【実施例】
【0059】
以下、実施例及び比較例により、本発明をさらに詳しく説明する。本発明は以下の実施例により限定されるものではない。なお、以下において、「部」は「質量部」のことであり、「質量%」は「重量%」と同義であり、以下では単に「%」と表すこともある。
【0060】
[基材金属]
基材金属として以下の金属板又は金属箔を用いた。
【0061】
1a:アルミニウム板(JIS記号:A1100P、純アルミニウム、厚さ0.3mm)
1b:アルミニウム合金箔(JIS記号:A8079、厚さ0.03mm)
1c:ステンレス鋼箔(JIS記号:SUS304、厚さ0.1mm)
1d:銅板(JIS記号:C1020P、無酸素銅、厚さ0.3mm)
1e:ニッケル板(純度99質量%以上、厚さ0.3mm)
1f:NiめっきCu板(電気NiめっきCu、銅板:C1020Pの無酸素銅、厚さ0.3mm、Niめっき厚2μm)
【0062】
[下地皮膜の形成方法]
基材金属の表面に以下に示す方法で下地皮膜を形成した。
【0063】
(2a:アルカリ性置換めっき)
硫酸亜鉛7水和物16.87部(亜鉛として)、水酸化ナトリウム116部、グルコン酸ナトリウム20部及び残りが水である計1000部のアルカリ性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
【0064】
(2b:アルカリ性置換めっき)
硫酸亜鉛7水和物16.87部(亜鉛として)、硫酸第1鉄5水和物1.16部(鉄として)、水酸化ナトリウム116部、グルコン酸ナトリウム20部及び残りが水である計1000部のアルカリ性置換めっき液を作製しした。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
【0065】
(2c:アルカリ性置換めっき)
硫酸亜鉛7水和物16.87部(亜鉛として)、硫酸ニッケル6水和物2.0部(ニッケルとして)、水酸化ナトリウム116部、グルコン酸ナトリウム20部及び残りが水である計1000部のアルカリ性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
【0066】
(2d:アルカリ性置換めっき)
硫酸亜鉛7水和物16.87部(亜鉛として)、硫酸コバルト7水和物3.0部(コバルトとして)、水酸化ナトリウム116部、グルコン酸ナトリウム20部及び残りが水である計1000部のアルカリ性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
【0067】
(2e:アルカリ性置換めっき)
硫酸亜鉛7水和物16.87部(亜鉛として)、硫酸第1鉄5水和物1.16部(鉄として)、硫酸ニッケル6水和物0.23部(ニッケルとして)、水酸化ナトリウム116部、グルコン酸ナトリウム20部及び残りが水である計1000部のアルカリ性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
【0068】
(2f:アルカリ性置換めっき)
硫酸亜鉛7水和物16.87部(亜鉛として)、硫酸第1鉄5水和物1.16部(鉄として)、硫酸コバルト7水和物1.06部(コバルトとして)、水酸化ナトリウム116部、グルコン酸ナトリウム20部及び残りが水である計1000部のアルカリ性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
【0069】
(2g:酸性置換めっき)
硫酸亜鉛7水和物10部(亜鉛として)、酸性フッ化アンモニウム7.65部及び残りが水であり、さらに10質量%の水酸化ナトリウム水溶液を用いてpH3.0に調整した計1000部の酸性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
【0070】
(2h:酸性置換めっき)
硫酸亜鉛7水和物13部(亜鉛として)、硫酸第1鉄5水和物3.6部(鉄として)、55質量%フッ化水素酸水溶液12.1部及び残りが水であり、さらに10質量%の水酸化ナトリウム水溶液を用いてpH2.0に調整した計1000部の酸性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
【0071】
(2i:酸性置換めっき)
硫酸亜鉛7水和物13部(亜鉛として)、硫酸ニッケル6水和物0.8部(ニッケルとして)、55質量%フッ化水素酸水溶液12.1部及び残りが水であり、さらに10質量%の水酸化ナトリウム水溶液を用いてpH3.0に調整した計1000部の酸性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
【0072】
(2j:酸性置換めっき)
硫酸亜鉛7水和物13部(亜鉛として)、硫酸コバルト7水和物2.1部(コバルトとして)、55質量%フッ化水素酸水溶液9.7部及び残りが水であり、さらに10質量%の水酸化ナトリウム水溶液を用いてpH3.0に調整した計1000部の酸性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
【0073】
(2k:酸性置換めっき)
硫酸亜鉛7水和物13部(亜鉛として)、硫酸第1鉄5水和物2.5部(鉄として)、硫酸ニッケル6水和物0.3部(ニッケルとして)、55質量%フッ化水素酸水溶液12.1部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH2.5に調整した計1000部の酸性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
【0074】
(2l:酸性置換めっき)
硫酸亜鉛7水和物13部(亜鉛として)、硫酸第1鉄5水和物1.5部(鉄として)、硫酸コバルト7水和物0.4部(コバルトとして)、55質量%フッ化水素酸水溶液12.1部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH3.0に調整した計1000部の酸性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
【0075】
(2m:電気亜鉛めっき)
硫酸亜鉛7水和物91.6部(亜鉛として)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH4.0に調整した1000部の電気亜鉛めっき液を作製した。このめっき液中に基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dm
2にて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
【0076】
(2n:電気亜鉛めっき)
硫酸亜鉛7水和物32.7部(亜鉛として)、硫酸第1鉄5水和物27.5部(鉄として)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH3.5に調整した計1000部の電気亜鉛めっき液を作製した。このめっき液中に基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dm
2にて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
【0077】
(2o:電気亜鉛めっき)
硫酸亜鉛7水和物32.7部(亜鉛として)、硫酸ニッケル6水和物25部(ニッケルとして)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH3.5に調整した計1000部の電気亜鉛めっき液を作製した。このめっき液中に基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dm
2にて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
【0078】
(2p:電気亜鉛めっき)
硫酸亜鉛7水和物32.7部(亜鉛として)、硫酸コバルト7水和物25部(コバルトとして)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH4.0に調整した計1000部の電気亜鉛めっき液を作製した。このめっき液中に基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dm
2にて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
【0079】
(2q:電気亜鉛めっき)
硫酸亜鉛7水和物32.7部(亜鉛として)、硫酸第1鉄5水和物27.5部(鉄として)、硫酸ニッケル6水和物25部(ニッケルとして)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH3.5に調整した計1000部の電気亜鉛めっき液を作製した。このめっき液中に基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dm
2にて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて
80℃で1分間加熱乾燥した。
【0080】
(2r:電気亜鉛めっき)
硫酸亜鉛7水和物32.7部(亜鉛として)、硫酸第1鉄5水和物27.5部(鉄として)、硫酸コバルト7水和物25部(コバルトとして)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH3.5に調整した計1000部の電気亜鉛めっき液を作製した。このめっき液中に基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dm
2にて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
【0081】
(2s:電気亜鉛めっき)
硫酸亜鉛7水和物91.6部(亜鉛として)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH4.0に調整した計1000部の電気亜鉛めっき液を作製した。その後、基材金属を、硝フッ化水素酸水溶液(硝酸10質量%、フッ化水素酸5質量%)中に、室温で1分間浸漬した後、水洗した。その後、上記電気亜鉛めっき液中に、上記基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dm
2にて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
【0082】
(2t:電気亜鉛めっき)
硫酸亜鉛7水和物91.6部(亜鉛として)、硫酸第1鉄5水和物27.5部(鉄として)、硫酸ナトリウム200部及び残りが水であり、10質量%のアンモニア水溶液を用いてpH4.0に調整した計1000部の電気亜鉛めっき液を作製した。その後、基材金属を硝フッ化水素酸水溶液(硝酸10質量%、フッ化水素酸5質量%)中に、室温で1分間浸漬した後、水洗した。その後、上記電気亜鉛めっき液中に、上記基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dm
2にて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
【0083】
(2u:酸化亜鉛コーティング)
酸化亜鉛ゾル(分散粒経20nm、固形分濃度1.5質量%、pH9.0)を#3バーコーターにて塗工した後、電気炉にて120度で1分間加熱乾燥した。
【0084】
(2v:下地皮膜なし)
基材金属について、下地皮膜を形成せずに、そのまま電気炉を用い、80℃で1分間加熱乾燥した。
【0085】
[樹脂フィルムの形成方法]
以下のいずれかの方法で樹脂フィルムを形成した。
【0086】
(3a:ヒートラミネーション)
下地皮膜の表面に、厚さ50μmのマレイン酸変性ポリプロピレンフィルムを190℃、1MPaで10秒間熱圧着した。
【0087】
(3b:ヒートラミネーション)
下地皮膜の表面に、厚さ20μmのマレイン酸変性ポリプロピレン層と厚さ30μmのプロピレン及びエチレンの共重合体層とが積層された2層構造の樹脂フィルムの、マレイン酸変性ポリプロピレンフィルム層側を、190℃、1MPaで10秒間熱圧着した。
【0088】
(3c:ヒートラミネーション)
下地皮膜の表面に、酸変性ポリプロピレンのディスパージョン(三井化学株式会社製、商品名:R-120K、不揮発分濃度:20質量%)を、#8SUSマイヤーバーを用い、バーコートによって塗布した後、熱風循環式乾燥炉内で200℃、1分間乾燥して接着剤層を形成した。その後、下地皮膜上の接着剤層の表面に、厚さ30μmのポリプロピレンフィルム(東セロ株式会社製、「CPPS」)を、190℃、1MPaで10秒間熱圧着した。
【0089】
(3d:押出しラミネーション)
下地皮膜の表面に、酸変性ポリプロピレンを厚さ15μmの溶融樹脂層として押出し、その後さらに厚さ30μmのポリプロピレンフィルム(東セロ株式会社製、「CPPS」)を貼り合わせる押出しラミネーションを実施した。
【0090】
(3e:ドライラミネーション)
下地皮膜の表面に、ウレタン系ドライラミネート接着剤(東洋モートン株式会社製、商品名:AD−503/CAT10、不揮発分濃度:25質量%)を、#8SUSマイヤーバーを用い、バーコートによって塗布した後、電気炉で80℃、1分間乾燥して接着剤層を形成した。その後、この接着剤層と、厚さ30μmの未延伸ポリプロピレンフィルム(二村化学工業株式会社製、商品名:FCZX)のコロナ放電処理面とを、100℃、1MPaで圧着した後、40℃で4日間養生した。
【0091】
[供試材の作製]
上記した基材金属をファインクリーナー359E(日本パーカライジング株式会社製、アルカリ脱脂剤)の2%水溶液で50℃、10秒間スプレー脱脂し、さらに表面を水洗し、表1〜表4に示した実施例1〜71及び比較例1〜12で用いる基材金属として準備した。
【0092】
次に、表1〜表4に示した実施例1〜71及び比較例1〜12で用いる基材金属に対し、表1〜表4に示した各処理を適用して下地皮膜を形成した。表1〜表4に示す実施例1〜実施例71では2a〜2tのいずれかの処理を選択し、比較例1〜比較例12では2u又は2vの処理を選択した。
【0093】
ここで、置換めっき処理の場合には基材金属がエッチングするので、そのエッチング量(g/m
2)を測定した。エッチング量の測定は、置換めっき液中に溶出した基材金属をICP分析(株式会社島津製作所製、ICPE−9000)で定量した。その結果を表1〜表4に示した。また、下地皮膜を構成する金属元素(Zn、Fe、Ni、Co等)の付着量(g/m
2)もICP分析で定量した。この付着量は、下地皮膜を設けた基材金属を60%硝酸中に浸漬して溶解し、その溶解液をICP分析して測定した。なお、1g/m
2の金属元素が付着すると、下地皮膜の厚さは約0.5μmとなる。その結果を表1〜表4に示した。また、下地皮膜の表面について、XPS分析(株式会社島津製作所製、ESCA−850M)し、下地皮膜中の亜鉛元素の化学状態をZnLMMオージェスペクトルのピーク位置より同定した。ZnLMMオージェスペクトルのピーク位置が993.6eVの場合は、亜鉛元素が金属状態であり、988.6eVの場合は、亜鉛元素が酸化状態である。その結果を表1〜表4に示した。
【0094】
次に、表1〜表4に示した実施例1〜71及び比較例1〜12で用いる下地皮膜付基材金属に対し、表1〜表4に示した各処ラミネート処理を適用して樹脂フィルムを形成した。
【0095】
次に、得られた実施例1〜71及び比較例1〜12の樹脂フィルム付金属製外装材を深絞り加工を施した。先ず、直径160mmに打ち抜いた樹脂フィルム付金属製外装材を絞り加工(1回目)し、直径100mmのカップを作製した。続いて、そのカップを直径75mmに再度絞り加工(2回目)し、さらに直径65mmに絞り加工(3回目)し、供試材である缶を作製した。なお、1回目の絞り加工、2回目の絞り加工及び3回目の絞り加工におけるしごき率(薄肉化分率)は、それぞれ、5%、15%及び15%であった。
【0096】
[性能評価]
樹脂フィルム付金属製外装材を深絞り加工した後の缶(供試材)の初期密着性、耐久密着性、耐電解液密着維持性、及び液安定を以下のようにして評価した。その結果を表1〜表4に示した。
【0097】
(初期密着性)
深絞り加工した後の供試材である缶について、初期密着性を評価した。缶が作製でき、樹脂フィルムの剥離がなく、初期密着性に優れるものを「3点」とし、樹脂フィルムの一部が剥離したものを「2点」とし、樹脂フィルムが全面剥離したものを「1点」とした。
【0098】
(耐電解液密着維性)
深絞り加工した後の供試材である缶を、密閉容器中に充填されたイオン交換水を1000ppm添加したリチウムイオン2次電池用電解液(電解質:1mol/LのLiPF
6、溶媒体積比率;EC:DMC:DEC=1:1:1)中に浸漬した後、60℃の恒温槽中に7日間投入した。なお、「EC」は、エチレンカーボネートのことであり、「DMC」はジメチルカーボネートのことであり、「DEC」は、ジエチルカーボネートのことである。その後、供試材を取り出し、イオン交換水中に1分間浸漬し、揺動して洗浄した後、電気炉にて100℃で10分間乾燥した。その後、樹脂フィルム面をピンセットの先で引っ掻き、全く樹脂フィルムの剥離が起こらないものを「4点」とし、剥離するが引っ掻き抵抗が高く実用レベルにあるものを「3点」とし、非常に弱い力で剥離するものを「2点」とし、既に樹脂フィルムが剥離しているものを「1点」とした。
【0099】
表1〜表4に示すように、実施例1〜71の供試材(本発明に係る樹脂フィルム付金属製外装材)は、比較例1〜12の供試材に比べて、電解液に浸漬された場合でも密着性を維持することができ、耐電解液密着維持性が優れていることが確認された。
【0100】
【表1】
【0101】
【表2】
【0102】
【表3】
【0103】
【表4】