衝撃特性にも優れ、更には高温剛性にも優れた長繊維強化ポリアミド樹脂組成物ペレット及び成形品を提供することができる。
【図面の簡単な説明】
【0016】
図1】ブロック化比率(Y)とポリアミド中における全カルボン酸成分中のイソフタル酸成分比率(x)との関係を表した図である。
【発明を実施するための形態】
【0017】
以下、本発明を実施するための形態(以下、「本実施形態」という)について詳細に説明する。
なお、本発明は、以下の実施形態に制限されるものではなく、その要旨の範囲内で種々変形して実施することができる。
【0018】
〔長繊維強化ポリアミド樹脂組成物ペレット〕
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットは、
(A):(a)アジピン酸とヘキサメチレンジアミンとからなる単位と、
(b)イソフタル酸とヘキサメチレンジアミンとからなる単位と、
を、含むポリアミドであって、
当該ポリアミド中における全カルボン酸成分中のイソフタル酸成分比率(x)が、0.05≦(x)≦0.5であり、
かつ、下記式(1)で示される(Y)が、−0.3≦(Y)≦0.8である(A)ポリアミド100質量部と、
(Y)=[(EG)−(x)]/[1−(x)] ・・・(1)
(前記式(1)中、(EG)は、(A)ポリアミド中に含有されている全カルボキシル末端基中のイソフタル酸末端基比率を示し、下記式(2)で示される。
(EG)=イソフタル酸末端基量/全カルボキシル末端基量 ・・・(2))
(B):長繊維強化ポリアミド樹脂組成物ペレット中における重量平均繊維長が、当該長繊維強化ポリアミド樹脂組成物ペレットの長さ(以下、単にペレット長と記載する場合もある。)と実質上同一である(B)繊維状強化材100〜250質量部と、
を、含有している。
【0019】
以下、本実施形態の長繊維強化ポリアミド樹脂組成物ペレットの構成成分について説明する。
((A)ポリアミド)
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットに含有されているポリアミド(以下、(A)ポリアミド、ポリアミド(A)、又は単にポリアミドと記載する場合もある。)は、
(a)アジピン酸とヘキサメチレンジアミンとからなる単位と、
(b)イソフタル酸とヘキサメチレンジアミンとからなる単位と、
を、含む。
当該(A)ポリアミド中における全カルボン酸成分中のイソフタル酸成分比率(x)は、0.05≦(x)≦0.5であり、好ましくは0.05≦(x)≦0.4であり、より好ましくは0.05≦(x)≦0.3である。
ここで、(A)ポリアミド中における全カルボン酸成分中のイソフタル酸成分比率(x)とは、ポリアミド中に含まれる(b)イソフタル酸とヘキサメチレンジアミンとからなる単位の比率を示している。
前記イソフタル酸成分比率(x)が0.05以上であると、ポリアミドの融点、固化温度が抑制され、本実施形態の長繊維強化ポリアミド樹脂組成物ペレットを用いた成形品表面外観性が安定的なものとなる。また、イソフタル酸成分比率(x)が0.5以下であるとポリアミドの結晶性の低下を抑制でき、本実施形態の長繊維強化ポリアミド樹脂組成物ペレットを用いた成形品において十分な機械的強度が得られる。
【0020】
前記(A)ポリアミドは、下記式(1)で示される(Y)が、−0.3≦(Y)≦0.8である。
(Y)=[(EG)−(x)]/[1−(x)] ・・・(1)
式(1)中、(x)は、上述したように、(A)ポリアミド中における全カルボン酸成分中のイソフタル酸成分比率であり、ポリアミド中における(b)イソフタル酸とヘキサメチレンジアミンとからなる単位の比率を示す。
(EG)は、全カルボキシル末端基中のイソフタル酸末端基比率を示し、下記式(2)で示される。
(EG)=イソフタル酸末端基量/全カルボキシル末端基量 ・・・(2)
【0021】
前記式(1)において、(Y)は、全カルボキシル末端基において、イソフタル酸末端基がどれだけ選択的に存在しているかを表す指標である(以下、「ブロック化比率(Y)」とも表記する。)。
【0022】
(A)ポリアミド中における全カルボン酸成分中のイソフタル酸成分比率(x)と、(A)ポリアミド中に含有されている全カルボキシル末端基中のイソフタル酸末端基比率(EG)には相関性があり、すなわちブロック化比率(Y)は、ポリアミド66/6I中の6I鎖単位が理論値(x=EG)に対して、どれだけブロック化に移行、すなわちどれだけポリアミド中の6I鎖単位の比率が高くなっており、イソフタル酸末端基比率が高くなっているかを示す指標でもある。
【0023】
従って、上記式(1)の分母[1−(x)]は、(A)ポリアミド中における全カルボン酸成分中のイソフタル酸末端基以外の末端基比率であり、上記式(1)の分子[(EG)−(x)]は、理論上のイソフタル酸末端基比率(=イソフタル酸成分比率)との差分イソフタル酸末端基比率、すなわち実際のイソフタル酸末端基比率と理論上のイソフタル酸末端基比率との差分となるため、上記式(1)によりブロック化比率の指標である(Y)を求めることができる。
後述の実施例及び比較例に基づくポリアミドの、前記ブロック化比率(Y)とポリアミド中における全カルボン酸成分中のイソフタル酸成分比率(x)との関係を表した図を図1に示す。
図1の説明を下記に示す。
横軸:全カルボン酸中のイソフタル酸成分比率(x)
縦軸:全カルボキシル末端基中のイソフタル酸末端基比率(EG)
実線の四角形で囲まれた領域:二つの四角形全体により囲まれた領域が0.05≦(x)≦0.5であり、かつ−0.3≦(Y)≦0.8である領域。図1中上側の四角形のみに囲まれた領域が0.05≦(x)≦0.5であり、かつ0.05≦(Y)≦0.8である領域。
一点鎖線:(EG)=(x)
破線量矢印:[(EG)−(x)]と[1−(x)]の関係を示す。
◇:後述する実施例に用いたポリアミド
■:後述する比較例に用いたポリアミド
【0024】
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットを構成する(A)ポリアミドにおいて、前記ブロック化比率(Y)は、−0.3≦(Y)≦0.8であり、好ましくは0.05≦(Y)≦0.8、より好ましくは0.05≦(Y)≦0.7、さらに好ましくは0.1≦(Y)≦0.6の範囲である。
イソフタル酸成分比率(x)を上記範囲内とし、かつ前記(Y)の範囲を−0.3≦(Y)≦0.8とすることにより、過酷な成形条件下における成形品表面外観の安定性、耐衝撃特性が優れたものとなる。
(A)ポリアミド中の全カルボン酸成分中のイソフタル酸成分比率(x)、前記全カルボキシル末端基中のイソフタル酸末端基比率(EG)を算出するためのイソフタル酸末端基量、及び全カルボキシル末端基量の定量方法は、特に制限されないが、核磁気共鳴法(NMR)により求めることができる。具体的には1H−NMRにより求めることができる。
【0025】
<アジピン酸、イソフタル酸以外の共重合成分>
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットを構成する(A)ポリアミドには、本実施形態の目的を損なわない範囲で、アジピン酸、イソフタル酸以外の、脂肪族ジカルボン酸、脂環族ジカルボン酸、芳香族ジカルボン酸、及びヘキサメチレンジアミン以外の主鎖から分岐した置換基を持つジアミン、脂肪族ジアミン、芳香族ジアミン、重縮合可能なアミノ酸、ラクタム等を共重合成分として用いることができる。
【0026】
前記脂肪族ジカルボン酸としては、例えば、マロン酸、ジメチルマロン酸、コハク酸、2,2−ジメチルコハク酸、2,3−ジメチルグルタル酸、2,2−ジエチルコハク酸、2,3−ジエチルグルタル酸、グルタル酸、2,2−ジメチルグルタル酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸、及びジグリコール酸等の炭素数3〜20の直鎖又は分岐状飽和脂肪族ジカルボン酸等が挙げられる。
【0027】
前記脂環族ジカルボン酸としては、例えば、1,3−シクロヘキサンジカルボン酸、及び1,3−シクロペンタンジカルボン酸等の、脂環構造の炭素数が3〜10である、好ましくは炭素数が5〜10である、脂環族ジカルボン酸等が挙げられる。
脂環族ジカルボン酸は、無置換でも置換基を有していてもよい。
【0028】
前記芳香族ジカルボン酸としては、例えば、テレフタル酸、ナフタレンジカルボン酸、2−クロロテレフタル酸、2−メチルテレフタル酸、5−メチルイソフタル酸、及び5−ナトリウムスルホイソフタル酸等の、無置換又は種々の置換基で置換された炭素数8〜20の芳香族ジカルボン酸等が挙げられる。
種々の置換基としては、例えば、炭素数1〜6のアルキル基、炭素数6〜12のアリール基、炭素数7〜20のアリールアルキル基、クロロ基及びブロモ基等のハロゲン基、炭素数3〜10のアルキルシリル基、並びにスルホン酸基及びナトリウム塩等のその塩である基等が挙げられる。
【0029】
前記ヘキサメチレンジアミン以外の主鎖から分岐した置換基を持つジアミンとしては、例えば、2−メチルペンタメチレンジアミン(2−メチル−1,5−ジアミノペンタンとも記される。)、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、2−メチルオクタメチレンジアミン、及び2,4−ジメチルオクタメチレンジアミン等の炭素数3〜20の分岐状飽和脂肪族ジアミン等が挙げられる。
【0030】
前記脂肪族ジアミンとしては、例えば、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、及びトリデカメチレンジアミン等の炭素数2〜20の直鎖飽和脂肪族ジアミン等が挙げられる。
【0031】
前記芳香族ジアミンとしては、例えば、メタキシリレンジアミン等が挙げられる。
【0032】
前記重縮合可能なアミノ酸としては、例えば、6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、パラアミノメチル安息香酸等が挙げられる。
【0033】
前記ラクタムとしては、例えば、ブチルラクタム、ピバロラクタム、カプロラクタム、カプリルラクタム、エナントラクタム、ウンデカノラクタム、ドデカノラクタム等が挙げられる。
【0034】
上述したジカルボン酸成分、ジアミン成分、アミノ酸成分、及びラクタム成分は、それぞれ1種類を単独で用いてもよいし、2種類以上を組み合せて用いてもよい。
【0035】
<末端封止剤>
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットを構成する(A)ポリアミド及びその他の共重合成分を重合させたポリアミド共重合体の原料として、分子量調節や耐熱水性向上のために、末端封止剤を更に添加することができる。
例えば、ポリアミド、又は上述したポリアミド共重合体を重合する際に、公知の末端封止剤を更に添加することにより、重合量を制御することができる。
【0036】
前記末端封止剤としては、特に限定されないが、例えば、モノカルボン酸、モノアミン、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、及びモノアルコール類等が挙げられる。
それらの中でもモノカルボン酸及びモノアミンが好ましい。
これらの末端封止剤は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
【0037】
前記末端封止剤として用いられるモノカルボン酸としては、アミノ基との反応性を有するモノカルボン酸であれば特に限定されないが、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチル酸、パルミチン酸、ステアリン酸、ピバリン酸、及びイソブチル酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸などの脂環式モノカルボン酸;安息香酸、トルイル酸、α−ナフタレンカルボン酸、β−ナフタレンカルボン酸、メチルナフタレンカルボン酸、及びフェニル酢酸等の芳香族モノカルボン酸;等が挙げられる。
これらのモノカルボン酸は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
【0038】
前記末端封止剤として用いられるモノアミンとしては、カルボキシル基との反応性を有するモノアミンであれば特に限定されないが、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン及びジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン及びジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン及びナフチルアミン等の芳香族モノアミン;等が挙げられる。
これらのモノアミンは、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
【0039】
((A)ポリアミドの製造方法)
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットを構成する(A)ポリアミドの製造方法としては、上述したようにその他の共重合成分を有するポリアミド共重合体である場合を含めて、前記全カルボン酸成分中のイソフタル酸成分比率(x)が0.05≦(x)≦0.5であり、上記式(1)におけるブロック化比率の指標である(Y)が−0.3≦(Y)≦0.8、好ましくは0.05≦(Y)≦0.8となるようなポリアミド(又はポリアミド共重合体)が得られればよい。
(A)ポリアミドの製造方法としては、例えば、アジピン酸、イソフタル酸、ヘキサメチレンジアミン、及び必要に応じてその他の成分の混合物の水溶液、又は水の懸濁液を加熱し、溶融状態を維持したまま重合させる方法(熱溶融重合法);熱溶融重合法で得られたポリアミドを融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(熱溶融重合・固相重合法);アジピン酸、イソフタル酸、ヘキサメチレンジアミン、及び必要に応じてその他の成分の混合物の水溶液、又は水の懸濁液を加熱し、析出したプレポリマーをさらにニーダー等の押出機で再び溶融させて重合度を上昇させる方法(プレポリマー・押出重合法);アジピン酸、イソフタル酸、ヘキサメチレンジアミン、及び必要に応じてその他の成分の混合物、固体塩又は重縮合物を、固体状態を維持したまま重合(固相重合法)させる方法等が挙げられる。
全カルボン酸成分中のイソフタル酸成分比率(x)を上記数値範囲内に制御するための方法としては、原料の仕込み量の調整、重合条件の調整が有効である。
上記式(1)におけるブロック化比率の指標となる(Y)を上記数値範囲内に制御するためには、イソフタル酸成分のブロック化を制御することが必要である。具体的には、重合系内で、溶融状態を維持しながら、圧力を適宜調整し、重合温度を好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは170℃以上としながら、均一混合下において重縮合反応を進め、最終重合内部温度が好ましくは250℃以上、より好ましくは260℃以上になるような条件下で重合させる熱溶融重合法を用いることにより制御することができる。
【0040】
重合形態としては、特に限定されず、バッチ式、連続式のいずれでもよい。
また、重合装置も特に限定されず、公知の装置、例えば、オートクレーブ型の反応器、タンブラー型反応器、ニーダー等の押出機型反応器等を用いることができる。
【0041】
上述したように、(Y)が−0.3≦(Y)≦0.8の範囲となるようにするには、熱溶融重合法によりポリアミドを作製することが好ましく、バッチ式の熱溶融重合法によりポリアミドを作製することがより好ましい。
バッチ式の熱溶融重合法の一例について以下に説明する。
重合温度条件については特に限定されないが、好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは170℃以上である。
例えば、アジピン酸、イソフタル酸、及びヘキサメチレンジアミンとの混合物、固体塩又は水溶液を110〜200℃の温度下で攪拌し、約60〜90%まで水蒸気を徐々に抜いて加熱濃縮する。
その後、内部圧力を約1.5〜5.0MPa(ゲージ圧)になるまで加熱を続ける。
その後、水及び/又はガス成分を除きながら、圧力を約1.5〜5.0MPa(ゲージ圧)に保ち、内部温度が好ましくは240℃以上、より好ましくは245℃以上に達した時点で、水及び/又はガス成分を除きながら圧力を徐々に抜き、最終内部温度が好ましくは250℃以上、より好ましくは260℃以上になるように、常圧で又は減圧して重縮合を行う熱溶融重合法を用いることができる。
さらには、アジピン酸、イソフタル酸、及びヘキサメチレンジアミンとの混合物、固体塩又は重縮合物を融点以下の温度で熱重縮合させる固相重合法等も用いることができる。これらの方法は必要に応じて組み合わせてもよい。
【0042】
ニーダー等の押出型反応機を用いる場合、押出の条件は、減圧度は0〜0.07MPa程度が好ましい。
押出温度は、JIS−K7121に準じた示差走査熱量(DSC)測定で求まる融点よりも1〜100℃程度高い温度が好ましい。
剪断速度は、100(sec-1)以上程度であることが好ましく、平均滞留時間は0.1〜15分程度が好ましい。
上記押出条件とすることにより、着色や高分子量化できない等の問題の発生を効果的に抑制できる。
【0043】
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットを構成する(A)ポリアミド(ポリアミド共重合体を含む、以下同じ。)の製造においては、所定の触媒を用いることが好ましい。
触媒としては、ポリアミドに用いられる公知のものであれば特に限定されず、例えば、リン酸、亜リン酸、次亜リン酸、オルト亜リン酸、ピロ亜リン酸、フェニルホスフィン酸、フェニルホスホン酸、2−メトキシフェニルホスホン酸、2−(2’−ピリジル)エチルホスホン酸、及びそれらの金属塩等が挙げられる。
金属塩の金属としては、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモン等の金属塩やアンモニウム塩等が挙げられる。
また、エチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、デシルエステル、イソデシルエステル、オクタデシルエステル、ステアリルエステル、フェニルエステル等のリン酸エステル類も用いることができる。
【0044】
((A)ポリアミドの物性)
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットを構成する(A)ポリアミドは、蟻酸溶液粘度(JIS K 6816)が、好ましくは10〜30である。
蟻酸溶液粘度が10以上であると、実用上十分な機械的特性を有する成形品が得られ、蟻酸溶液粘度が30以下であると、成形時の流動性が良好なものとなり、表面外観に優れた成形品が得られる。
【0045】
((B)繊維状強化材)
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットは、上述した(A)ポリアミド100質量部と、(B)繊維状強化材(以下、繊維状強化材(B)と記載することもある。)100〜250質量部を含有する。
(B)繊維状強化材の種類としては特に制約はなく、例えば、ガラス繊維、炭素繊維、金属繊維、高融点(高軟化点)の樹脂繊維等が挙げられる。
これらの中でも、加工性、成形性、及び経済性の観点から、ガラス繊維が好ましく用いられる。これらの繊維状強化材は、1種類で用いてもよいし、2種類以上を組み合わせて用いてもよい。
【0046】
ガラス繊維は、機械強度向上の点から表面処理されたものが好ましい。
表面処理としては、特に限定されないが、例えば、カップリング剤やフィルム形成剤を用いることができる。
前記カップリング剤としては、特に限定されないが、例えば、シラン系カップリング剤、チタン系カップリング剤等が挙げられる。
【0047】
前記シラン系カップリング剤としては、特に限定されないが、例えば、トリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(1,1−エポキシシクロヘキシル)エチルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピル−トリス(2−メトキシ−エトキシ)シラン、N−メチル−γ−アミノプロピルトリメトキシシラン、N−ビニルベンジル−γ−アミノプロピルトリエトキシシラン、トリアミノプロピルトリメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ヒドロイミダゾールプロピルトリエトキシシラン、ヘキサメチルジシラザン、N,O−(ビストリメチルシリル)アミド、N,N−ビス(トリメチルシリル)ウレア等が挙げられる。
これらの中でも、γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(1,1−エポキシシクロヘキシル)エチルトリメトキシシラン等のアミノシラン及びエポキシシランが、経済性に優れ、取り扱い易いため、好ましく用いられる。
【0048】
前記チタン系カップリング剤としては、特に限定されないが、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(1,1−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネートイソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N−アミドエチル、アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート等が挙げられる。
【0049】
前記フィルム形成剤としては、特に限定されないが、例えば、ウレタン系ポリマー、アクリル酸系ポリマー、無水マレイン酸とエチレン、スチレン、α−メチルスチレン、ブタジエン、イソプレン、クロロプレン、2,3−ジクロロブタジエン、1,3−ペンタジエン、シクロオクタジエン等の不飽和単量体とのコポリマー;エポキシ系ポリマー、ポリエステル系ポリマー、酢酸ビニル系ポリマー、ポリエーテル系ポリマー等の重合体が挙げられる。
これらの中でも、経済性と性能が優れる観点から、ウレタン系ポリマー、アクリル酸系ポリマー、ブタジエン無水マレイン酸コポリマー、エチレン無水マレイン酸コポリマー、スチレン無水マレイン酸コポリマー、及びこれらの混合物が好ましい。
【0050】
上述したようなカップリング剤及びフィルム形成剤を用いて、ガラス繊維の表面処理を行う方法としては、特に限定されず、公知の方法を用いることができる。
例えば、上記カップリング剤及びフィルム形成剤の有機溶媒溶液又は懸濁液を、いわゆるサイジング剤として表面に塗布するサイジング処理;ヘンシェルミキサー、スーパーミキサー、レーディミキサー、V型ブレンダー等を用いて塗布する乾式混合;スプレーにより塗布するスプレー法;インテグラルブレンド法;ドライコンセントレート法等が挙げられる。
また、これらの方法を組合せた方法(例えば、カップリング剤とフィルム形成剤の一部をサイジング処理により塗布した後、残りのフィルム形成剤をスプレーする方法等)も挙げられる。
これらの中でも、経済性に優れるという観点から、サイジング処理、乾式混合、スプレー法及びこれらを組合せた方法が好ましい。
【0051】
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットに含まれる(B)繊維状強化材は、重量平均繊維長がペレット長と実質上同一である。
前記「重量平均繊維長とペレット長とが実質上同一」とは、後述のようにしてペレット中の(B)繊維状強化材の重量平均繊維長を測定した際の重量平均繊維長が、ペレットの長さの0.9〜1.1倍であることを言うものとする。
(B)繊維状強化材は、本実施形態の長繊維強化ポリアミド樹脂組成物ペレットの長さ方向に平行配列していることが好ましい。
【0052】
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットの長さは5〜30mmであることが好ましく、より好ましくは7〜20mmであり、さらに好ましくは10〜15mmである。
ペレット長が5mmよりも短いと、長繊維強化ポリアミド樹脂組成物としての強度発現が十分ではなく、30mmより長いと、成形時のホッパーでの分級やブリッジを起しやすく、取扱い性が悪くなる。
【0053】
また、当該長繊維強化ポリアミド樹脂組成物ペレットを用いた射出成形品中の繊維状強化材の重量平均繊維長は1mm以上が好ましく、1.5mm〜5mm程度が好ましい。
成形品中に分散している(B)繊維状強化材の重量平均繊維長が1mm以上であれば、成形品の補強効果が発揮され、特に高温雰囲気下の剛性改善効果や、一定荷重下での経時的変形量が減少することで破壊に至るまでの耐久性に優れ、更には衝撃性が飛躍的に改善される。
また、射出成形品における流動方向と直角方向の機械的特性や成形収縮率の異方性や反りが小さくなり、部品設計上の利点となる。
【0054】
(B)繊維状強化材の平均繊維径は、強度発現と押出加工時の取扱い性とのバランスの観点から5〜20μmが好ましく、10〜18μmがより好ましい。
(B)繊維状強化材の平均繊維径は、顕微鏡法により測定することができる。例えば、用いるガラス繊維の断面を顕微鏡を用いて写真撮影し、ガラス繊維断面の直径を計測する方法により測定し、当該測定値から、下記式(I)により平均繊維径を算出する。
平均繊維径=ガラス繊維直径の合計/ガラス繊維の数 ・・・(I)
【0055】
上記(B)繊維状強化材の数平均繊維長及び重量平均繊維長は、顕微鏡法により測定することができる。
例えば、長繊維強化ポリアミド樹脂組成物のペレット、又は長繊維強化ポリアミド樹脂組成物のペレットを用いて成形した成形品を、ポリアミド樹脂組成物の分解温度以上で加熱し、残ったガラス繊維を、顕微鏡を用いて写真撮影し、ガラス繊維の長さを計測する方法により測定することができる。
顕微鏡法によって得られた測定値から、数平均繊維長及び重量平均繊維長を計算する方法としては、下記式(I)、式(II)が挙げられる。
数平均繊維長=ガラス繊維長さの合計/ガラス繊維の数 ・・・(I)
重量平均繊維長=ガラス繊維長さの2乗和/ガラス繊維長さの合計 ・・・(II)
【0056】
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットにおける、(B)繊維状強化材の配合割合は、(A)ポリアミド100質量部に対し、100〜250質量部であり、好ましくは100〜200質量部であり、より好ましくは150〜200質量部である。
(B)繊維状強化材の配合割合を上記範囲内にすることにより、優れた機械的強度が得られ、かつ押出性及び成形性に支障をきたす傾向を抑えることができる。
【0057】
(劣化抑制剤)
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットには、必要に応じて、本実施形態の目的を損なわない範囲で、熱劣化、熱時の変色防止、耐熱エージング性、及び耐候性の向上を目的に劣化抑制剤を添加してもよい。
劣化抑制剤としては、特に限定されないが、例えば、酢酸銅及びヨウ化銅等の銅化合物;ヒンダードフェノール化合物等のフェノール系安定剤;ホスファイト系安定剤;ヒンダードアミン系安定剤;トリアジン系安定剤;及びイオウ系安定剤等が挙げられる。
これらの劣化抑制剤は、1種類を単独で用いてもよいし、2種類以上を組み合せて用いてもよい。
【0058】
(成形性改良剤)
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットには、必要に応じて、本実施形態の目的を損なわない範囲で、成形性改良剤を添加してもよい。
成形性改良剤としては、特に限定されないが、高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸エステル、及び高級脂肪酸アミド等が挙げられる。
【0059】
前記高級脂肪酸としては、例えば、ステアリン酸、パルミチン酸、ベヘン酸、エルカ酸、オレイン酸、ラウリン酸、及びモンタン酸等の炭素数8〜40の飽和又は不飽和の、直鎖又は分岐状の脂肪族モノカルボン酸等が挙げられる。
これらの中でも、ステアリン酸及びモンタン酸が好ましい。
【0060】
前記高級脂肪酸金属塩とは、前記高級脂肪酸の金属塩である。
金属塩の金属元素としては、元素周期律表の第1,2,3族元素、亜鉛、及びアルミニウム等が好ましく、カルシウム、ナトリウム、カリウム、及びマグネシウム等の、第1,2族元素、並びにアルミニウム等がより好ましい。
高級脂肪酸金属塩としては、例えば、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、モンタン酸カルシウム、及びモンタン酸ナトリウム、パルミチン酸カルシウム等が挙げられる。
これらの中でも、モンタン酸の金属塩及びステアリン酸の金属塩が好ましい。
【0061】
前記高級脂肪酸エステルとは、前記高級脂肪酸とアルコールとのエステル化物である。
炭素数8〜40の脂肪族カルボン酸と炭素数8〜40の脂肪族アルコールとのエステルが好ましい。
脂肪族アルコールとしては、例えば、ステアリルアルコール、ベヘニルアルコール、及びラウリルアルコール等が挙げられる。
高級脂肪酸エステルとしては、例えば、ステアリン酸ステアリル、ベヘン酸ベヘニル等が挙げられる。
【0062】
前記高級脂肪酸アミドとは、前記高級脂肪酸のアミド化合物である。
高級脂肪酸アミドとしては、例えば、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、エチレンビスステアリルアミド、エチレンビスオレイルアミド、N−ステアリルステアリルアミド、N−ステアリルエルカ酸アミド等が挙げられる。
高級脂肪酸アミドとしては、好ましくは、ステアリン酸アミド、エルカ酸アミド、エチレンビスステアリルアミド、及びN−ステアリルエルカ酸アミドであり、より好ましくはエチレンビスステアリルアミド及びN−ステアリルエルカ酸アミドである。
【0063】
これらの高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸エステル、及び高級脂肪酸アミドは、それぞれ1種類を単独で用いてもよいし、2種類以上を組み合せて用いてもよい。
【0064】
(着色剤)
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットには、必要に応じて、本実施形態の目的を損なわない範囲で、着色剤を添加してもよい。
着色剤としては、特に限定されないが、例えば、ニグロシン等の染料、酸化チタン及びカーボンブラック等の顔料;アルミニウム、着色アルミニウム、ニッケル、スズ、銅、金、銀、白金、酸化鉄、ステンレス、及びチタン等の金属粒子;マイカ製パール顔料、カラーグラファイト、カラーガラス繊維、及びカラーガラスフレーク等のメタリック顔料等が挙げられる。
【0065】
(その他の樹脂)
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットには、必要に応じて、本実施形態の目的を損なわない範囲で、他の樹脂を添加してもよい。
このような樹脂としては、特に限定されるものではないが、後述する熱可塑性樹脂やゴム成分等が挙げられる。
【0066】
前記熱可塑性樹脂としては、例えば、アタクチックポリスチレン、アイソタクチックポリスチレン、シンジオタクチックポリスチレン、AS樹脂、ABS樹脂等のポリスチレン系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ナイロン6、66、612等の他のポリアミド(本実施形態のポリアミド以外のポリアミド);ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン等のポリエーテル系樹脂;ポリフェニレンスルフィド、ポリオキシメチレン等の縮合系樹脂;ポリアクリル酸、ポリアクリル酸エステル、ポリメチルメタクリレート等のアクリル系樹脂;ポリエチレン、ポリプロピレン、ポリブテン、エチレン−プロピレン共重合体等のポリオレフィン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等の含ハロゲンビニル化合物系樹脂;フェノール樹脂;エポキシ樹脂等が挙げられる。
これらの熱可塑性樹脂は、1種類を単独で用いてもよいし、2種類以上を組み合せて用いてもよい。
【0067】
前記ゴム成分としては、例えば、天然ゴム、ポリブタジエン、ポリイソプレン、ポリイソブチレン、ネオプレン、ポリスルフィドゴム、チオコールゴム、アクリルゴム、ウレタンゴム、シリコーンゴム、エピクロロヒドリンゴム、スチレン−ブタジエンブロック共重合体(SBR)、水素添加スチレン−ブタジエンブロック共重合体(SEB)、スチレン−ブタジエン−スチレンブロック共重合体(SBS)、水素添加スチレン−ブタジエン−スチレンブロック共重合体(SEBS)、スチレン−イソプレンブロック共重合体(SIR)、水素添加スチレン−イソプレンブロック共重合体(SEP)、スチレン−イソプレン−スチレンブロック共重合体(SIS)、水素添加スチレン−イソプレン−スチレンブロック共重合体(SEPS)、スチレン−ブタジエンランダム共重合体、水素添加スチレン−ブタジエンランダム共重合体、スチレン−エチレン−プロピレンランダム共重合体、スチレン−エチレン−ブチレンランダム共重合体、エチレン−プロピレン共重合体(EPR)、エチレン−(1−ブテン)共重合体、エチレン−(1−ヘキセン)共重合体、エチレン−(1−オクテン)共重合体、エチレン−プロピレン−ジエン共重合体(EPDM)や、ブタジエン−アクリロニトリル−スチレン−コアシェルゴム(ABS)、メチルメタクリレート−ブタジエン−スチレン−コアシェルゴム(MBS)、メチルメタクリレート−ブチルアクリレート−スチレン−コアシェルゴム(MAS)、オクチルアクリレート−ブタジエン−スチレン−コアシェルゴム(MABS)、アルキルアクリレート−ブタジエン−アクリロニトリル−スチレンコアシェルゴム(AABS)、ブタジエン−スチレン−コアシェルゴム(SBR)、メチルメタクリレート−ブチルアクリレートシロキサンをはじめとするシロキサン含有コアシェルゴム等のコアシェルタイプ等が挙げられる。
これらのゴム成分は、1種類を単独で用いてもよいし、2種類以上を組み合せて用いてもよい。
【0068】
〔長繊維強化ポリアミド樹脂組成物ペレットの製造方法〕
上述した材料を用いて、本実施形態の長繊維強化ポリアミド樹脂組成物ペレットを製造する方法としては、プルトルージョン法(引き抜き成形法)が好ましく用いられる。
引き抜き成形は、基本的には連続した強化用繊維を引きながら樹脂を含浸するものであり、溶融した樹脂を入れた含浸浴の中を繊維を通し含浸する方法、クロスヘッドダイの中を繊維を通しながら押出機等からクロスヘッドダイに樹脂を供給し含浸させ、ストランド状に形成させる方法等の公知の方法が利用できる。このストランドを引き取る際に冷却固化させた後、ペレタイズすることによって長繊維強化ポリアミド樹脂組成物ペレットを得ることができる。
かかる方法により得られたポリアミド樹脂組成物ペレットは、ペレット長を5〜50mmにペレタイズするのが好ましい。
なお、前記方法により得られたポリアミド樹脂組成物ペレット中の(B)繊維状強化材は、ペレットの長さ方向に平行配列し、(B)繊維状強化材の重量平均繊維長はペレットと実質上同一の長さとなる。
上述した材料の配合方法としては、公知の押出技術を用いることができる。
例えば、溶融混練温度は、樹脂温度にして250〜350℃程度が好ましい。溶融混練時間は、1〜30分程度が好ましい。
また、ポリアミド樹脂組成物を構成する成分を溶融混練機に供給する方法は、すべての構成成分を同一の供給口に一度に供給してもよいし、構成成分をそれぞれ異なる供給口から供給してもよい。
具体的には、混合方法は、例えば、(A)ポリアミドと(B)繊維状強化材、必要に応じてその他の材料を、ヘンシェルミキサー等を用いて混合し、溶融混練機に供給し、混練する方法や、減圧装置を備えた単軸又は2軸押出機で溶融状態にした(A)ポリアミドに、サイドフィダーから(B)繊維状強化材、必要に応じてその他の材料を配合する方法等が挙げられる。
【0069】
〔長繊維強化ポリアミド樹脂組成物ペレットを用いた成形品〕
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットを成形し、成形品を得る方法としては、特に限定されず、公知の成形方法を用いることができる。
例えば、押出成形、射出成形、真空成形、ブロー成形、射出圧縮成形、加飾成形、他材質成形、ガスアシスト射出成形、発砲射出成形、低圧成形、超薄肉射出成形(超高速射出成形)、及び金型内複合成形(インサート成形、アウトサート成形)等の成形方法が挙げられる。
【0070】
〔用途〕
本実施形態の長繊維強化ポリアミド樹脂組成物ペレットの成形品は、過酷な成形条件下における成形品の表面外観の安定性、耐衝撃特性に優れ、更には高温剛性にも優れることから、特に耐熱性も要求される様々な用途に用いることができる。
例えば、自動車分野、電気・電子分野、機械・工業分野、事務機器分野、航空・宇宙分野において、好適に用いることができる。
【実施例】
【0071】
以下、具体的な実施例と比較例を挙げて本発明について詳細に説明するが、本発明は以下の実施例に限定されるものではない。
【0072】
先ず、ポリアミドの構成要素、物性の測定方法、及び特性の評価方法を下記に示す。
〔測定方法〕
<ポリアミドのイソフタル酸成分比率、イソフタル酸末端基、及び全カルボキシル末端基の定量>
ポリアミドを用いて、1H−NMRにより求めた。
溶媒として重硫酸を用いた。
装置は日本電子製、「ECA400型」を用いた。
繰返時間は12秒、積算回数は64回で測定した。
各成分の特性シグナルの積分値より、イソフタル酸成分量、イソフタル酸末端基量、その他のカルボキシル末端基(例えばアジピン酸末端基)量を算出し、これらの値から、全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、及び上記式(1)のパラメータ(Y)をさらに算出した。
【0073】
<蟻酸溶液粘度>
ポリアミドを蟻酸に溶解し、JIS K6810に準じて測定した。
【0074】
<ハイサイクル成形時の外観安定性/グロス値の評価>
装置は、日精樹脂(株)製「FN3000」射出成形機と可塑化用スクリューの圧縮比が1.8で逆流防止リングとスクリューのクリアランスが5mmの長繊維用スクリューを用いた。
シリンダー温度を320℃、充填時間が約1秒になるよう射出圧力、射出速度を適宜調整し、金型温度はポリアミド樹脂組成物のガラス転移温度に応じて80〜120℃の範囲で適宜設定した。100ショットまで成形を行い、ISO試験片を得た。
得られた成形品(ISO試験片)の外観安定性は、堀場(株)製、ハンディ光沢度計「IG320」を用いてグロス値を測定し、下記方法により求めた。
外観安定性=(20〜30ショットISO試験片のグロス平均値)−(90〜100ショットISO試験片のグロス平均値)
上記の数値差が小さいほど、外観安定性に優れるものと判断した。
なお表1、2中、「(1)−(2)」とは、上記外観安定性の式により算出されるグロス値を示す。
【0075】
<衝撃特性:シャルピー衝撃強さの測定>
上記外観安定性試験で得られた20〜25ショットISO試験片を用いて、ISO 179に準じてシャルピー衝撃強さ測定した。
測定値はn=6の平均値とした。
【0076】
<高温剛性:23℃、80℃、120℃雰囲気下での曲げ強度、曲げ弾性率の測定>
上記外観安定性試験と同様の方法で得られたISO試験片を用いて、ISO178に準じて、周囲温度23℃、80℃、120℃雰囲気下で曲げ強度、曲げ弾性率を測定した。また、23℃で測定した曲げ弾性率に対する120℃で測定した曲げ弾性率の割合(%)を剛性保持率とし、この値が大きければ大きいほど高温剛性に優れているものと判断した。
なお、下記表1、表2中、曲げ強度を「強度」、曲げ弾性率を「弾性率」と表記した。
【0077】
<成形品中の(B)繊維状強化材の重量平均繊維長の測定>
上記高温剛性評価試験で得られたISO試験片を、磁器るつぼに入れ、電気マッフル炉(ヤマト科学製FP−31型,設定温度600℃)を用いて試験片を燃焼させた。
燃焼後のガラス繊維をスライドガラス上に移し、光学顕微鏡下で観察し、画像解析装置を用いて、任意に選んだガラス繊維400本の長さを測定した値から、下記式(II)により算出した。
重量平均繊維長=ガラス繊維長さの2乗和/ガラス繊維長さの合計 ・・・(II)
【0078】
〔(A)ポリアミド〕
<製造例1:ポリアミド(A1)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩1237g、イソフタル酸とヘキサメチレンジアミンとの等モル塩263g、及び全等モル塩成分に対して0.5モル%過剰のアジピン酸を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作製した。
この水溶液を内容積5.4Lのオートクレーブに仕込み、窒素置換した。
110〜150℃の温度下で前記水溶液を撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。
その後、オートクレーブの内部温度を220℃に昇温した。
このとき、オートクレーブは1.8MPaまで昇圧した。
そのまま1時間、オートクレーブの内部温度が245℃になるまで加熱し、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次に、1時間かけてオートクレーブ内の圧力を1MPaまで下げ、その後、オートクレーブ内を真空装置で650torrの減圧下に10分維持した。
このとき、重合の最終内部温度は265℃であった。
その後、オートクレーブ内を窒素で加圧し下部紡口(ノズル)から得られたポリマーをストランド状で排出し、水冷、カッティングを行いペレット状にして、100℃、窒素雰囲気下で12時間乾燥し、ポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表1に示す。
【0079】
<製造例2:ポリアミド(A2)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩1132g、及びイソフタル酸とヘキサメチレンジアミンとの等モル塩368gを用いた。
その他の条件は、製造例1と同様の方法によりポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表1に示す。
【0080】
<製造例3:ポリアミド(A3)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩1044g、及びイソフタル酸とヘキサメチレンジアミンとの等モル塩456gを用いた。
その他の条件は、製造例1と同様の方法によりポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表1に示す。
【0081】
<製造例4:ポリアミド(A4)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩816g、及びイソフタル酸とヘキサメチレンジアミンとの等モル塩684gを用いた。
その他の条件は、製造例1と同様の方法によりポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表1に示す。
【0082】
<製造例5:ポリアミド(A5)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩1237g、及びイソフタル酸とヘキサメチレンジアミンとの等モル塩263gを用いた。全等モル塩成分に対して0.5モル%過剰のアジピン酸を添加しなかった。
その他の条件は、製造例1の方法によりポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表1に示す。
【0083】
<製造例6:ポリアミド(A6)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩1044g、及びイソフタル酸とヘキサメチレンジアミンとの等モル塩456gを用いた。全等モル塩成分に対して0.5モル%過剰のアジピン酸を添加しなかった。
その他の条件は、製造例1の方法によりポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表1に示す。
【0084】
<製造例7:ポリアミド(A7)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩1114g、イソフタル酸とヘキサメチレンジアミンとの等モル塩386g、及び全等モル塩成分に対して0.5モル%過剰のアジピン酸を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作製した。
この水溶液を内容積5.4Lのオートクレーブに仕込み、窒素置換した。
110〜150℃の温度下で前記水溶液を撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。
その後、オートクレーブの内部温度を220℃に昇温した。
このとき、オートクレーブは1.8MPaまで昇圧した。
そのまま1時間、オートクレーブの内部温度が245℃になるまで加熱し、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次に、1時間かけてオートクレーブ内の圧力を1MPaまで下げ、その後、オートクレーブ内を真空装置で400torrの減圧下に10分維持した。
このとき、重合の最終内部温度は265℃であった。
その後、オートクレーブ内を窒素で加圧し下部紡口(ノズル)から得られたポリマーをストランド状で排出し、水冷、カッティングを行いペレット状にして、100℃、窒素雰囲気下で12時間乾燥し、ポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表1に示す。
【0085】
<製造例8:ポリアミド(A8)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩1114g、イソフタル酸とヘキサメチレンジアミンとの等モル塩368g、及び全等モル塩成分に対して0.5モル%過剰のアジピン酸を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作製した。
この水溶液を内容積5.4Lのオートクレーブに仕込み、窒素置換した。
110〜150℃の温度下で前記水溶液を撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。
その後、オートクレーブの内部温度を220℃に昇温した。
このとき、オートクレーブは1.8MPaまで昇圧した。
そのまま1時間、オートクレーブの内部温度が245℃になるまで加熱し、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次に、1時間かけてオートクレーブ内の圧力を1MPaまで下げ、その後、オートクレーブ内を真空装置で650torrの減圧下に20分維持した。
このとき、重合の最終内部温度は270℃であった。
その後、オートクレーブ内を窒素で加圧し下部紡口(ノズル)から得られたポリマーをストランド状で排出し、水冷、カッティングを行いペレット状にして、100℃、窒素雰囲気下で12時間乾燥し、ポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表1に示す。
【0086】
<製造例9:ポリアミド(A9)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩1109g、イソフタル酸とヘキサメチレンジアミンとの等モル塩368g、εカプロラクタム5g、及び全等モル塩成分に対して0.5モル%過剰のアジピン酸を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作製した。
この水溶液を内容積5.4Lのオートクレーブに仕込み、窒素置換した。
110〜150℃の温度下で前記水溶液を撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。
その後、オートクレーブの内部温度を220℃に昇温した。
このとき、オートクレーブは1.8MPaまで昇圧した。
そのまま1時間、オートクレーブの内部温度が245℃になるまで加熱し、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次に、1時間かけてオートクレーブ内の圧力を1MPaまで下げ、その後、オートクレーブ内を真空装置で650torrの減圧下に10分維持した。
このとき、重合の最終内部温度は265℃であった。
その後、オートクレーブ内を窒素で加圧し下部紡口(ノズル)から得られたポリマーをストランド状で排出し、水冷、カッティングを行いペレット状にして、100℃、窒素雰囲気下で12時間乾燥し、ポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表1に示す。
【0087】
<製造例10:ポリアミド(A10)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩1500g、全等モル塩成分に対して0.5モル%過剰のアジピン酸を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作製した。
この水溶液を内容積5.4Lのオートクレーブに仕込み、窒素置換した。
110〜150℃の温度下で前記水溶液を撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。
その後、オートクレーブの内部温度を220℃に昇温した。
このとき、オートクレーブは1.8MPaまで昇圧した。
そのまま1時間、オートクレーブの内部温度が260℃になるまで加熱し、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次に、1時間かけてオートクレーブ内の圧力を1MPaまで下げ、その後、オートクレーブ内を真空装置で650torrの減圧下に10分維持した。
このとき、重合の最終内部温度は290℃であった。
その後、オートクレーブ内を窒素で加圧し下部紡口(ノズル)から得られたポリマーをストランド状で排出し、水冷、カッティングを行いペレット状にして、100℃、窒素雰囲気下で12時間乾燥し、ポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表2に示す。
【0088】
<製造例11:ポリアミド(A11)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩1455g、及びイソフタル酸とヘキサメチレンジアミンの等モル塩45gを用いた。
その他の条件は、製造例10と同様の方法によりポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表2に示す。
【0089】
<製造例12:ポリアミド(A12)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩1237g、イソフタル酸とヘキサメチレンジアミンとの等モル塩263g、及び全等モル塩成分に対して0.5モル%過剰のアジピン酸を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作製した。
この水溶液を内容積5.4Lのオートクレーブに仕込み、窒素置換した。
110〜150℃の温度下で前記水溶液を撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。
その後、オートクレーブの内部温度を220℃に昇温した。
このとき、オートクレーブは1.8MPaまで昇圧した。
そのまま1時間、オートクレーブの内部温度が260℃になるまで加熱し、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次にバルブを閉止し、ヒーターを切り、約8時間かけてオートクレーブの内部温度を常温まで冷却し、蟻酸溶液粘度7のポリアミドを得た。
得られたポリアミドを粉砕した後、内容積10Lのエバポレーターに入れ、窒素気流下、200℃で10時間固相重合した。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表2に示す。
【0090】
<製造例13:ポリアミド(A13)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩816g、及びイソフタル酸とヘキサメチレンジアミンとの等モル塩684gを用いた。
その他の条件は、製造例12と同様の方法によりポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表2に示す。
【0091】
<製造例14:ポリアミド(A14)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩1220g、イソフタル酸とヘキサメチレンジアミンとの等モル塩280g、及び全等モル塩成分に対して0.5モル%過剰のアジピン酸を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作製した。
この水溶液を、内容積5.4Lのオートクレーブに仕込み、窒素置換した。
110〜150℃の温度下で前記水溶液を撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。
その後、オートクレーブの内部温度を220℃に昇温した。
このとき、オートクレーブは1.8MPaまで昇圧した。
そのまま2時間、オートクレーブの内部温度が260℃になるまで加熱し、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次に、1時間かけてオートクレーブ内の圧力を1MPaまで下げ、次にバルブを閉止し、ヒーターを切り、約8時間かけてオートクレーブの内部温度を常温まで冷却し、ポリアミドを得た。得られたポリアミドを粉砕した後、100℃、窒素雰囲気下で12時間乾燥し、ポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表2に示す。
【0092】
<製造例15:ポリアミド(A15)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩570g、及びイソフタル酸とヘキサメチレンジアミンとの等モル塩930gを用いた。
その他の条件は、製造例1と同様の方法によりポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表2に示す。
【0093】
<製造例16:ポリアミド(A16)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩570g、及びイソフタル酸とヘキサメチレンジアミンとの等モル塩930gを用いた。
全等モル塩成分に対して0.5モル%過剰のアジピン酸を添加しなかった。
その他の条件は、製造例1と同様の方法によりポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表2に示す。
【0094】
<製造例17:ポリアミド(A17)の製造>
アジピン酸とヘキサメチレンジアミンとの等モル塩1237g、イソフタル酸とヘキサメチレンジアミンとの等モル塩263g、及び全等モル塩成分に対して0.5モル%過剰のアジピン酸を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作製した。
この水溶液を内容積5.4Lのオートクレーブに仕込み、窒素置換した。
110〜150℃の温度下で前記水溶液を撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。
その後、オートクレーブの内部温度を220℃に昇温した。
このとき、オートクレーブは1.8MPaまで昇圧した。
そのまま1時間、オートクレーブの内部温度が260℃になるまで加熱し、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次にバルブを閉止し、ヒーターを切り、約8時間かけてオートクレーブの内部温度を常温まで冷却し、蟻酸溶液粘度7のポリアミドを得た。
得られたポリアミドの全カルボン酸中のイソフタル酸成分比率(x)、全カルボキシル末端基中のイソフタル酸末端基比率(EG)、上記式(1)で示されるパラメータ(Y)、蟻酸溶液粘度等のポリマー特性を上記記載の方法により測定及び算出した。これらを下記表2に示す。
【0095】
〔(B)繊維状強化材〕
ポリアミド樹脂組成物に含有させる(B)繊維状強化材を示す。
(B1)ガラス繊維ロービング(商品名:ER4301H、重慶国際複合材料有限公司製、平均繊維径:17μm、TEX数:1200TEX)
(B2)ガラス繊維チョップドストランド(商品名:T275H、日本電気硝子(株)製、平均繊維径:10μm、繊維カット長3mm、断面形状は円形)
【0096】
〔実施例1〕
二軸押出機(Coperion社製ZSK25)を用い、ポリアミド(A1)をフィードホッパーより供給し、シリンダー設定温度:290℃、スクリュー回転数300rpmの条件で、押出機内で溶融混練した。
溶融したポリアミド樹脂を、長繊維強化樹脂製造装置((株)神戸製鋼所製KOSLFP−212)の含浸ダイに供給した。
この含浸ダイに3本のガラス繊維ロービング(B1)の束を導入し、ダイ内で樹脂溶融混練物が含浸したガラス繊維ロービング(B1)の束をダイノズルから連続的に引き抜いて、1本のストランド状にして、そのストランドを水冷バス中で冷却固化した後、ペレタイザーで切断することにより、長繊維強化ポリアミド樹脂組成物ペレットを得た。
ストランドの引取速度は30m/分であり、得られた長繊維強化ポリアミド樹脂組成物のペレットの長さは10mm、前記ペレット中の繊維状強化材であるガラス繊維含有量は50質量%であった。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表1に示す。
【0097】
〔実施例2〕
ポリアミド(A2)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表1に示す。
【0098】
〔実施例3〕
ポリアミド(A3)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表1に示す。
【0099】
〔実施例4〕
ポリアミド(A4)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表1に示す。
【0100】
〔実施例5〕
ポリアミド(A5)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表1に示す。
【0101】
〔実施例6〕
ポリアミド(A6)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表1に示す。
【0102】
〔実施例7〕
ポリアミド(A7)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表1に示す。
【0103】
〔実施例8〕
ポリアミド(A8)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表1に示す。
【0104】
〔実施例9〕
ポリアミド(A9)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表1に示す。
【0105】
〔実施例10〕
含浸ダイノズル径を変更して、ポリアミド樹脂組成物ペレット中のガラス繊維ロービング(B1)の量を60質量%((A)ポリアミド100質量部に対して(B)繊維状強化材150質量部)にした以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表1に示す。
【0106】
〔実施例11〕
引取速度とペレタイザー回転数を変更して、ポリアミド樹脂組成物ペレットの長さを20mmにした。その他の条件は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表1に示す。
【0107】
〔比較例1〕
ポリアミド(A10)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表2に示す。
【0108】
〔比較例2〕
ポリアミド(A11)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表2に示す。
【0109】
〔比較例3〕
ポリアミド(A12)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表2に示す。
【0110】
〔比較例4〕
ポリアミド(A13)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表2に示す。
【0111】
〔比較例5〕
ポリアミド(A14)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表2に示す。
【0112】
〔比較例6〕
ポリアミド(A15)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表2に示す。
【0113】
〔比較例7〕
ポリアミド(A16)を用いた以外は実施例1に記載した方法と同様にして、長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られた長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表2に示す。
【0114】
〔比較例8〕
ポリアミド(A17)を用いた以外は実施例1に記載した方法と同様に実施したが、長繊維強化ポリアミド樹脂組成物ペレットが得られなかった。
【0115】
〔比較例9〕
二軸押出機(Coperion社製ZSK25)を用い、ポリアミド(A1)をトップフィード口より供給し、下流のサイドフィード口よりガラス繊維チョップドストランド(B2)をポリアミド(A1)50質量%に対して50質量%の割合でそれぞれ供給し、シリンダー設定温度:290℃、スクリュー回転数300rpmの条件で、押出機内で溶融混練した。
得られたガラス短繊維強化ポリアミド樹脂組成物をストランド状になるよう成形し、水冷バス中で冷却固化した後、ペレタイザーでペレタイズしてガラス短繊維強化ポリアミド樹脂組成物ペレットを得た。
得られたペレットの長さは3mm、ペレット中のガラス繊維の重量平均繊維長は0.30mmであった。
得られたガラス短繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表1に示す。
【0116】
〔比較例10〕
ポリアミドとして、ポリアミド66(商品名:レオナ1200,旭化成ケミカルズ(株)製)を用いた以外は、実施例1に記載した方法と同様にして、ガラス長繊維強化ポリアミド樹脂組成物ペレットを得た。
得られたガラス長繊維強化ポリアミド樹脂組成物ペレットを用いて、上記記載の方法により成形品を製造し、ハイサイクル成形時の外観安定性、衝撃特性、高温剛性の評価を行った。評価結果を下記表1に示す。
【0117】
【表1】
【0118】
【表2】
【0119】
前記表1に示すように、実施例1〜11の長繊維強化ポリアミド樹脂組成物の成形品は、いずれも極めて優れた外観安定性、衝撃特性、高温剛性を有することが確認された。
一方、(Y)が、−0.3≦(Y)≦0.8の範囲外である比較例3、4、5、8のポリアミド樹脂組成物の成形品、及び(x)が、0.05≦(x)≦0.5の範囲外である比較例1、2、6、7の長繊維強化ポリアミド樹脂組成物の成形品は、表面外観の安定性、衝撃特性が大きく低下したことが確認された。
比較例9のようにガラス短繊維を用いると、成形品中のガラス繊維長が短くなるため、衝撃強度や剛性が低くなり、高温剛性が十分に得られなかった。
また比較例10のように、通常のポリアミド66を含むポリアミド樹脂組成物を用いた場合は、ハイサイクル成形での外観安定性が大幅に低下することが確認された。
【産業上の利用可能性】
【0120】
本発明の長繊維強化ポリアミド樹脂組成物ペレット及びこれを用いた成形品は、自動車分野、電気・電子分野、機械・工業分野、事務機器分野、航空・宇宙分野等において、産業上の利用可能性がある。
図1