(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0004】
組換え体真核生物ウイルスベクターは、多くの研究者や臨床医にとって好ましい遺伝子導入の手段となっている。in vivo遺伝子導入は、レシピエントに有益な部位における導入遺伝子のタンパク質生成物の発現を達成するべく、通常はDNAの形態の核酸が投与されるストラテジーである。その利益とは、その遺伝子生成物に対する免疫応答が誘導されること(すなわち、ワクチン接種)、または治療目的で標的細胞の遺伝子レパートリーが改変されることであり得る。これは、いわゆる「導入遺伝子」をコードする組換え体アデノウイルスベクターを用いて効率的に達成することができる。アデノウイルスベクターは、遺伝子導入のために通常利用される他のベクター(例えばレトロウイルスベクター)と比較して有利である。その理由は、アデノウイルスベクターは、(i)高力価(すなわち最大10
13ウイルス粒子/m
3)で作り出すことができ;(ii)複製している細胞ならびに複製していない細胞にも遺伝子を効率的に導入し;(iii)組換えの頻度が小さく;(iv)アデノウイルスのヒトへの感染は一般的であるが、アデノウイルス感染症とヒト悪性腫瘍との関係は知られておらず;(v)アデノウイルスゲノムを、サイズに幅のある外来遺伝子を収容するべく操作でき;(vi)アデノウイルスベクターは、細胞の染色体にそのDNAを挿入せず、その効果は一時的であって細胞の正常な機能を妨げることはほとんどなく;かつ基本的な特性として複製する能力を有している生アデノウイルスは、ヒトのワクチンとして安全に使用されてきたからである(Straus,In Adenoviruses,Pienan Press,New York,N.Y.,451−496(1984);Horwitzら,In Virology,2nd Ed.,Fieldsら,eds.,Raven Press,New York,N.Y.,1679−1721(1990);Berkner,BioTechniques,6:616(1988);Chanockら,IAMA,195:151(1966);HajAhmadら,J.Virol,57:267(1986);およびBallayら,EMBO J,4:3861(1985))。ヒトアデノウイルスは、現在のウイルスベクター型ワクチンや遺伝子治療プロトコルで最も広く使用されている組換え体ウイルスベクターの1つである。
【0005】
一般的な構造の面では、現在までに調べられたすべてのアデノウイルスは、無外皮の直径が約65〜80nmの正20面体である。アデノウイルスは、コアタンパク質と複合体形成し、アデノウイルスキャプシドに外囲されている直線状の二本鎖DNAで構成されている。カプシドのタンパク質は中和抗体の標的であり、異なる血清型はウイルス粒子の外側にあるキャプシドタンパク質に異なるアミノ酸配列を有している。
【0006】
アデノウイルスはアデノウイルスファミリーに属し、該アデノウイルスファミリーは、5つの属、マストアデノウイルス属、アタデノウイルス属、シアデノウイルス属、アビアデノウイルス属、およびイクタデノウイルス属に分かれている。マストアデノウイルス属のアデノウイルスは哺乳動物に感染し、ヒトアデノウイルス、チンパンジーアデノウイルス、サルアデノウイルスが含まれている。
【0007】
アデノウイルスは細胞に導入遺伝子を導入するエレガントかつ効率的な手段を提供する。しかし、in vivo遺伝子導入のためにアデノウイルスベクターを使用したことにより発生した問題の1つは、アデノウイルスに自然に曝されることによってレシピエントが獲得した、アデノウイルスに対する既存の免疫の存在である。第一に、生涯を通じて、アデノウイルス感染は、アデノウイルスキャプシドタンパク質上の抗原エピトープに対する抗体の生成を誘導する。力価が十分な場合に、その抗体は、アデノウイルス遺伝子導入ベクターの有効性を制限し得る。さらに、アデノウイルスベクターの投与は、免疫を誘導し得る。したがって、アデノウイルスは、効果的な遺伝子の伝達手段として複数回使用することができない。例えば、アデノウイルス2型または5型遺伝子導入ベクターを静脈内投与または局所投与(例えば肺、心臓、または腹膜への投与)すると、ベクターに対する抗体が産生され、これが1〜2週間後に投与した同一の血清型ベクターからの発現を防止することが、動物実験により立証された(例えば、Yeiら.Gene Therapy,1:192−200(1994);Zabnerら,Nat.Gen.,6:75−83(1994);Setoguchiら,Am.J.Respir.Cell.Mol.Biol,10:369−377(1994);Kass−Eislerら,Gene Therapy,1:395−402(1994);Kass−Eislerら,Gene Therapy,3:154−162(1996)を参照)。これは、アデノウイルスによる遺伝子導入の欠点である。アデノウイルスベクターの多くの用途(例えば、病原体に対する免疫応答の誘導もしくは増強の用途、または治療薬の2度目の投与の提供の用途)用途では、反復投与を必要とするからである。アデノウイルスに対して誘発された抗体が、アデノウイルスでコードされた遺伝子の発現を防止または低減できる機序は不明である。しかし、この現象は大まかに「中和」呼ばれ、その作用をもつ抗体は「中和抗体」と称する。したがって、in vivoでの遺伝子導入にアデノウイルスベクターを最大限に活用するために、新たなタイプのアデノウイルスは、(1)他のタイプに対する抗体による中和の影響を受けないこと、および(2)一般的にヒトの集団にみられる抗体による中和の影響を受けないことが必要とされる。
【0008】
ひろい範囲の動物の宿主から単離された多くの異なる種類のアデノウイルスが存在し、アデノウイルスは最初に単離された宿主にちなんで命名されている。アデノウイルスが単離された宿主の動物には、哺乳類、鳥類、ヘビ、カエル、および魚が含まれる。哺乳動物宿主には、各種哺乳動物とともに、サル、ヒト、およびチンパンジーなどの霊長類が含まれる。
【0009】
ヒトとチンパンジーは非常に近縁であり、ヒト科として同じ科に分類されている。これに対して、サルは、ヒトおよびチンパンジーとの間に有意に大きい進化距離があるため、同じ科には分類されていない。サルはヒト科から25〜35万年前に分岐し、一方ヒトとチンパンジーとはわずか約7万年前に分岐したばかりである(SamonteおよびEichier,Nature Reviews Genetics,3:65−72(2002))。これらのヒト、チンパンジー、およびサルの間の類似点と相違点は、アデノウイルスの文書化された宿主域制限と一致している。
【0010】
宿主域制限のさまざまな形が生ずる。例えば、野生型ヒトアデノウイルスは、サルの細胞で生産的に増殖しない。野生型ヒトアデノウイルスに感染したサルの細胞では、ウイルスの初期遺伝子が正しく発現され(Feldmanら,J Bacterial.,91:813−8(1966);Van der VlietおよびLevine,Nature,246:170−4(1973))、かつウイルスDNAの複製が正常に発生する(Rappら,J.Bacterial,92:931−6(1966);Reichら,PNAS,55:336−41(1966);Friedmanら,J.Virol,5:586−97(1970))。しかし、いくつかの後期ウイルスタンパク質の発現は減少する。後期遺伝子発現に対するブロックは、ウイルスの後期mRNAの異常生成に起因するとみられ(KlessigおよびAnderson,J.Virol.,16:1650−68(1975))、かつこのブロックは、アデノウイルスDNA結合タンパク質(DBP)の単一変異によって克服することができる(KlessigおよびGrodzicker,Cell,17:957−66(1979))。DBPにこの単一変異を含むヒトアデノウイルスはサルの細胞で生産的増殖し、このことは、サル/ヒトブロックの鍵は、アデノウイルスのライフサイクル中のDBFの役割に中心があることを示唆している。
【0011】
サル/ヒトブロックとは対照的に、チンパンジーから単離されたアデノウイルスはヒト細胞での制限を有しておらず、効率的に増殖し得る伝播することが観察されている(W.P,Roweら,Proc.Soc.Exp,Biol.Med.,97(2):465−470(1958);W.D.Hillisら,American Journal of Epidemiology,90(4):344−353(1969);N.Rogersら,Nature,216:446−449(1967))。特に、チンパンジーアデノウイルス単離株のいくつかの複製は、サル細胞に比べてヒト細胞でより効率的であることが判明した(M.Basnightら,American Journal of Epidemiology,P4(2):166−171(1971))。ゴリラやボノボなど他の大型の類人猿種から単離されたアデノウイルスはまた、ヒト細胞で増殖することが最近わかった(S.Royら,PLoS Pathogens,5(7):e1000503(2009))。ヒト細胞における野生型チンパンジーアデノウイルスの複製には、ヒトアデノウイルス補完因子の発現を必要としない。E1発現細胞株(例えば、ヒト胚性腎臓293細胞、ヒトの網膜PER.C6細胞)および非発現細胞株(A549ヒト肺上皮癌細胞)が増殖のために使用されてきたからである(米国特許第6,083,716号明細書;Virology,324:361−372(2004);S.Royら,Human Gene Therapy,15:519−530(2004);E.Fattoriら,Gene Therapy,7J(14):1088−1096(2006);J.Skogら,Molecular Therapy,15(12):2140−2145(2007);D.Peruzziら,Vaccine,27(9):1293−1300(2009))。複製ブロックが存在しないことは、約7万年前に分岐したヒトとチンパンジーの系統間の進化距離が近いことと整合している(SaraonteおよびEichler,Nature Reviews Genetics,3:65−72(2002))。
【0012】
宿主の範囲がより広がったことと整合する、ヒト細胞における増殖のためのサルアデノウイルスの宿主域の制限が報告されており(Am.J.Hyg.,68:31(1958);Virology,35:248(1968);Savitskayaら,Doklady Biochemistry,375:242(2000);Alsteinら,JVi,2:488(1968);Genetiki,39(6):725−31(June2003))、ここでは、その決定因子が部分的にE4、そしておそらくはE2であるとのが仮定がされている。Savitskayaら(前掲)は、ヒト胎児腎臓(HEK)細胞株293でサルアデノウイルスSV7(C8)(現在はSV16として知られている(ICTV 8
th Report,p.220))が増殖しなかったことを報告している。したがって、ヒトアデノウイルスのE1領域は、複製のブロックを軽減するには十分ではなかった。このウイルスはAd5のE4領域が挿入されたHEK−293細胞(VK−10−9細胞)で増殖し得た。しかし、複製がCVL細胞(ミドリザルの腎臓の継代細胞株)に比べて1/40であったことから、VK−10−9細胞は複製ブロックを部分的にしか緩和させなかった。このことは、VK−10−9細胞株ではサルウイルスの複製に対するブロックが依然存在することを示していた。著者らの結論は、E4 ORF3タンパク質レベルに基づけばE4の発現は低すぎ(KrougliakおよびGraham,Hum.Gene Ther,6:1575(1995))、ウイルス独特生成物がおそらく必要である(Savitskayaら,前掲)というものであった。そして著者らは、問題を明確にするために追加の研究は必要であるが、生成物はE2A遺伝子によってコードされたものであり得ることを提示した。Savitskayaら(前掲)は、E4の発現が低いことが原因だった可能性があるか、またはE2Aからの追加の因子が複製ブロックの完全な解除のために必要とされるであろうと指摘しており、原因を特定するには追加の研究が必要だと述べている。興味深いことに、VK−10−9細胞でE4の発現レベルは、野生型Ad5の複製時の発現レベルと比較して有意に低いことが報告されたものの、E4−を除去されたヒトアデノウイルス5型ウイルスの複製を、HEK−293細胞における野生型ヒトAd5の複製と同じレベルにするためには十分なものであった(KrougliakおよびGraham1995)。このことは、E4の発現レベルは、種固有のブロックを完全には説明するものではないことを示唆している。つまり、より多くのE4の発現および/またはE2A生成が必要だと考えられていたが、いずれも必要なかった。また、増殖のためのE4の必要性は宿主域決定のための必要性とは同一ではないことから、ウイルス増殖に必要なAd5のE4機能は、ヒト細胞でサルアデノウイルスの宿主域の制限を克服するのに必要なこととは別であるのは明らかである。したがって、Savitskayaら(前掲)は、アデノウイルスのE1およびE4領域は他種のブロックを軽減するためには十分ではない可能性が高く、そのような他の領域、得にDBP(E2A)をコードする領域が重要であることを立証した。
【0013】
さらに、別の研究により、ヒトAd2とSA7(C8)のアデノウイルスアデノウイルスハイブリッドは、複製の欠陥があることがわかった。このことは、ヒトE1とサルE4に互換性はないこと、およびヒトアデノウイルスE1では、宿主域制限を克服するのに十分ではないことを示唆しており、これは細胞からE1が発現されても宿主域が変更されなかった上記の結果と一致している(Alsteinら,JVi,2:488(1968);Savitskayaら,前掲)。Ad2とSA7(C8)との間の別のアデノウイルス−アデノウイルスハイブリッドは、Ad2の増殖を防止する選択条件の下で2種のウイルスの増殖によって生成された(Grinenkoら,Molecular Genetics,Microbiology and Virology,5:25(2004))。ヒト細胞におけるハイブリッドウイルス(HEK−293)の増殖と選択により、SA7(C8)のL3領域のみを取り入れた欠損ウイルスが得られた。著者らは、Ad2 E4とE2A(DNA結合タンパク質をコードする)の両方が、欠損ハイブリッドに存在し無損傷であったことを指摘し、遺伝子E4ならびにおそらくE2Aは種特異的宿主域の決定に関与していると述べており、このことは、宿主域制限を緩和するためにはE4以外のものが必要であるという以前の結論と一致している。これらの結果から、サル−ヒトアデノウイルスのハイブリッドをヒト細胞で増殖させるには、Ad2ゲノムの10%しか除去できず、宿主域決定因子を含めるためにAd2ゲノムの90%を残しておかなければならないことが分かった。したがって、このハイブリッドは、ヒト細胞でのサルアデノウイルスの増殖に必要なヒトアデノウイルス生成物についての更なる調査結果を提供するものではなかった。まとめると、これらの報告から、E4は宿主域決定にある役割を果たしているが、他のアデノウイルス遺伝子も一定の役割を果たすことが分かった。また、E4領域は少なくとも5種の既知のタンパク質生成物で構成されており、これらの研究にもかかわらず、宿主域ブロックの部分的な緩和のために必要であり得るE4の要素または要素群が特定されなかった。
【0014】
したがって、ヒト細胞においてサルアデノウイルスが効率的に増殖すなわち複製を行うのを防止する種特異的なブロックすなわち宿主域制限を緩和、さらに除去すら行う方法に対する必要性が依然として存在する。また、ヒトにおけるアデノウイルスに対する既存の免疫を回避できるアデノウイルスおよびアデノウイルスベクターの必要性も依然存在する。本発明は、このような方法、アデノウイルスやベクター、およびその使用方法を提供する。
【発明を実施するための形態】
【0022】
本発明は、一般的に、ヒト細胞でのサルアデノウイルスの効率的な増殖すなわち複製を妨げる、種特異的なブロックすなわち宿主域制限を緩和または克服する方法を提供する。
【0023】
本発明はまた、一般的に、サルアデノウイルスと、ヒト個体群でのサルアデノウイルスに対する既存の免疫が存在しないという有利さを伴うその使用法とを提供する。
【0024】
一態様では、本発明は、細胞においてサルアデノウイルスを増殖させる方法であって、前記細胞は、ヒトアデノウイルスの1以上の遺伝子生成物を発現し、および/または前記サルアデノウイルスが、ヒトアデノウイルス遺伝子生成物をコードする核酸配列を含む、該方法を提供する。
【0025】
第2の態様では、本発明は、そのような増殖方法によって得られたサルアデノウイルスを提供する。
【0026】
第3の態様では、本発明は前記サルアデノウイルスのベクターとしての使用を提供する。
【0027】
本発明は、サルアデノウイルスを増殖させる方法であって、前記サルアデノウイルスを細胞に接触させる(細胞を形質転換する)ステップを含む、該方法を提供する。一実施形態では、前記細胞は、ヒトアデノウイルスのE1A領域、E1B領域、およびE4領域の1以上によってコードされた遺伝子生成物を含む。別の実施形態では、前記細胞は、ヒト細胞における宿主のサルアデノウイルスの複製ブロックの軽減または抑制を担う遺伝子生成物(および/またはそのコード核酸配列)を含む。別の実施形態では、前記方法は、前記サルアデノウイルスを細胞に接触させるステップを含み、前記細胞は、ヒトアデノウイルスのE1A領域およびE1B領域の一方または両方にコードされた遺伝子生成物と、ヒト細胞における宿主の複製ブロックの軽減または抑制を担い、基本的にE4−ORF6からなるE4領域の一部分によってコードされる遺伝子生成物を含とを発現し、それによって前記細胞において前記サルアデノウイルスが増殖される。別の実施形態では、前記方法は、前記サルアデノウイルスを細胞に接触させるステップを含み、前記サルアデノウイルスは、ヒトアデノウイルスの1以上の遺伝子生成物をコードする核酸配列を含み、該遺伝子生成物は、ヒトアデノウイルスのE1A領域、E1B領域、およびE4領域によってコードされた遺伝子生成物を含み得、ヒト細胞における宿主の複製ブロックの軽減または抑制を担うE4領域の一部分によってコードされる遺伝子生成物を含むことになる。別の実施形態では、サルアデノウイルスを増殖させる方法であって、前記サルアデノウイルスを細胞に接触させるステップを含む、該方法が提供される。前記サルアデノウイルスは、ヒトアデノウイルスの1以上の遺伝子生成物をコードする核酸配列を含み、前記1以上の遺伝子生成物は、ヒト細胞における宿主の複製ブロックの軽減または抑制を担い、基本的にE4−ORF6からなるE4領域の一部分によってコードされる遺伝子生成物を含み、それによって前記細胞において前記サルアデノウイルスが増殖される。
【0028】
いくつかの実施形態では、前記細胞は、種特異的ブロックの軽減または抑制を担うE4領域を発現する。いくつかの実施形態では、発現される該E4領域はORF6を含む。いくつかの実施形態では、発現される該E4領域は基本的にORF6からなる。いくつかの実施形態では、発現される該E4領域は基本的にORF6からなり、E4領域の他のOREを含まない。
【0029】
一実施形態では、前記細胞はサルアデノウイルスに接触して、好ましくは、多種のヒトアデノウイルス(好ましいヒトアデノウイルス5型を含む)を包含するヒトアデノウイルスC型の1以上の遺伝子生成物を発現する。
【0030】
ヒト細胞は、サルアデノウイルスを増殖させるのに好適であって、好ましいヒト細胞には、HEK−293細胞またはPerC.6細胞が含まれる。
【0031】
また、前記サルアデノウイルスは、複製能欠損型であり得る。複製能欠損型の場合、サルアデノウイルスは、増殖のためにアデノウイルスのE1A領域、E1B領域、およびE4領域の1以上の補完を必要とする。一実施形態では、前記サルアデノウイルスは、アデノウイルスゲノムのなかのE1領域の欠損およびE4領域の少なくとも一部分の欠損を含む。さらに別の実施形態では、前記アデノウイルスは、アデノウイルスゲノムのE3領域の欠損も含む。
【0032】
別の実施形態では、サルアデノウイルスは、抗原をコードする核酸配列を含む、異種核酸配列を含み得る。サルアデノウイルスは、好ましくはE1領域の欠失を含み、より好ましくは、アデノウイルスのE4領域の少なくとも一部分の欠失を含み、異種核酸配列はE1の欠失領域またはアデノウイルスのE4の欠失領域に挿入される。
【0033】
当該サルアデノウイルスは、既知のまたは将来に発見される様々な血清型であり得、既知の血清型としては1型、3型、7型、11型、16型、18型、19型、20型、27型、33型、38型、39型、またはそれらの組み合わせが挙げられる。
【0034】
本明細書中で使用される用語「サル」は、新世界サルおよび旧世界ザルの両方をさし、ヒト科(例えば、「類人猿」と呼ばれる、ヒト、チンパンジー、ゴリラ、オランウータン)のメンバーは含まない。新世界サルには、マーモセット科(例えば、マーモセットおよびタマリン)、オマキザル科(例えば、オマキザルおよびリスザル)、ヨザル科(例えば、ヨザル(douroucoulis))、サキ科(例えば、ティティ属、サキ属、およびウアカリ属)、およびオマキザル科(例えば、ホエザル、クモザル、およびウーリーモンキー)などが含まれる(例えば、Hershkovitz(ed.),Living New World Monkeys(Platyrrhini),Volume 1,University of Chicago Press(1977)参照)。旧世界サルには、ニホンザル、ヒヒ、およびマンガベイなどのオナガザル亜科に属するものが挙げられる(例えば、Whitehead,ed.,Old World Monkeys,Cambridge University Press(2002)参照)。用語「サル」も、「真猿類(simian)」と同義語として本明細書中で使用される。霊長目の分類を
図1に示す。
【0035】
アデノウイルスの血清型は、中和アッセイに基づいて区別される。血清型は、他の種類との交差反応を示さないか、極めて限定された交差反応を示すもののいずれかとして定義されている(Fauquetら(eds.),Virus Taxonomy:The Eighth Report of the International Committee on Taxonomy of Viruses, Academic Press,p.216(2005)参照)。血清学的に区別できる血清型の種類(アデノウイルスの「タイプ」とも呼ばれる)に分類される。古典的には、種名は、最初に報告された宿主名を反映したものである。計算された系統上の遺伝的距離が10%超であるとともに交差中和がない場合は、2つの血清型は異なる種に分離され、加えて種の指定は、アデノウイルスの血清型ごとに異なる他の特性(例えば、宿主域、DNAハイブリダイゼーション、RFL解析、ゲノム中のGC含量のパーセンテージ、げっ歯類の場合の発癌性、増殖特性、組換えの可能性、VA RNA遺伝子の数、赤血球凝集、E3領域の遺伝的構成、および宿主域など)によって決まる。サルから単離されたサルアデノウイルスは、ヒトアデノウイルスとチンパンジーのアデノウイルスの両方からその両者間より遠い遺伝的距離にある。チンパンジーアデノウイルスは、種BおよびEの一般的なヒトアデノウイルスに近縁であり、非常に類似度が高いことから、チンパンジーアデノウイルスは、ヒト種BおよびE内で分類されている。サルアデノウイルスの限定的な系統学的再構築により、サルアデノウイルスは一般的なチンパンジーアデノウイルスおよびヒトアデノウイルスは全く異なっていることが明らかになった(Virus Taxonomy: Vlllth Report of the International Committee on Taxonomy of Viruses(2005))。霊長類に感染するアデノウイルスの系統は、例えば、Royら,PLoS Pathog.,5(7):e100050.doi:10.1371/journal.ppat.l000503 (2009)に開示されている。
【0036】
さまざまな起源、血清型、または血清型の混合物(例えば、米国特許第7,247,472号および同第7,491,508号に記載のもの)をサルアデノウイルスベクターのためのウイルスゲノムのソースとして使用することができる。例えば、サルアデノウイルスは、血清型が1型、3型、6型、7型、11型、16型、18型、19型、20型、27型、33型、38型、39型、48型、49型、50型、またはその他の型のものとすることができる。サルアデノウイルスは、当技術分野で公知の任意の適切な略語(例えばSV、SAdV、またはSAVなど)を使用して表すことができる。いくつかの実施形態では、サルアデノウイルスベクターは、血清型が3型、6型、7型、11型、16型、18型、19型、20型、27型、33型、38型、または39型のサルアデノウイルスベクターである。いくつかの実施形態では、サルアデノウイルスベクターは血清型が7型、11型、16型、18型、または38型のものである。一実施形態では、サルアデノウイルスが、血清型が7型のものである。サルから単離されたこれらのサルアデノウイルスは、ヒトアデノウイルス5型との配列相同性は低く、腸の血清型がF型およびおG型アデノウイルスとは完全に区別されるもののより近縁である。それらのアデノウイルスには、1つの繊維遺伝子ではなく2つの異なる繊維遺伝子(長繊維と短い繊維)が含まれており、このことは、それらのアデノウイルスが、粘膜免疫応答を刺激すると予想される腸指向性ヒトアデノウイルスと同様に腸の粘膜を標的とし得ることを示唆している。加えて、ウイルスヘキソンタンパク質間を比較すると、サルのアデノウイルス7型、11型、16型、38型は、ヒトアデノウイルスとの近縁性は低く、他のグループより腸指向性アデノウイルス(ヒトAd40、41、および52)に近縁なものとして分類されることが示唆される。
【0037】
あらゆる血清型の野生型サルアデノウイルスは、任意の適当な方法を用いて単離することができる。例えば、サルアデノウイルスは、サルの生検や体分泌物(腸生検、糞便洗浄、鼻洗浄、肺洗浄、および他の個体分泌物など)から当該技術分野において標準的な方法を用いて単離できる。野生型のサルアデノウイルスはまた、アメリカン・タイプ・カルチャー・コレクション(ACCC、Manassas,Virginia)などの商業ソースから入手できる。
【0038】
いくつかの実施形態では、サルアデノウイルスは、ヒヒ(例えば、ATCC−VR275)、またはアカゲザルまたはアフリカミドリサル(例えば、ATCC−VR196、ATCC−VR201、ATCC−VR209、ATCC−VR353、ATCC−VR355、ATCC−VR541、ATCC−VR941、ATCC−VR942、およびATCC−VR943)に由来するものである。
【0039】
本発明は、好ましくは、ほとんどの場合に宿主域ブロックを完全に緩和した形での、ヒト細胞における改善されたサルアデノウイルスの複製を提供する。本明細書に提示されたデータによって、サルアデノウイルスはヒト細胞において増殖しないことが確認されるとともに、サル細胞における場合と比較して、ヒトアデノウイルスの要素を含むヒト細胞においてサルアデノウイルスの同等またはより優れた形での増殖がされるが立証される(実施例1参照)。実施例1は、Savitskayaら(前掲)に報告されているよな40倍欠失の場合と対照的に、最小限のヒトアデノウイルスの要素を含むヒト細胞株でのサルアデノウイルスの子孫の生産性がサル細胞における場合と同等またたより高くなることを示す。いくつかの実施形態では、宿主域制限は、アデノウイルス感染中に発現されるヒトアデノウイルスE4ORF6タンパク質(34K)とともにヒト胚腎臓細胞株293(HEK−293)でサルウイルスを増殖させることによって失くすことができる。驚くべきことに、実施例1のHEK−293細胞内での34kの蛋白質の発現は、レベルが低すぎて検出できず、これはV−10−9細胞について以前に報告されたことを連想させる(KrougliakおよびGraham,Hum.Gene Ther.,6:1575(1995))。したがって、サルアデノウイルスの対するサルの細胞の許容度と同程度に、実施例1のヒト細胞株がサルアデノウイルスに対する許容的であったことは予想外であった(ここにはデータは示さず)。
【0040】
したがって、本発明によれば、ヒト細胞での増殖に対するサルアデノウイルスの宿主域制限を克服するために、細胞におけるウイルスの複製の間に、ヒトアデノウイルスE4の全領域ではなくサブセットすなわち一部分が発現されなければならない。ヒト細胞における複製ブロックを克服するためのE4の機能はORF6内に存在するからである。VK−10−9細胞がサルアデノウイルスの増殖を完全にサポートしない理由は、細胞に挿入されたヒトE4配列の阻害機能の存在にある可能性がある。したがって、宿主域決定因子には、E4の全ては含まれておらず、またE2Aは含まれていない。むしろ、宿主域決定因子はE4 ORF6であり、E4内でコードされる他の因子のいずれか単独または複数の組み合わせではないとみられる。具体的には、E4 ORF6で十分であったという発見に鑑みて、Savitskayaら(前掲)のデータを、必要なのはE4以外の要素ではなくE4全体より少ない要素であった点、およびヒト細胞においてサルアデノウイルスの増殖を阻害する、VK−10−9細胞に含まれているヒトアデノウイルスE4における要素が存在し得る点から再解釈することができる。
【0041】
ヒト細胞でのサルアデノウイルスの複製を許容するヒトアデノウイルスの要素を特定することには多くの利点があり、限定しないが、例えばサルアデノウイルスに基づく製品の製造が可能となることが挙げられる。さらに、ヒト細胞でのサルアデノウイルスに対する宿主域ブロックを軽減するのに必要なE4の成分を少なくする能力には、E4の全てが必要となる場合と比較して明らかな利点がある。E4の要件の簡素化により、DNA配列の操作とE4配列の発現の適切な調節とが容易にできるようになる。このことで、ヒト細胞でのサルウイルスの増殖を可能にするシステムの設計が容易になる。例えば、ヒトアデノウイルスE4配列のサブセットは、サルアデノウイルスゲノムに組み込むこと、細胞のゲノムに組み込むこと、またはヒト細胞の一部でもサルアデノウイルスいずれの一部でもない染色体の剰余部として存在させることができる。E4 ORF6を含むE4配列のサブセットのみで実施すると、これらの配列の発現をより容易に、かつ高い信頼性をもって調節することが可能となる。このように調節を強化することがサルアデノウイルスの高収率につながり、ひいては商品のコスト削減が可能となるとともに、サルアデノウイルスを利用できる商業上のおよび科学的な用途範囲を拡大させることができるようになる。
【0042】
ヒト細胞におけるサルアデノウイルスの複製を可能にするのに十分なヒトアデノウイルス要素を特定することの別の利点として、条件付きで複製するアデノウイルス(CRAD)を作り出すことができる点が挙げられる。例えば、所定の疾患、症候群、状態、組織、または細胞型に固有の発現調節要素の下で、サルアデノウイルスにヒトアデノウイルスE1およびE4 ORF6配列を含めると、必要な場合にのみ制御しながらサルウイルスを複製することが可能となる。CRADの用途は多数あり、例えば、腫瘍細胞の溶解、ウイルスベクターの複製条件の下のみでの治療遺伝子の発現、および複製限定型ワクチンなどが挙げられる。
【0043】
ヒト細胞においてサルアデノウイルスを相当量複製させるために十分なヒトアデノウイルス要素を特定する別の利点として、導入遺伝子の発現カセットがサルアデノウイルスゲノムに組み込まれているアデノウイルス遺伝子導入ベクターを作り出す能力が挙げられる。ヒト細胞株ヒトアデノウイルス系で増殖されるサルアデノウイルスから得られたアデノウイルスベクターには、次の利点:即ち、(1)ヒト集団におけるサルアデノウイルスに対する既存の免疫がないこと、(2)ヒト集団における安全性向上のための複製に対する種固有のブロックがあること、および(3)非ヒト細胞株で製造において外来の異種病原体のリスクを回避できること、がある。例えば、サルポリオーマウイルスSV40は、サル細胞で製造されるヒトのワクチン製品のバッチを汚染することが判明した。
【0044】
サルアデノウイルスベクターを製造するための補完細胞株としては、以下に限定されないが、293細胞(例えば、Grahamら,J.Gen.Virol,36:59−72 (1977)に記載)、PER.C6細胞(例えば、国際特許出願公開WO 97/00326号、および米国特許第5,994,128号および同第6,033,908号に記載)、および293−ORF6細胞(例えば、国際特許出願公開WO95/34671およびBroughら,J.Virol,71:9206−9213(1997)に記載)が挙げられる。追加の補完細胞は、例えば、米国特許第6,677,156号および同第6,682,929号、および国際特許出願公開03/20879などに記載されている。いくつかの事例では、細胞ゲノムには、複製能欠損型アデノウイルスベクターのすべての欠損を補完する、核酸配列とその遺伝子生成物を含む必要はない。複製能欠損型アデノウイルスベクターに欠けている1以上の複製に必須の遺伝子の機能は、ヘルパーウイルス(例えば、目的のアデノウイルスベクターの複製に必要な1以上の必須遺伝子の機能を別の場所で提供するアデノウイルスベクター)から供給することができる。ヘルパーウイルスは、感染ヘルパーウイルスのパッケージングを防止するべく遺伝子改変されている場合が多い。例えば、アデノウイルスゲノムE1領域の1以上の複製に必須な遺伝子の機能は、補完細胞によって提供され、一方アデノウイルスゲノムE4領域の1以上の複製に必須の遺伝子機能は、ヘルパーウイルスによって提供される。
【0045】
理想的には、複製能欠損型サルアデノウイルスベクターは組成物中に存在し、例えば、複製競合アデノウイルス(RCA)のコンタミネーションが実質的にない医薬組成物などに存在する(例えば、該組成物は、該組成物中の総アデノウイルス量に対して約1%未満の複製競合アデノウイルスを含む。)。最も好ましくは、組成物はRCAを含まないものである。RCAを含まないアデノウイルスベクター組成物およびストックは、米国特許第5,944,106号、米国特許出願公開第2002/0110545Al号、および国際特許出願公開WO95/34671に記載されている。
【0046】
サルアデノウイルスベクターが複製能欠損型ではない場合、該サルアデノウイルスベクターは、理想的には標的組織内でのベクターの複製が制限されるように操作されたものである。例えば、該サルアデノウイルスベクターは、実施者によって予め決定された条件の下で複製するように遺伝子操作された、条件付きで複製するアデノウイルスベクターであり得る。例えば、複製に必須な遺伝子機能(例えば、アデノウイルスの初期領域によってコードされた遺伝子の機能)を、誘導可能な、抑制可能な、または組織特異的な転写制御配列(例えばプロモーター)に機能可能にリンクさせることができる。この実施形態では、転写制御配列と相互作用する特定の因子の存在または不存在が複製に必要となる。ウイルス感染症の治療においては、例えば、継続的な抗原の産生と制御免疫細胞の産生を達成するためには、例えばリンパ節などにおけるアデノウイルスベクターの複製を制御することが有利である。条件付きで複製するアデノウイルスベクターは、米国特許第5,998,205号にさらに記載されている。
【0047】
サルアデノウイルスの用途の1つは、細胞にタンパク質またはタンパク質の一部を送達することである。タンパク質を送達する方法の1つは、ウイルスカプシドのコートタンパク質のいずれかにそれらを係留させることである。該カプシドは、これを容易にするべく改変することができる。アデノウイルス材料をカプシドに係留するべく改変されたウイルスカプシドには多数の例が存在する。その改変物には性質がタンパク質様のものもあれば、そうでないものもある。アデノウイルスのカプシドに結合し得る物質の例としては、抗体、受容体、PEG、および架橋用化学物質などが挙げられる。またウイルスカプシド遺伝子は、外来遺伝子またはその一部を含むように遺伝的に改変するともでき、これによって外来遺伝子生成物が、ウイルス粒子の一部をなすウイルスカプシドタンパク質の一部となるようにすることができる。タンパク質の効果は、それが内在化される形か、または内在化されない形で、細胞上に作用し得る。タンパク質の効果は、それが内在化されていない場合、望ましい結果につながる細胞の経路を活性化するか、不活性化する可能性がある。加えて、サルウイルスが内在化されている場合、タンパク質は、細胞への影響を誘発する可能性がある。また該タンパク質は、潜在的にタンパク質自体に対する免疫応答を刺激する可能性がある。カプシドタンパク質繊維、ヘキソン、pIX、およびペントンはすべて、非アデノウイルスタンパク質またはその部分および/または非タンパク性物質を含むように改変可能であることがわかっている。
【0048】
ウイルスカプシドの改変により、追加の利益をもたらすことができる。該ウイルスの天然の指向性を変えることができる。該ウイルスを新たな受容体に向けたりに、その通常の受容体との相互作用を行わないようにしたり、またはその通常の受容体との相互作用を増強させることができる。サルアデノウイルスの指向性の変更により、その指向性を所望の細胞型に向けることによってウイルスの所望の活性を高めること、または望ましくない結果をもたらす細胞型を回避するのを助けることができる。この改変により、免疫系の回避につながる可能性もある。さらに複数のカプシドタンパク質を同時に変更することができる。
【0049】
アデノウイルスのコートタンパク質は、潜在的な宿主細胞上の受容体に対するアデノウイルスの結合特異性または認識を変更するべく操作することができる。アデノウイルスの場合、このような操作で、アデノウイルスコートタンパク質の領域(例えば、繊維、ペントン、またはヘキソン)の欠失、コートタンパク質の部分への様々なネイティブまたは非ネイティブのリガンドの挿入部などを含めることができる。コートタンパク質の操作により、アデノウイルスが感染する細胞の範囲の拡大や、特定の細胞型に対するアデノウイルスをターゲティングを可能にさせられる。
【0050】
サルアデノウイルスベクターは、潜在的な宿主細胞上の受容体に対するアデノウイルスの結合特異性や認識を変更するべく操作することができる。アデノウイルスの場合、このような操作で、アデノウイルスコートタンパク質の領域(例えば、繊維、ペントン、またはヘキソン)の欠失、コートタンパク質の部分への様々なネイティブまたは非ネイティブのリガンドの挿入部などを含めることができる。コートタンパク質の操作により、サルアデノウイルスベクターが感染する細胞の範囲の拡大や、特定の細胞型に対するアデノウイルスをターゲティングを可能にさせられ、また、アデノウイルスベクターの生物学的性質に影響を与え得る、血液凝固第X因子(FX)などの血液中に見られるタンパク質との相互作用を回避させることができる。ヘキソンの改変は、FXとの相互作用を回避するための好ましい方法である。
【0051】
宿主細胞に固有の結合(例えばその細胞受容体への繊維タンパク質のネイティブの結合など)を変更するための任意の適切な技術を用いることができる。例えば、異なる繊維長を利用して、細胞に固有の結合をなくすことができる。これは、選択に応じて、ペントンのベースまたは繊維ノブへの結合配列の付加によって達成できる。この結合配列の付加は、二重特異性または多重特異性の結合配列を介して直接または間接的に行うことができる。別の実施形態では、アデノウイルス繊維タンパク質を改変して、繊維軸部のアミノ酸の数を減らし、それによって、(例えば米国特許第5,962,311号に記載のような)「短軸型」繊維を形成することができる。短軸型アデノウイルス繊維を含むアデノウイルスを使用すると、表面の受容体へのアデノウイルス繊維の結合の水準または効率を低下させ、かつ細胞表面の受容体へのペントンベースの結合を増加させ、それによってアデノウイルスの所定の細胞への結合の特異性が高められる。あるいは、短軸型アデノウイルス繊維を含むサルアデノウイルスベクターを使用して、ペントンベースまたは繊維ノブのいずれかに非ネイティブのアミノ酸配列を導入することによって、所望の細胞受容体に対するサルアデノウイルスのターゲティングが可能となる。
【0052】
さらに別の実施形態では、ネイティブの基質結合に関連付けられているアミノ酸残基をコードする核酸残基を変更、補足、または削除して(例えば、国債特許出願公開WO00/15823、Einfeldら,J.Virol,75(23):11284−11291(2001)、およびvan Beusechemら,J.Virol,76(6):2753−2762(2002)参照)、変異した核酸残基を組み込んだ(またはそれによりコードされる繊維タンパク質を有する)サルアデノウイルスベクターのネイティブ基質への結合度を低下させることができる。
【0053】
ノブとネイティブ細胞受容体間の相互作用を媒介または支援する繊維タンパク質の任意の適切なアミノ酸残基(S)は、繊維タンパク質が三量体形成が可能である限り、変異または削除することができる。同様に、繊維タンパク質が三量体形成能を保持している限り、アミノ酸を繊維ノブに付加することができる。適切な残基は、繊維ノブドメインの露出されたループ(例えばABループ、DEループ、FGループ、およびHIループなど)の内部のアミノ酸を含む。
【0054】
ペントンベースとインテグリンとの相互作用を仲介または支援するペントンベースタンパク質の任意の適切なアミノ酸残基(S)を、変異または削除することができる。適切な残基には、例えば、サルアデノウイルスペントンベースタンパク質の超可変領域に位置するRGDアミノ酸配列モチーフが含まれる。また、ペントンベースタンパク質上のネイティブインテグリン結合部位を、ネイティブRGDモチーフをコードする核酸配列を変更することによって破壊して、例えばアデノウイルスペントンベースタンパク質をコードする核酸配列にDNA配列を挿入するかまたは隣接させることによってネイティブRGDアミノ酸配列がインテグリン受容体に結合するべくアクセスすることが立体構造的にできなくなるようにすることができる。
【0055】
サルアデノウイルスベクターは、それぞれのネイティブの細胞結合部位に結合しない繊維タンパク質およびペントンベースタンパク質を含み得る。あるいは、サルアデノウイルスベクターが、それぞれのネイティブの細胞結合部位に結合するが、対応する野生型コートタンパク質より小さい親和性をもってしか結合しない繊維タンパク質およびペントンベースタンパク質を含む。改変されたアデノウイルス繊維タンパク質およびペントンベースタンパク質がそれぞれのネイティブな細胞結合部位に対して、同じ血清型の非改変アデノウイルス繊維タンパク質およびペントンベースタンパク質と比較して少なくとも約1/5、1/10、1/20、1/30、1/50、または1/100未満の親和性をもって結合する場合には、サルアデノウイルスベクターは、ネイティブの細胞結合部位に対して低い結合度を示す。
【0056】
またサルアデノウイルスベクターは、基質(即ちリガンド)、例えばネイティブ細胞受容体以外の細胞受容体などに結合する、非ネイティブのアミノ酸配列を含むキメラコートタンパク質を含み得る。キメラアデノウイルスコートタンパク質の非ネイティブのアミノ酸配列によって、キメラコートタンパク質を含むサルアデノウイルスベクターが、非ネイティブアミノ酸配列がない対応するアデノウイルスが自然には感染しない宿主細胞(即ち、対応する野生型のアデノウイルスが感染しない宿主細胞)に対して、結合すること、望ましくは感染することが可能となるか、対応する野生型アデノウイルスが自然に感染する宿主細胞に対して、非ネイティブアミノ酸配列がない対応するアデノウイルスより高い親和性をもって結合することが可能となる、すなわち特定の標的細胞に対して、非標的細胞細胞に対するより高い親和性をもって結合することが可能となる。「非ネイティブ」のアミノ酸配列は、アデノウイルスコートタンパク質に天然に存在しないアミノ酸配列、またはアデノウイルスのコートにはみられるがカプシド内部で非ネイティブの位置にあるアミノ酸配列を含み得る。「優先的に結合する」という表現は、非ネイティブのアミノ酸配列が、受容体、例えばαvβ3インテグリンに対して、非ネイティブのリガンドが異なる受容体、例えばαvβ1インテグリンに結合する場合と比較して少なくとも約3倍の親和性(例えば、少なくとも約5倍、10倍、15倍、20倍、25倍、35倍、45倍、または50倍またはそれ以上の親和性)をもって結合することを意味する。
【0057】
サルアデノウイルスベクターは、キメラコートタンパク質に対して野生型アデノウイルスコートタンパク質よりも効率的に免疫細胞に結合する能力を付与する、非ネイティブのアミノ酸配列を含むキメラコートタンパク質を含み得る。特に、サルアデノウイルスベクターは、免疫細胞、好ましくは(樹状細胞、単球、マクロファージなどの)抗原提示細胞によるサルアデノウイルスベクターの取り込みを容易にする、非ネイティブのアミノ酸配列を含むキメラアデノウイルス繊維タンパク質を含み得る。好ましい実施形態では、サルアデノウイルスベクターは、樹状細胞へのサルアデノウイルスベクターの導入効率を向上させるRGDモチーフを含むアミノ酸配列(例えば、非ネイティブのアミノ酸配列)を含むキメラ繊維タンパク質を含む。RGDモチーフ、または任意の非ネイティブのアミノ酸配列は、理想的にはアデノウイルスノブの露出したループ(例えばHIループ)の中で、アデノウイルス繊維ノブ領域に挿入されるのが好ましい。非ネイティブのアミノ酸配列をアデノウイルス繊維タンパク質のC末端に、選択に応じてスペーサ配列を介して付加することもできる。このスペーサ配列は、好ましくは、100〜200個のアミノ酸を含み、(必ずしもそうである必要はないが)意図した機能を有し得る。
【0058】
別の実施形態では、サルアデノウイルスベクターは、特定の種類の真核細胞に対して選択的ではないキメラウイルスコートタンパク質を含み得る。キメラコートタンパク質は、非ネイティブのアミノ酸配列内部のコートタンパク質の配列への挿入または該配列の置換によって、またはコートタンパク質のN末端またはC末端に非ネイティブのアミノ酸配列の付加によって野生型コートタンパク質とは異なる。例えば、約5〜約9個のリジン残基(好ましくは7個のリジン残基)を含むリガンドは、非機能的なスペーサ配列を介して、アデノウイルスファイバータンパク質のC末端に結合し得る。この実施形態においては、米国特許第6,465,253号および国際特許出願公開WO97/20051に記載のように、キメラウイルスのコートタンパク質が、野生型ウイルスのコートよりも広範囲の真核細胞に効率的に結合する。
【0059】
潜在的な宿主細胞を認識するサルアデノウイルスベクターの能力は、コートタンパク質の遺伝子操作を行うことなく、即ち二重特異性分子を使用して調節することができる。例えば、ペントンベース結合ドメインおよび特定の細胞表面結合部位に選択的に結合するドメインを含む二重特異性分子とアデノウイルスとを複合化すると、特定の細胞型へのサルアデノウイルスベクターの標的化を可能にする。同様に、抗原は、非遺伝的手段を介してウイルス粒子表面に結合させることができる。
【0060】
非ネイティブのアミノ酸配列を任意のアデノウイルスコートタンパク質に結合させて、キメラアデノウイルスコートタンパク質を形成することができる。したがって、例えば非ネイティブのアミノ酸配列を、繊維タンパク質、ペントンベースタンパク質、ヘキソンタンパク質、タンパク質IX、タンパク質VI、またはタンパク質IIIaなどに、コンジュゲート、挿入、または付加することができる。このようなタンパク質を用いるための方法は当技術分野で周知である(例えば、米国特許第5,543,328号;同第5,559,099号;同第5,712,136号;同第5,731,190号;同第5,756,086号;同第5,770,442号;同第5,846,782号;同第5,962,311号;同第5,965,541号;同第5,846,782号;同第6,057,155号;同第6,127,525号;同第6,153,435号;同第6,329,190号;同第6,455,314号;同第6,465,253号;同第6,576,456号;同第6,649,407号;同第6,740,525号;および同第6,951,755号、および国際特許出願公開WO96/07734、WO96/26281、WO97/20051、WO98/07877、WO98/07865、WO98/40509、WO98/54346、WO00/15823、WO01/58940、およびWO01/92549を参照)。キメラアデノウイルスコートタンパク質は、当技術分野で公知の標準的な組換えDNA技術を用いて生成することができる。好ましくは、キメラアデノウイルスコートタンパク質をコードする核酸配列は、アデノウイルスゲノム内に配置され、野生型アデノウイルスのコートタンパク質の発現を調節するプロモーターに機能可能にリンクされる。あるいは、キメラアデノウイルスコートタンパク質をコードする核酸配列は、アデノウイルスゲノム内に位置し、キメラコートタンパク質の効率的な発現に必要な遺伝子エレメントを含む発現カセットの一部である。
【0061】
キメラアデノウイルスコートタンパク質のコートタンパク質の部分は、例えば、内部で、あるいはC−末端および/またはN−末端で、非ネイティブのアミノ酸配列が付加されているか、それが切り取られていてもよい、完全長のアデノウイルスコートタンパク質であり得る。しかし、(非ネイティブのアミノ酸の存在を含むように)改変される場合、キメラコートタンパク質は、好ましくは、アデノウイルスカプシドに組み込むことができる。非ネイティブのアミノ酸配列は、それが繊維タンパク質に付加されている場合、ウイルスタンパク質または繊維モノマー間の相互作用を妨げないのが好ましい。したがって、非ネイティブアミノ酸配列は、好ましくは、それ自体はオリゴマー形成ドメインではなく、それが、アデノウイルス繊維の三量体形成ドメインと相互作用して悪影響を及ぼし得ることはない。好ましくは、非ネイティブのアミノ酸配列は、ビリオンのタンパク質に加えられ、かつ基質、細胞表面受容体、または免疫細胞に(例えば、ペプチドスペーサー上に位置する基質に面している残基に付加された、アデノウイルスタンパク質N−またはC−末端において)容易に曝されて、最大限に非ネイティブのアミノ酸配列が露出されるような形で組み込まれる。理想的には、非ネイティブのアミノ酸配列は、アデノウイルス繊維タンパク質に繊維タンパク質のC末端において組み込まれ(かつスペーサーを介して付加され)るか、または繊維の露出されたループ(例えばHIループ)に組み込まれて、キメラコートタンパク質を形成する。非ネイティブアミノ酸配列は、それがペントンベースの一部分に付加またはその一部分を置換する場合、好ましくは、その基質、細胞表面受容体、または免疫細胞に接触することを確実にする超可変領域内にある。非ネイティブアミノ酸配列は、それがヘキソンに付加される場合は、好ましくは、超可変領域内にある(Crawford−Mikszaら,J.Virol,70(3):1836−44(1996))。非ネイティブアミノ酸配列は、それがpIXの一部分に付加またはその一部分を置換する場合、好ましくは、pIXのC末端内にある。アデノウイルス粒子の表面から離れる向きに非ネイティブのアミノ酸配列を伸長させるためにスペーサー配列を使用することは、非ネイティブのアミノ酸配列の受容体結合のため、および非ネイティブのアミノ酸配列の間の任意の立体的相互作用のための利用可能性が高められ、アデノウイルス繊維モノマーを減少させることができる点で有利であり得る。
【0062】
他の実施形態(例えば、特定の遺伝子組換え細胞型内での精製または増殖を促進するため)、非ネイティブのアミノ酸(例えばリガンド)を、細胞表面タンパク質以外の化合物に結合させることができる。従って、リガンドは、血液および/またはリンパ由来タンパク質(例えば、アルブミン)、ポリアミノ酸(例えばポリリジン、ポリヒスチジンなど)などの合成ペプチド配列、人工ペプチド配列(例えばFLAG)、およびRGDペプチドフラグメント(Pasqualiniら,J.Cell.Biol.,130:1189(1995))などに結合することができる。リガンドは、さらに、プラスチック(例えばAdeyら,Gene,156:27(1995)、ビオチン(Saggioら,Biochem.J.,293:613(1993))、DNA配列(Chengら,Gene,171:1(1996),およびKrookら,Biochem.Biophys.,Res.Commun.,204:849(1994))、ストレプトアビジン(Geibelら,Biochemistry,34:15430(1995),およびKatz,Biochemistry,34:15421(1995)、ニトロストレプトアビジン(Baiassら,Anal.Biochem.,243:264(1996))、ヘパリン(Wickhamら,Nature Biotechnol,14:1570−73(1996))、および他の基質などの非ペプチド基質に結合することができる。
【0063】
細胞表面受容体へのアデノウイルスコートタンパク質のネイティブ結合の破壊によって、宿主の先天性または後天性免疫系と相互作用する能力を低下させることもできる。アデノウイルスベクターの投与は炎症を誘導し、先天性および後天性免疫機構を活性化する。アデノウイルスベクターは、抗原特異的な(例えば、T細胞依存性)免疫応答を活性化し、これが該ベクター初回投与後の導入遺伝子の発現期間を制限する。加えて、アデノウイルスベクターに曝されることが、B細胞による中和抗体の産生を刺激し、これがその後投与されたアデノウイルスベクターからの遺伝子発現を妨げ得る。実際、ベクターの反復投与の効果は宿主の免疫によって厳しく制限され得、体液性免疫の刺激に加えて、細胞性免疫機能が体内からのウイルスのクリアランスをもたらす。ウイルスの急速なクリアランスは、先天性免疫機構に起因し(例えば、Worgaliら,Human Gene Therapy,8:37−44(1997)参照)、かつ肝臓内に存在するクッパー細胞が関与しているとみられる。したがって、アデノウイルス繊維タンパク質とペントンベースタンパク質のネイティブ結合を除去することにより、アデノウイルスベクターの免疫系認識が低下し、それによって宿主のベクター寛容性を高められる。
【0064】
アデノウイルスに対する既存の宿主免疫を回避する方法は、宿主免疫系による認識の低減を示すようにアデノウイルスコートタンパク質を改変するステップを含む。改変されるコートタンパク質は、好ましくはペントン、ファイバー、またはヘキソンタンパク質である。最も好ましくは、改変されるコートタンパク質は、ヘキソンタンパク質である。コートタンパク質は、任意の適当な方法で改変することができるが、好ましくはコートタンパク質に多様性を創り出すことにより改変する。好ましくは、このようなコートタンパク質の変異体が、宿主の既存のアデノウイルス特異的中和抗体によって認識されない。多様性は、例えば、定方向進化(すなわち、ポリヌクレオチドシャッフリング)とエラーが発生しやすいPGRを含む、当技術分野で公知の任意の適切な方法を使用して創出することができる(例えばCadwell,PCR Metk Appl,2:28−33(1991),Leungら,Technique,I:11−15(1989),およびPritehardら,J.Theoretical Biol,234:497−509(2005)参照)。免疫回避には、ポリエチレングリコール化(PEG化))なども含まれる。
【0065】
アデノウイルスコートタンパク質はまた、コートタンパク質の領域を除去し、別のアデノウイルス血清型のコートタンパク質(特に、ヒトでの免疫原性が低い血清型のもの)の対応する領域に置換することによって、宿主の既存の免疫を回避するべく改変することができる。この点で、繊維タンパク質、ペントンベースタンパク質、および/またはヘキソンタンパク質内のアミノ酸配列を除去して、異なるアデノウイルス血清型の対応する配列に置換することができる。したがって、例えば、繊維タンパク質が既存の宿主免疫を回避するべく改変されている場合、サルアデノウイルス繊維タンパク質のノブ領域のアミノ酸残基を除去して、本明細書に記載した血清型などの異なる血清型のサルアデノウイルスの対応するアミノ酸残基に置換できる。同様に、ペントンベースタンパク質が既存の宿主免疫を回避するべく改変されている場合、サルアデノウイルスペントンベースタンパク質の超可変領域内のアミノ酸残基を除去して、本明細書に記載した血清型などの異なる血清型のサルアデノウイルスの対応するアミノ酸残基に置換できる。好ましくは、サルアデノウイルスベクターのヘキソンタンパク質が、既存の宿主免疫を回避するべくこの方法で改変される。このために、ヘキソンタンパク質のループに生ずる1箇所または2箇所以上の超可変領域中のアミノ酸残基を除去し、異なる血清型のサルアデノウイルスの対応するアミノ酸残基に置換する。全ループ領域をヘキソンタンパク質から除去して、別のサルアデノウイルス血清型の対応するループ領域に置換できる。あるいは、ループ領域の複数の部分をサルアデノウイルスベクターのヘキソンタンパク質から除去し、別のアデノウイルス血清型(サルまたはヒト)のヘキソンループの対応する部分に置換できる。サルアデノウイルスベクターの1以上のヘキソンループまたはその部分を除去し、本明細書に記載のような他のアデノウイルス血清型(サルまたはヒト)の対応する配列に置換することができる。ヘキソンタンパク質を改変すう方法は、例えば、Ruxら,J.Virol,77:9553−9566(2003)および米国特許第6,127,525号に記載されている。ヘキソンタンパク質の超可変領域はまた、ランダムなペプチド配列、または疾患を引き起こす病原体(例えば、HIV)に由来するペプチド配列に置換することができる。
【0066】
アデノウイルスコートタンパク質に対する改変、修飾については、例えば、米国特許第5,543,328号、同第5,559,099号、同第5,712,136号、同第5,731,190号、同第5,756,086号、同第5,770,442号、同第5,846,782号、同第5,871,727号、同第5,885,808号、同第5,922,315号、同第5,962,311号、同第5,965,541号、同第6,057,155号、同第6,127,525号、同第6,153,435号、同第6,329,190号、同第6,455,314号、同第6,465,253号、同第6,576,456号、同第6,649,407号、同第6,740,525号、ならびに同第6,951,755号、および国際特許出願公開WO96/07734、同WO96/26281、同WO97/20051、同WO98/07865、同WO98/07877、同WO98/40509、同WO98/54346、同WO00/15823、同WO01/58940、および同WO01/92549などに記載されている。
【0067】
サルアデノウイルスを、細胞に遺伝物質を送達するために使用できる。遺伝物質は、通常DNAである。サルウイルスゲノムに挿入されている任意のDNAは、本明細書においては、異種核酸配列または本「hDNA」と称する。当技術分野で公知のhDNAが有し得る多数の機能が存在する。hDNAは、調節特性を有し得る。いくつかのより一般的なエレメントが転写を調節するが、そのようなエレメントをいくつかあげると、例えば、プロモーター、エンハンサー、転写ターミネーター、スプライシングエレメント、マトリックス結合調節エレメント、転写インシュレーター、及びポリアデニル化配列などがある。RNAは、hDNAから生成された場合一定の機能を有し得る。その機能のいくつかは、siRNA、shRNA、マイクロRNA、アンチセンスRNA、VA RNAの場合にそうであるように調節性である。RNAはタンパク質などのポリペプチドをコードし得る。タンパク質は、ネイティブであるか、当技術分野で公知の任意の方法で改変されたものであり得る。当技術分野で知られているRNAレベルの調節、翻訳およびタンパク質の安定性の調節のための多くの方法が存在する。
【0068】
調節性RNAやポリペプチドが有し得る機能は数多く存在する。
【0069】
異種核酸配列は、好ましくは、病原体の抗原をコードしている。病原体は、呼吸器合胞体ウイルス(RSV)、ヒト免疫不全ウイルス(HIV)、口蹄疫(FMDV)、単純ヘルペスウイルス(HSV)、C型肝炎ウイルス(HCV)、エボラウイルス、またはマールブルグウイルスなどのウイルスであり得る。病原体はまた、例えば、マラリアを引き起こすマラリア原虫(例えば熱帯熱マラリア原虫)のような、寄生虫とすることができる。あるいは、異種核酸配列は、例えば、無調ホモログタンパク質(例えば、HATH1またはMATH1)、TNF−α、または色素上皮由来因子(PEDF)をコードし得る。
【0070】
本発明のアデノウイルスベクターは、複製コンピテントとすることができる。例えば、アデノウイルスベクターは、宿主細胞内でのウイルス複製を阻害しないアデノウイルスゲノム中に変異(例えば、欠失、挿入、または置換)を有し得る。しかしながら、好ましくは、アデノウイルスベクターが複製能欠損型である。「複製能欠損」とは、アデノウイルスベクターが、複製に必須の遺伝子の機能が少なくとも1つ欠けているアデノウイルスゲノムを含む(すなわち、アデノウイルスベクターが、典型的な宿主細胞、特に本発明の方法の実施においてアデノウイルスベクターに感染させられ得るヒトの患者の細胞において複製しないようになっている)ことを意味する。本明細書中で使用される遺伝子、遺伝子機能、または遺伝子やゲノム領域の欠損とは、核酸配列の全部または一部を除去された遺伝子の機能を毀損または消失させるのに十分なウイルスゲノムの遺伝子材料の欠失として定義される。遺伝子材料を欠失させることが好ましいが、付加または置換による遺伝子の突然変異も、遺伝子機能を破壊するのに適している。複製に必須の遺伝子の機能は、複製(例えば増殖)に必要で、かつ例えばアデノウイルスの初期領域(例えばE1、E2、およびE4領域)、後期領域(例えば、L1−L5領域)、ウイルスのパッケージングに関与する遺伝子(例えば、IVa2遺伝子)、およびウイルス結合RNA(例えば、VA−RNA1および/またはVA−RNA2)でコードされた遺伝子が発揮する機能である。より好ましくは、複製能欠損型アデノウイルスベクターは、アデノウイルスゲノムの1以上の領域の少なくとも1つの複製に必須の遺伝子機能を欠損したアデノウイルスゲノムを含む。好ましくは、アデノウイルスベクターは、ウイルス複製に必要なアデノウイルスゲノムのE1A領域、EIB領域、またはE4領域の少なくとも1つの遺伝子機能が欠損したもの(E1欠損またはE4欠損アデノウイルスベクターと表記)である。E1領域の欠損に加えて、組換えアデノウイルスはまた、国際特許出願公開WO00/00628に記載のような、主要後期プロモーター(MLP)に変異を有し得る。いくつかの実施形態では、アデノウイルスベクターは、少なくとも1つの複製に必須の遺伝子のE1領域の機能(望ましくは、すべての複製に必須の遺伝子の機能)と、非必須のE3領域の少なくとも1つの遺伝子機能(例えば、E3領域のXbaIを除去したもの)とを欠損している(E1/E3欠損アデノウイルスベクターと表記)。E1領域に関して、アデノウイルスベクターは、E1A領域の全部または一部およびE1B領域の全部または一部を欠損したものであり得る。この実施形態の、非限定的な例を挙げると、血清型35型のアデノウイルスベクターが、570番目〜3484番目のヌクレオチドE1除去部を含み得る。アデノウイルスベクターが、アデノウイルスゲノムの単一の領域のみにおいて少なくとも1つの複製に必須な遺伝子機能が欠損している場合(例えば、E1欠損またはEl/E3欠損アデノウイルスベクター)、アデノウイルスベクターは、「単独複製能欠損型」と呼ばれる。
【0071】
本発明のサルアデノウイルスベクターは「多重複製能欠損型」であり得、「多重複製能欠損型」とは、アデノウイルスベクターが、アデノウイルスゲノムの2以上の領域のそれぞれで1つまたは複数の複製に必須な遺伝子機能が欠損していることを意味する。例えば、前述のE1欠損型またはE1/E3欠損型アデノウイルスベクターは、E4領域の少なくとも1つの複製に必須の遺伝子機能がさらに欠損したもの(E1/E4欠損型、またはEl/E3/E4欠損型アデノウイルスベクターと表記)、および/またはE2領域の少なくとも1つの複製に必須の遺伝子機能がさらに欠損したもの(E1/E2A欠損型、またはE1/E2A/E3欠損型アデノウイルスベクターと表記)であり得、好ましくは、E2A領域(E1/E2A欠損型、またはE1/E2A/E3欠損型アデノウイルスベクターと表記)である。
【0072】
例えば、アデノウイルスゲノムのE1、E3、およびE4領域の全部または一部を除去することにより、得られたアデノウイルスベクターは、アデノウイルスカプシドにパッケージングされる能力を保持しながら、外来核酸配列の挿入を受け入れることができる。核酸配列は、アデノウイルスゲノムのE1領域、E3領域、またはE4領域に配置することができ、実際、核酸配列は、その挿入される位置が核酸配列の発現を妨げたり、またはアデノウイルスベクターのパッケージングを妨げることがない限り、アデノウイルスゲノムのどの位置にでも挿入することができる。アデノウイルスベクターは、同じ抗原をコードする多重(すなわち2以上の)核酸配列を含み得る。また、アデノウイルスベクターは、2以上の異なる抗原をコードする多重核酸配列を含み得る。各核酸配列は、施術者に所望の発現プロファイルに応じて同一のプロモーター、または異なるプロモーターに機能可能にリンクさせることができ、アデノウイルスゲノムの同じ領域(例えばE4領域)またはアデノウイルスゲノムの異なる領域に挿入することができる。
【0073】
サルアデノウイルスベクターは、多重複製能欠損型、得にE1およびE4領域の複製必須遺伝子の機能欠損の場合、好ましくは、スペーサー配列を含み、単独複製能欠損型アデノウイルスベクター、特にE1欠損アデノウイルスベクターによって達成されるものに類似した補完細胞株におけるウイルス増殖を提供する。スペーサー配列は、所望の長さを有する任意のヌクレオチド配列または配列群を含み得、例えば、少なくとも15塩基対(例えば約15塩基対〜約12,000塩基対)の長さの配列、好ましくは約10,000塩基対〜100塩基対の長さの配列、より好ましくは約500塩基対〜約8,000塩基対の長さの配列、さらに好ましくは約1500塩基対〜約6,000塩基対の長さの配列、そして最も好ましくは約2,000〜約3,000塩基対の長さの配列を含み得る。スペーサーエレメント配列は、アデノウイルスゲノムに関しては、コーディングまたは非コーディングであり、かつネイティブまたは非ネイティブであり得るが、欠損した領域に対し複製に必須の機能を復元するものではない。スペーサーエレメントは、好ましくは、アデノウイルスゲノムのE4領域に位置する。アデノウイルスベクターにおけるスペーサーの使用については米国特許第5,851,806号に記載されている。
【0074】
少なくともE4欠損アデノウイルスベクターが、in vivoで限定された時間にわたって導入遺伝子を高レベルで発現すること、および少なくともE4欠損アデノウイルスベクターにおける導入遺伝子の発現の持続性は、米国特許6,225,113号、米国特許出願公開第2002/0031823Al号、および国際特許出願公開WO00/34496に記載のように、とりわけ、トランス作用因子(例えば、HSV ICPO、Ad pTP、CMV−IE2、CMV−IE86、HIV tat、HTLV−tax、HBV−X、AAV Rep78、HSV ICPOのように機能するU205骨肉腫細胞株から細胞因子、または神経成長因子によって誘導されたPC12細胞における細胞因子など)の作用を介して調節することができることが観察されている。上記の点から、多重欠損型アデノウイルスベクター(例えば、少なくともE4欠損アデノウイルスベクター)または第2の発現ベクターは、核酸の発現の持続性を調節するトランス作用因子をコードする核酸配列を含む配列を含むものであるのが好ましい。免疫寛容を作り出す場合、抗原DNAの永続的な発現が必要であり得る。
【0075】
サルアデノウイルスベクターは、アデノウイルスゲノムの初期地域のみの複製に必須な遺伝子機能の欠損の場合、後期領域のみの複製に必須な遺伝子機能の欠損の場合、および初期および後期領域の両方の複製に必須な遺伝子機能の欠損の場合があり得る。サルアデノウイルスベクターは、基本的に全アデノウイルスゲノムが除去されていることもあり、その場合、ウイルス逆方向末端反復配列(ITR)と1以上のプロモーターか、またはウイルスのITRおよびパッケージングシグナル(すなわち、アデノウイルスアンプリコン)の少なくとも一方はそのまま残されているのが好ましい。一実施形態において、本発明のサルアデノウイルスベクターは、アデノウイルスのタンパク質をコードするネイティブの核酸配列を欠いたアデノウイルスゲノムを含み得る。アデノウイルスゲノムの複製およびアデノウイルスカプシドタンパク質にパッケージングするために必要なアデノウイルスゲノムのエレメントを保持させることができる。アデノウイルスのタンパク質をコードする配列を欠いている最小アデノウイルスベクターは、「ヘルパー依存型」アデノウイルスベクターと称され、多くの場合、効率的な増殖のためのヘルパーアデノウイルスによる補完を要する。多重複製能欠損型アデノウイルスベクターなどの適切な複製能欠損型アデノウイルスベクターは、米国特許第5,837,511号、同第5,851,806号、同第5,994,106号、同第6,127,375号、および同第6,482,616号:米国特許出願公開第2001/0043922A1号、同第2002/0004040Al号、同第2002/0031831A3号、および同第2002/0110545Al号:および国際特出願公開WO94/28352、同WO95/02697、同WO95/16772、同WO95/34671、同WO96/22378、同WO97/12986、同WO97/21826、および同WO03/022311に開示されている。
【0076】
アデノウイルスベクターが複製能欠損型でない場合、理想的には、アデノウイルスベクターは、標的組織内でのベクターの複製を制限するように操作されたものである。例えば、アデノウイルスベクターは、施術者によって事前決定された条件の下で複製するように操作された条件付きで複製するアデノウイルスベクターであり得る。例えば、複製に必須な遺伝子機能、例えばアデノウイルスの初期領域にコードされた遺伝子の機能は、誘導する配列、抑制する配列、または組織特異的な転写制御配列(例えば、プロモーター)に機能可能にリンクさせることができる。この実施形態では、複製には、転写制御配列と相互作用する特定の因子の有無が必要条件となる。自己免疫疾患の治療では、継続的な抗原の産生と制御免疫細胞の生成を得るために、例えばリンパ節におけるアデノウイルスベクターの複製を制御することが有利である。条件付きで複製するアデノウイルスベクターは、米国特許第5,998,205号にさらに記載されている。
【0077】
サルアデノウイルスにおいて大量のhDNAを付加することが有利であり得る。このことは、例えば、大きい調節配列が必要な場合、複数の転写ユニットが必要な場合、または転写生成物が大きい場合に生じ得る。アデノウイルスのパッケージングサイズの上限はその野生型ゲノムの約105%であることから、大きなゲノムを持つウイルスは、作製が困難で、不安定であることが多い。
【0078】
このパッケージングおよび安定性の限度を克服するため、ウイルスのDNA配列を除去してはhDNAを大量に収容させることができる。ウイルスから除去しても依然として感染性ウイルス粒子の生成が可能となる、少なくとも3つのウイルスの領域(すなわち、E1、E3、およびE4領域)が存在する。これらのウイルスの領域のそれぞれは、複数の転写生成物とタンパク質をコードする少なくとも1つのプロモーターおよびポリアデニル化シグナルから構成される。これらの領域の全部または一部はウイルスゲノムから除去することができる。hDNAを挿入、即ちこれらの領域のそれぞれを置換するべく用いることは周知である。これらの領域を1度に1箇所改変し、またはその改変を組み合わせて、E1、E3、およびE4改変ウイルスを得ることができる。これにより、サルウイルスの柔軟性、ひいてはその利用性が拡張される。
【0079】
ウイルスからのE1、E3およびE4領域の除去には、サルアデノウイルスの使用について追加の利点がある。これらの領域は、直接宿主細胞を変更したり、または追加のウイルスタンパク質の発現を刺激することができる複数の調節タンパク質をコードすることが知られている。特にE1およびE4領域は、腫瘍遺伝子をコードすることが知られている。多くの用途では、ウイルスの遺伝子が発現されないことが好ましい。ウイルスの遺伝子発現が少ないことの利点の一部は、遺伝子発現などの付加されたhDNAからの活性の向上、ウイルスが動物に対して投与されたときの免疫監視の回避、および投与され得るウイルス投与量の増加である。この投与量を増加させ、hDNA遺伝子調節を向上させる能力により、サルウイルスの用途を拡張し、ひいてはその利用性ユーティリティを拡張する。したがって、ウイルスのDNAを除去すると、同時にウイルスが収容できるhDNA量が増大し、またウイルスから有害な配列が除去され、それによってウイルスの利用性が拡大される。
【0080】
本明細書に記載された技術は、遺伝子除去されたサルアデノウイルスの構築をサポートしている。前述のように。アデノウイルスE1領域は調節タンパク質をコードしており、E1機能がない場合、アデノウイルスは、複製に欠陥がある(「複製能欠損」と称する)。以下の実施例では、E1欠失サルアデノウイルスの複製能欠損の完全な補完は、ヒトアデノウイルスE1およびE40RF6で達成されることが示されている(例3を参照)。したがって、サル細胞でのサルアデノウイルスの増殖に必須のこれらの領域は、ヒト細胞株−ヒトアデノウイルス系の増殖のためには非必須である(実施例3)。E3領域によってコードされるタンパク質は、ウイルスの増殖のためには不要であり、E3欠失アデノウイルスが、E1またはE4欠失を有するウイルスでも容易に産生されることが当技術分野で周知である。驚くべきことに、複数の既知のE4タンパク質のうち、サルアデノウイルスの宿主域のヒト細胞への拡大を担うもの(ORF6)も、E欠失アデノウイルスの成長を補完することが可能である。同じ血清型C型からE1およびE4の両方の発現は、E1−、E3−、E4−欠失を有する非種C型アデノウイルスの増殖をサポートすることが判明している(Tatsisら,Gene Ther.,13(5):421−9(2006))。
【0081】
サルアデノウイルスに由来するアデノウイルスベクターは、次の用途、(1)感染症の適応のためのワクチンベクター、(2)抗がん用のワクチンベクター、(3)急性および慢性疾患の介入のために治療用タンパク質をコードする導入遺伝子の移入用として有用である。
【0082】
サルアデノウイルスベクターは、哺乳動物における免疫応答の誘発(ワクチン接種)のために使用することができる。この点では、ヒトアデノウイルスベクターの普及が、ベクターの免疫原性によって少なくとも部分的に妨げられている。米国の人口の大半は、野生型ヒトアデノウイルスにさらされており、ヒトアデノウイルスベースの遺伝子導入ベクターに対する既存の免疫を発達させている。その結果、ヒトアデノウイルスベクターが既存の宿主の免疫応答によって不活化されてしまい、ベクターの有効性が低下している。体内でアデノウイルスベクターの中和および/またはクリアランスにより、DNAワクチンとしてのこれらのベクターの使用が複雑なものとなる。DNAワクチンは、宿主細胞に抗原をコードするDNAを送達するために遺伝子導入ベクターを採用している。生体内で抗原タンパク質を生産することによって、免疫系の体液性アームおよび細胞性アームが活性化され、これにより、異種タンパク質が体内に注入される従来のワクチンと比較して抗原に対してより完全な免疫応答が生成される。ヒトアデノウイルスベクターの遺伝子送達ビヒクルとしての有利な特性にもかかわらず、ベクターの免疫原生が、病原体に対して免疫系を「増強する」ために有利であり得る効率的な反復投与を妨げており、宿主細胞へのペイロードを送達するアデノウイルスベクターの投与量のごく一部しか利用できない。
【0083】
サルアデノウイルスベクターは、ヒトアデノウイルスに対する既存の免疫によって媒介される中和および/またはクリアランスの対象とはならない。また、2種以上のサルアデノウイルスベクターを組み合わせると、ヒトアデノウイルスベクターの反復投与で見られる阻害を回避することになり、したがって、それによって病原体に対する免疫系を強化することが可能となる。したがって、サルアデノウイルスベクターは、それらの欠点なしにヒトのアデノウイルスベクターのと同じ利点を提供する。
【0084】
本発明のアデノウイルスの一実施形態では、免疫応答を誘導するために哺乳動物において発現される抗原をコードする核酸配列を含む。「抗原」とは、哺乳動物において免疫応答を引き起こす分子である。「免疫応答」は、例えば、抗体産生および/または免疫エフェクター細胞sの活性化をもたらすことができる。本発明の文脈において、抗原は、任意のタンパク分子の任意のサブユニットを含むことができ、そのような分子としては、好ましくは保護免疫につながる哺乳動物における免疫応答を誘発するのが理想である、ウイルス、細菌、寄生虫、真菌原虫、プリオン、細胞のまたは細胞外起源のタンパク質またはペプチドを含む。該抗原は、自己抗原、すなわち、個体が誤って外来の侵入物として識別した自己タンパク質でもあり得る。
【0085】
一実施形態では、該抗原はウイルス抗原である。ウイルス抗原は任意のウイルスから単離することができ、そのようなウイルスとしては、次のウイルスの科、即ちアレナウイルス科、アルテリウイルス科、アストロウイルス科、バキュロウイルス科、バドナウイルス科、バルナウイルス科、ビルナウイルス科、ブロモウイルス科、ブニヤウイルス科、カリシウイルス科、カピロウイルス科、カーラウイルス科、カリモウイルス科、シルコウイルス科、クロステロウイルス科、コモウイルス科、コロナウイルス科(例えば、重症急性呼吸器症候群(SARS)ウイルスなどのコロナウイルス)、コルチコウイルス科、シストウイルス科、デルタウイルス、ダイアンソウイルス、エナモウイルス、フィロウイルス科(例えば、マールブルグウイルスやエボラウイルス(例えばザイール株、レストン株、コートジボワール株、またはスーダン株))、フラビウイルス科(例えば、C型肝炎ウイルス、デングウイルス1型、デングウイルス2型、デングウイルス3型、およびデングウイルス4型)、ヘパドナウイルス科(例えば、B型肝炎ウイルス)、ヘルペスウイルス科(例えば、ヒトヘルペスウイルス1型、2型、3型、4型、5型、6型、サイトメガロウイルス)、ハイポウイルス科、イリドウイルス科、レヴィウイルス科、リポスリクスウイルス科、ミクロウイルス科、オルソミクソウイルス科(例えば、インフルエンザウイルスAおよびB)、パポバウイルス科、パラミクソウイルス科(例えば、はしか、おたふく風邪、ヒト呼吸器合胞体ウイルス)、パルボウイルス科、ピコルナウイルス科(例えば、ポリオウイルス、ライノウイルス、ヘパトウイルス、およびアフトウイルス)、ポックスウイルス科(例えば、ワクシニアウイルス)、レオウイルス科(例えばロタウイルス)、レトロウイルス(例えば、ヒト免疫不全ウイルス(HIV)1およびHIV2などのレンチウイルス)、ラブドウイルス科、およびトティウイルス科のいずれかに属するものが挙げられるが、これらに限定されない。一実施形態において、本発明の方法の抗原は、呼吸器合胞体ウイルス(RSV)抗原である。抗原は、例えば、RSV株AまたはB株の抗原(例えばF、G、M、ML、M2、SH、またはNS1、NS2タンパク質の全部もしくは一部、またはこれらのタンパク質のなかの2以上の全部または一部の融合物)であり得る。レトロウイルス抗原は、例えば、gag、env、またはpolタンパク質の全部または一部などの、HIV抗原であり得る。クレードA、B、C、MNなどのHIVのいずれかのクレードが抗原選択のために適切である。いくつかの実施形態では、アデノウイルスベクターにコードされる1以上の抗原が、単純ヘルペスウイルス2型(HSV−2)抗原である。本発明の方法に適したSARSウイルス抗原として、例えば、UL19、UL47、またはgDタンパク質の全部または一部が挙げられる。本明細書に具体的に記載する抗原ペプチドは、本発明の文脈で使用することができる任意のウイルスタンパク質の単なる例示である。
【0086】
抗原は、限定しないがスポロゾイト抗原など寄生虫抗原でもあり得る。例えば、核酸配列はマラリア抗原をコードするものであり得、そのようなマラリア抗原としては、スポロゾイト周囲タンパク質、スポロゾイト表面タンパク質、肝臓段階抗原(LSA)、頂端膜結合タンパク質、またはメロゾイト表面タンパク質の全部または一部などがある。
【0087】
あるいは、またはそれに加えて、アデノウイルスベクターでコードされる抗原の少なくとも1つは細菌抗原であり得る。その抗原は、任意の菌に由来するものであり得、そのような菌としては、アクチノマイセス属、アナベナ属、バチルス属、バクテロイデス属、ブデロビブリオ属、カウロバクター属、クラミジア属、クロロビウム属、クロマチウム属、クロストリジウム属、サイトファガ属、デイノコッカス、大腸菌属、ハロバクテリウム属、ヘリコバクター属、ハイフォミクロビウム属、メタノバクテリウム、ミクロコッカス、マイコバクテリウム属、マイコプラズマ、ミキソコッカス属、ナイセリア属、ニトロバクター属、オシラトリア、プロクロロン属、プロテウス属、シュードモナス属、ロドスピリルム属、リケッチア属、サルモネラ菌属、赤痢菌属、スピリルム属、スピロヘータ属、ブドウ球菌属、連鎖球菌属、ストレプトマイセス属、スルホロバス属、テルモプラズマ属、チオバチルス属、およびトレポネーマ属などが挙げられるが、これらに限定されない。一実施形態では、該核酸配列によってコードされる抗原の少なくとも1つが、シュードモナス属抗原またはヘリコバクター属抗原である。
【0088】
無傷のウイルスや細菌のタンパク質の全部が免疫応答を生成するためには必要とされないことは理解されよう。実際、ほとんどの抗原エピトープはサイズが比較的小さく、したがって、哺乳動物の免疫系への露出のためには、タンパク質の断片で十分であり得る。加えて、融合タンパク質は、1種または複数種の抗原の2以上の抗原エピトープの間で生成することができる。例えば、HIVgp120またはgp160の全部または一部を、HIVpolタンパク質の全部又は一部に融合させ、単一のエピトープで生成されるものと比較してHIVの病原体に対するより完全な免疫応答を生成することができる。アデノウイルスベクターによる哺乳動物への融合タンパク質の送達により、免疫系を複数の抗原にさらすことを可能とし、したがって、単一のワクチン組成物で複数の病原体に対する免疫を提供することを可能とする。
【0089】
抗原をコードする配列を含む核酸配列は、核酸配列の種類または特定の起源に限定されない。核酸配列は、組換えDNA、ゲノムDNA、もしくは潜在的な抗原エピトープのDNAライブラリーから得られたもの、または合成によって生成したものであり得る。核酸配列は、発現カセットの一部として存在することができ、当該発現カセットには、効率的な核酸配列の発現およびコードされた抗原の生成に必要な遺伝子エレメントをさらに含めることも可能で、理想的には、抗原をコードする核酸配列は、本明細書に記載するようにプロモーターおよびポリアデニル化配列に機能可能にリンクされる。プロモーターは、その活性の特定のパターンを、1以上の抗原の発現の所望のパターンおよびレベルとマッチングさせることによって、本発明の方法において使用するために選択することができる。例えば、アデノウイルスベクターは異なる抗原をコードし、異なる発現プロファイルを示す別のプロモーターに機能可能にリンクされている、2以上の核酸配列を含むものであり得る。例えば、第1のプロモーターは、抗原の産生の最初のピークを媒介し、それによってコードされた抗原に対する免疫系をプライミングするべく選択される。第2のプロモーターは、第1のプロモーターによるピークの数日後に発現のピークが生じるように同一のまたは異なる抗原の産生を促進し、それによって抗原に対して免疫系を「増強する」べく選択される。あるいは、複数のプロモーターの望ましい面を組み合わせたハイブリッドプロモーターを構築することができる。例えば、CMVプロモーターの初期ラッシュ時の活性と、RSVプロモーターの高いメンテナンスレベルでの活性とを組み合わせたCMV−RSVハイブリッドプロモーターは、本発明の方法の多くの実施形態での使用に特に好適である。抗原が真核細胞に対して毒性を有し得る点で、アデノウイルスベクターを増殖させるために用いる細胞株を補完する活性を低下させるようにプロモーターを改変することは有利なこともある。
【0090】
次の実施例では本発明をさらに説明するが、当然ながらこれが本発明の範囲を限定するものと解するべきではない。
【0091】
[実施例1]
この実施例は、サルアデノウイルスのプラーク形成が、ヒトアデノウイルスの要素E1およびE40RF6を発現するヒト細胞株上で非常に効率的であることを実証する。
【0092】
サルアデノウイルスはヒト細胞で複製が制限され、ヒトアデノウイルス因子はこの制限を克服する。本明細書で明らかにするように、本発明には2つの予期しない結果がある。即ち、全E4領域を含むものを凌駕するヒト細胞でのサルアデノウイルスの増殖の増加、およびサルアデノウイルスの増殖用として推奨されてきたネイティブの宿主細胞系と比較したときのヒト細胞でのサルアデノウイルスの増殖の優位性である。増殖を規定するために2つの手法を用いた。まず、感染多重度(MOI)が非常に低い条件下での増殖を決定するために、プラーク形成を使用した。肯定的な結果、即ち細胞単層におけるプラーク形成には、2回以上の感染サイクルが必要となる。したがって、プラーク形成は実際にウイルスの継続的増殖を示している。即ち、単一の感染性ウイルス粒子が一個の細胞に感染し、ウイルスのライフサイクルが完全に終了すると、続けてウイルスの子孫による隣接する細胞への感染が生じ、それが反復される。第2の方法は、ウイルス複製の1回のラウンドから作り出された感染性ウイルスの子孫の数を評価する。この方法は、細胞単層における実質的にすべての細胞の同期感染に基づいており、単一バースト増殖評価として知られている。
【0093】
すべてのE4因子のうち、ORF6で、ヒト細胞でサルアデノウイルスを増殖するためには十分であることがここで明らかにされる。予想外にも、ヒト細胞株は、プラーク形成(即ち、ウイルスの増殖能を測定する標準的な方法)するサルアデノウイルスの能力をサポートする点でサル細胞株により優れている。アカゲザルとベルベットサルから単離された2種のサルアデノウイルス、SV−1およびSV−38は、293−ORF6、BSC−1、LLC−MK2(MK2)、Vero、およびCV−1細胞でプラーク形成した。293−ORF6細胞株以外のすべてがサル由来である。BSC−1およびMK−2は、ウイルスを増殖用としてアメリカンタイプカルチャーコレクション(ATCC)により推奨されている細胞株である。両ウイルスの段階希釈液を使用して、60mmの培養皿で80%コンフルエントにした各細胞株に感染させた。感染条件としては、500μlのウイルスを用いて全部で15分間振盪させて1時間かけて行った。その後ウイルスを除去し、細胞を、EMEM+2%FBSおよび0.9%アガロース上に重層した。14日後のプラーク数を計数した。293−ORF6細胞は、試験した他のいずれの細胞株よりも少なくとも10倍のプラーク形成効率をもたらした(表1)。ヒトアデノウイルス2型からの全E4領域を含むヒト細胞でプラーク形成したサルウイルスのプラーク形成効率は、CV−1細胞に比べて1/40であったことが過去に報告されている。本発明による場合、プラーク形成活性により測定された増殖の改善度は明らかに400倍はある。本明細書で明らかにするように、本発明には2つの予期しない結果がある。即ち、全E4領域を含むものを凌駕するヒト細胞でのサルアデノウイルスの増殖の増加、およびサルアデノウイルスの増殖用として推奨されてきたネイティブの宿主細胞系と比較したときのヒト細胞でのサルアデノウイルスの増殖の優位性である。
【表1】
【0094】
[実施例2]
この実施例は、ヒトアデノウイルス種のC因子を有するヒト細胞株での高力価のサルアデノウイルス子孫の発生を実証する。
【0095】
単一バースト増殖試験を行って、ヒトアデノウイルスE1およびE4ORF6の組み合わせが、ヒト細胞でのサルアデノウイルスの複製に対する制限ブロックを克服するのに十分であったか否かを判断した。Ad5因子を発現しないヒト細胞(A549)、Ad5 E40RF6を発現するヒト細胞(A549+Ad5 E40RF6)、Ad5 E1を発現するヒト細胞(293)、またはAd5E1およびE40RF6を発現するヒト細胞(293−ORF6)のいずれかを、6穴プレートにウェル当たり1.5×10
6で3重に播種した。サルのアデノウイルスの複製を許容するあるアフリカミドリザルに由来するBSC−1細胞は、ウェルあたり1×10
5細胞を播種した。すべての細胞は10%FCSを含むDMEM中に維持し、37℃、5%CC[3/4]で増殖させた。翌日、細胞に、2時間で1ウェル当たり300μlのMOIが3フォーカス形成単位(FFU)/細胞の(
図2A)、または1FFU/細胞の(
図2B)、CsCl
2勾配精製したサルアデノウイルス株を感染させ、続けて吸引し、5%FCSを有する3mlのDMEMおよび100μMのZnCl
2に重層して、A549+Ad5 E40RF6および293−ORF6細胞においてE4ORF6の発現を誘導できるようにした。その後、細胞をインキュベートし、感染の72時間後に採取した。ドライアイスに曝すことと37℃の浴とを順に行うことからなる凍結融解サイクルを3回行うことによって、ウイルス粒子が細胞から放出させた。Vaccine,25:2074−2084(2007)に記載されたFFUアッセイを用いて、ウイルス−細胞ライセート中の子孫ウイルス粒子の数を評価した。
【0096】
ヒト細胞株におけるサルアデノウイルスの感染性子孫の世代は、Ad5 E4ORF6を発現するA549細胞およびA549と比較して、293−GRF6細胞で最も高かった(
図2A)。同様に、MOTが1のウイルス子孫の世代は、少なくともサルの293−ORF6細胞において、サル細胞株BSC−1における場合と同程度に効率的であった(
図2B)。いくつかの事例では、ウイルス子孫は、293−ORF6細胞から、BSC−1細胞の場合と比較して10倍〜1000倍以上産生された。対照的に、293細胞でのサルアデノウイルスの複製は、BSC−1細胞の場合よりも効率が低かった。したがって、E1とE40RF6の存在によって、ヒト細胞内での宿主複製ブロックが克服された。このことは、さらに、293−QRF6細胞上で増殖させると精製後に90090粒子/細胞が得られたSV−1で実証されました。最後に、293−ORF6細胞での感染性子孫の世代は、BSC−1細胞に比べて最大1,000倍高いが、このことは、E1およびE40RF6を発現するヒト細胞でのサルアデノウイルスの増殖は、サルアデノウイルス増殖用として推奨されるネイティブの宿主細胞株に比べて著しく大きいことを示している。
【0097】
以上まとめると、サルアデノウイルスのプラーク形成効率と単一バースト増殖分析により、サルアデノウイルスは、293−ORF6細胞内で効率的な複製ができること、およびヒトアデノウイルス要素の組み合わせの発現(Ad5 E1およびE40RF6)により、ヒトの複製ブロックが克服されることが実証された。さらに、このことは、グループの重要な代表である8種のサルアデノウイルスで示された。
【0098】
[実施例3]
この実施例は、ヒトアデノウイルスの要素を有するヒト細胞株のE1欠失を有するサルアデノウイルスベクターの構築と増殖を実証する。
【0099】
3つの異なる種(ベルベット、カニクイザルとアカゲザル)からの7種の異なるサルアデノウイルスは、そのE1領域が発現カセットで置換されたものであった。ここで使用されるサルアデノウイルスは、ATCCからのSV−1、SV−7、SV−1、SV−16、SV−18、SV−38、SV−39である。それらの左ITRからE1aプロモーターへのクローニングを容易にするために、野生型ウイルスのpIXプロモーター領域およびITRの右隣の配列を決定した。E1欠失型は、E1aプロモーターとE1タンパク質を不活化するが、pIXウイルスプロモーター、ウイルスパッケージングシグナル、および複製起点を保持するように設計されていた。これらの配列の同一性は、公知のアデノウイルスゲノムへの相同性によって決定され、例えば、Berkeley Drosophila Genome Project、National Center for Biotechnology InformationおよびExpert Protein Analysis Systemにみられるような、公開されたソフトウェアを用いて同定することができる。一般的には、E1欠失部は、E1aプロモーターのTATAボックスの5’末端の50塩基対(bp)内から始まり、pIXプロモーターの5’末端の50〜300bpに終端を有していた。その欠失は、ウイルスベクターの用途に応じて変更することができることから、上記のものは、当該欠失を作ることができる例示にすぎない。例えば、SV−38由来のベクターのE1欠失は、E1プロモーターの大半を保持しているものであり、このことは、アデノウイルスベクターを構築するためにE1の完全な除去が必要でないことを示していた。
【0100】
このようなウイルスを構築する方法は複数存在するが、基本的に2つのステップを実行する。所望のウイルスベクターゲノムを細菌で生成し、その後、そのゲノムを293−ORF6細胞にトランスフェクトして、ウイルス粒子を作る。
【0101】
細菌でウイルスベクターのゲノムを作製する一般的な手順は、
図3に概説されているものか、それにわずかな変更を加えたものである。当技術分野で公知の標準的な分子生物学的手法を用いて、シャトルプラスミドを構築するが、該シャトルプラスミドは、ウイルスのITR(点描ボックス)、パッケージングシグナル(Ψ)、E1領域を置換する発現カセット、およびpIX配列を含み、pIX配列の後にはウイルスの右側ITRがある。この実施例の発現カセットは、CMVプロモーター(矢印)、オープンリーディングフレーム(ORF)、およびSV40ポリアデニル化シグナル(SV)で構成されている。発現カセットの向きおよび構成は、例示的にすぎず、限定を意図するものではない。プラスミドは、好ましくは、低コピー数の細菌の複製起点(例えばp15など)を含むが、他の複製起源も使用できる。そのようなカナマイシンなど(Kan r)の抗生物質に対する耐性を与える遺伝子を含めることは、例えば、プラスミドを保有する細菌を選択するために有用である。アデノウイルスベクターゲノムを構築するためには、pIXから右ITRまでのウイルスゲノムの残りの部分を、相同組換えにより、シャトルプラスミドにクローニングする。これを達成するために、BJ5183などの組換えコンピテント細菌を、〜50ngのpIXと右ITRとの間でエンドヌクレアーゼで制限されるシャトルプラスミドと、100ngの精製ウイルスゲノムの両方で形質転換する。組換えのためのウイルスゲノムシャトルプラスミドとが、それぞれのpIXと右ITRとの間で少なくとも50bpの相同性を有することが好ましい(X)。制限消化、ポリメラーゼ連鎖反応(PCR)、およびDNAシークエンシングを含む、クローニングされたアデノウイルスベクターのゲノムをもつ細菌を識別する、当技術分野で公知の方法が多数存在する。例えば、ウイルスのヘキソン遺伝子のシークエンシングを、アデノウイルスの種類を特定するために使用することができる。次のヘキソン配列に対する相同性を用いて、アデノウイルスおよびその誘導体の種類をさらに確認した:SV−1(配列番号:22)、SV−7(配列番号:23)、SV−1(配列番号:24)、SV−16(配列番号:25)、SV−18(配列番号:26)、SV−38(配列番号:27)、およびSV−39(配列番号:28)。ひとたびウイルスベクターゲノムが特定されれば、プラスミドを用いてRec
A−菌株(例えばDH10B)を形質転換し、そこから当該プラスミドを増幅し、精製する。
【0102】
次に、第2ステップでは、ゲノムプラスミドからの感染性ウイルスの変換(レスキュー)を以下のように行った。ゲノムプラスミドを制限酵素で消化して、プラスミドバックボーンから両方のITRを放出させ、フェノール:クロロホルム:イソアミルアルコール抽出およびエタノール沈殿により精製し、30mMのTris、1mMのEDTA、pH8.0に再懸濁した。次に293−ORF6細胞株(60 mmのプレートあたり〜1.5×10
6細胞)に、Polyfect試薬(Qiagen)で消化したプラスミドの5μgをトランスフェクトした。細胞をトランスフェクションの5日後に採取して、3回の凍結融解サイクルを施し、細胞ライセートを新鮮な細胞に継代させた。細胞ウイルスライセートは完全な細胞変性効果(CPE)が観察されるまで、3〜5日間隔でこの方式で連続して継代させた。Gall JGら(Rescue and production of vaccine and therapeutic adenovirus vectors expressing inhibitory transgenes.Mol Biotechnol.35(3):263−73(2007),PubMedPMID:37652790)に記載のように、精製したアデノウイルス株を感染した細胞から生成した。簡単に説明すると、感染した細胞を回収し、培養培地を廃棄した。細胞を、25mMのTris(pH7.5)、75mMのNaClに溶解した。3回の凍結/融解サイクルによって5mMのMgCl
2をバッファに溶解し、室温で一晩100単位/mLのベンゾナーゼ(登録商標)で処理した。Mittereder,N.,ら(Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy.J.Virol.70:7498−7509(1996))に記載のように、塩化セシウム等密度勾配遠心分離を行い、260nmの吸光度でと全粒子単位の力価を決定した。Gall JG,ら(Rescue and production of vaccine and therapeutic adenovirus vectors expressing inhibitory transgenes.Mol Biotechnol.35(3):263−73(2007),PubMed PMID:17652790)およびLemiale Fら(Novel adenovirus vaccine vectors based on the enteric−tropic serotype41,Vaccine25(11):2074−84(2007),Epub2006Nov28.PubMed PMID;17250935,PubMed Central PMCID:PMC2584667)に記載のように、活性の粒子の力価を、Ad2がヘキソン抗体を用いた蛍光フォーカスユニット(FFU)アッセイで測定した。ウイルス調製物は、感染粒子に対する全粒子の比率の平均が49+/−23(n=6)の高品質で、かつ精製後の細胞当たりの粒子数が最大37000である高収率のものである。各ウイルスの同一性を、部分的なDNAシーケンシング、および診断PCRにより確認した。発現カセットの機能は、ウェスタンブロット解析により確認した。
【0103】
本明細書および
図3に記載のレスキューシャトルプラスミドの作製のために用いられるウイルス配列の同一性を、以下に示す。すべての配列は、標準的なウイルスゲノムの左から右の方向に記載されている。標準的なウイルスゲノムのE1領域は、ウイルスゲノムの左端にある。左側のITR、パッケージングシグナルを含むが、完全なE1aプロモーターを欠く配列は、「左手配列」と称する。pIXの領域での相同組換えに使用される配列は、「pIX領域配列」と呼ばれる。相同組換えに使用される右側のITRの一部で構成されている配列は、「右配列」と称する。すべての配列は、標準的な5’末端から3’への向きで記載されている。
【0104】
SV−1:左手配列(配列番号:1);pPIX領域配列(配列番号:2);右配列(配列番号:3)。
SV−7:左手配列(配列番号:4);pPIX領域配列(配列番号:5);右配列(配列番号:6)。
SV−11:左手配列(配列番号:7);pPIX領域配列(配列番号:8);右配列(配列番号:9)。
SV−16:左手配列(配列番号:10);pPIX領域配列(配列番号:11);右配列(配列番号:12)。
SV−18:左手配列(配列番号:13);pPIX領域配列(配列番号:14);右配列(配列番号:15)。
SV−38:左手配列(配列番号:16);pPIX領域配列(配列番号:17);右配列(配列番号:18)。
SV−39:左手配列(配列番号:19);pPIX領域配列(配列番号:20);右配列(配列番号:21)。
【0105】
[実施例4]
この実施例は、E1領域配列の欠失があるサルアデノウイルスは複製能欠損型であることを実証する。
【0106】
実施例3に記載のように、E1欠失を遺伝子操作してサルアデノウイルスSAV7、SAV11、SAV16とした。E1欠失は、E1Aのプロモーター、E1Aコード領域の全体、E1Bプロモーター、E1B2 IKタンパク質のホモログをコードする領域、およびE1B55Kホモログをコードする領域の5’末端の大部分を除去するように設計されている。さらに、実施例3およびGall JGら(Rescue and production of vaccine and therapeutic adenovirus vectors expressing inhibitory transgenes.Mol Biotechnol 35(3):263−73(2007),PubMed PMID:176527)に記載のように、コーディングされたタンパク質生成物なしで、発現カセットを、E1欠失の位置に挿入した。これらの配列の除去がウイルスの複製能を変更したか否かを判定するために、サルの細胞にウイルスを感染させ、感染ウイルスの子孫を測定した。サル起源の2種の細胞株を使用したが、いずれもベンダー(ATCC)がサルアデノウイルスの増殖用に推奨していたものであった。LLC−MK2細胞株は、アカゲザル(Macaca mullata)由来の腎臓株であり、BSC−1細胞株は、アフリカミドリザル(Cercopithectis aethiops)由来の腎臓株である。6ウェルプレートにウェルあたり3×10
5個の細胞で播種された細胞株の接着性の培地に、E1欠失型および野生型アデノウイルスのそれぞれの細胞当たり100個の粒子で感染させた。感染後72および96時間(hpi)で、細胞および培地を回収し、凍結融解(ドライアイス上での凍結〜10分間、37℃の水浴中で融解〜10分間)を3サイクル施して、細胞を融解した。Gallら(Rescue and production of vaccine and therapeutic adenovirus vectors expressing inhibitory transgenes.Mol Biotechnol35(3):263−73(2007),PubMed PMID:17652790);およびLemiale Fら(Novel adenovirus vaccine vectors based on the enterictropic serotype 41.Vaccine25(ll):2074−84(2007),Epub2006Nov.28.PubMed PMID:17250935,PubMed Central PMCID:PMC2584667.)に記載されているように、細胞ライセートを、蛍光フォーカスユニット(FFU)アッセイにおいて感染性ウイルスを測定した。野生型ウイルスに感染した細胞から生成されたライセート中のウイルスの子孫に高力価のいものがあった(表2)。従って培養細胞は、サルアデノウイルスに対して寛容であった。重要な点は、E1欠失サルアデノウイルスに感染した細胞からのライセートで子孫ビリオンが検出されなかったことであり、25325FFUが定量限界のアッセイで、25875FFU/mL(顕微鏡視野当たり5巣、1013視野/細胞培地ウェル、および非希釈ライセート)だったことである。定量限界に対する野生型ウイルスの各血清型で達成されている最大力価の比較により、SAV7の複製は1/19348以下に減少し、SAV11の複製は1/10266以下に減少し、SAV16の複製は1/5133以下に減少することがわかる。加えて、ヌルウイルス感染からのライセートで感染させたウェルでは、アッセイ限界を検出限界の5FFU/mLまで下げても、巣が観察されなかった。定量限界に対する野生型ウイルスの各血清型で達成されている最大力価の比較により、SAV7、SAV11、およびSAV16の複製をそれぞれ9.8×10
7分の1、5.2×10
7分の1、および2.6×10
7分の1に減少させることが確定した。したがって、E1欠失のサルアデノウイルスは複製能欠損型であった。
【表2】
【0107】
刊行物、特許出願、特許を含むすべての引用文献は、各引用文献が個別具体的に引用により本明細書に組み入れられ、それぞれの全内容が本明細書中に記載されていたとみなされるのと同程度に、ここでの引用により本明細書の一部とみなすものとする。
【0108】
本発明を説明する文脈における(特に以下の特許請求の範囲の文脈における)「ある、一つの(a、およびan)」および「その、該、前記(the)」という語、および類似の指示語は、本明細書中で特に断り書きがあるか、文脈上明らかに異なる意味でない限り、単数および複数の両方の意味を包含するものと解すべきものである。用語「含む」、「有する」、「備える」、および「包含する」は、オープンエンドの(すなわち、「〜を含むが、それに限定されない」と意味する)用語として解すべきものである。本明細書中の数値範囲の記載は、当該範囲内におさまる個々の数値を個々に指定するのと同じことを簡便に行う方法として用いることのみを意図したものであって、個々の数値は、本明細書中で特に断り書きがない限り、その各数値が個別に記載されているのと同様に明細書の内容に組み入れられる。本明細書中で特に断り書きがない限り、または文脈上明らかに異なるz意味でない限り、本明細書に記載のすべての方法は、任意の適切な順序で実行することができる。本明細書で提示される任意のおよび全部の例または例示の表現(例えば、〜などの)は、本発明の分かりやすく説明することのみを意図したものであって、特に断り書きがない限り本発明の範囲を限定するものではない。明細書中のあらゆる表現は、本発明の実施に必須ではあるが権利請求されていない要素を示すものと解するべきではない。
【0109】
本発明の好ましい実施形態は、本発明を実施するための発明者の知る最良の実施形態を含むものとして、本明細書中に記載されている。それらの好ましい実施形態の変更は、上述の説明を読めば当業者に明らかであろう。本発明者らは、当業者がそのような変更を適宜採用することを想定しており、また本発明者らは、本発明が本明細書中に具体的に記載されたもの以外の形態で実施されることも想定している。したがって、本発明は、適用される法規の許容範囲内で、特許請求の範囲に記載の発明のあらゆる変更形態および均等な形態を含むものである。また、上述のあらゆる可能な変更形態の要素の任意の組み合わせは、本明細書中で特に断り書きがあるか、文脈上明らかに異なる意味でない限り、本発明に包含されるものである。