特許第5981320号(P5981320)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日置電機株式会社の特許一覧

特許5981320インピーダンス測定装置およびインピーダンス測定方法
<>
  • 特許5981320-インピーダンス測定装置およびインピーダンス測定方法 図000002
  • 特許5981320-インピーダンス測定装置およびインピーダンス測定方法 図000003
  • 特許5981320-インピーダンス測定装置およびインピーダンス測定方法 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5981320
(24)【登録日】2016年8月5日
(45)【発行日】2016年8月31日
(54)【発明の名称】インピーダンス測定装置およびインピーダンス測定方法
(51)【国際特許分類】
   G01R 27/02 20060101AFI20160818BHJP
【FI】
   G01R27/02 A
【請求項の数】5
【全頁数】12
(21)【出願番号】特願2012-258391(P2012-258391)
(22)【出願日】2012年11月27日
(65)【公開番号】特開2014-106071(P2014-106071A)
(43)【公開日】2014年6月9日
【審査請求日】2015年9月25日
(73)【特許権者】
【識別番号】000227180
【氏名又は名称】日置電機株式会社
(74)【代理人】
【識別番号】100104787
【弁理士】
【氏名又は名称】酒井 伸司
(72)【発明者】
【氏名】鎌田 康良
(72)【発明者】
【氏名】山口 力
【審査官】 川瀬 正巳
(56)【参考文献】
【文献】 特開2012−163510(JP,A)
【文献】 登録実用新案第3003659(JP,U)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 27/02
(57)【特許請求の範囲】
【請求項1】
内部インピーダンスが既知のM(Mは、自然数)個の電池を含むN(Nは、Mよりも大きい自然数)個の同種の電池のうちの当該内部インピーダンスが既知の少なくとも1個の電池と前記内部インピーダンスが未知の少なくとも1個の電池を含むL(Lは、N以下の偶数)個を順極性および逆極性が同数の状態で直列接続した電池の組の両端に交流電流を供給する交流電流供給部と、前記交流電流を供給した状態における前記電池の組の両端電圧を測定する電圧測定部と、前記交流電流を供給した状態で前記電池の組を流れる電流値と前記測定した両端電圧の電圧値とに少なくとも基づいて前記L個の電池の各内部インピーダンスの合計値を算出する処理部とを備え、
前記処理部は、前記L個の電池の組み合わせが互いに異なる(N−M)組についての前記合計値を算出すると共に、当該算出した合計値と対応する前記電池の組における前記L個の電池の各内部インピーダンスとの関係をそれぞれ示し、かつ前記既知の内部インピーダンスを含む(N−M)個の関係式に基づいて前記(N−M)個の前記内部インピーダンスが未知の電池の当該各内部インピーダンスを算出するインピーダンス測定装置。
【請求項2】
入力した制御指示に従って前記N個の電池のうちの前記L個を直列接続させるスキャナ部と、前記順極性および前記逆極性が同数の前記L個の電池の組であって当該L個の電池の組み合わせが互いに異なるように前記スキャナ部に対して前記制御指示を(N−M)回行うと共に、前記交流電流供給部、前記電圧測定部および前記処理部を制御して、前記(N−M)回の制御指示によって直列接続された前記電池の組の各々についての前記各合計値を算出させると共に前記処理部を制御して前記既知の内部インピーダンスを含む前記(N−M)個の関係式に基づく前記(N−M)個の電池の各内部インピーダンスの算出を実行させる制御部とを備えている請求項1記載のインピーダンス測定装置。
【請求項3】
前記M個が1個で、前記L個が2個である請求項1または2記載のインピーダンス測定装置。
【請求項4】
内部インピーダンスが既知のM(Mは、自然数)個の電池を含むN(Nは、Mよりも大きい自然数)個の同種の電池のうちの当該内部インピーダンスが既知の少なくとも1個の電池と前記内部インピーダンスが未知の少なくとも1個の電池を含むL(Lは、N以下の偶数)個を順極性および逆極性が同数の状態で直列接続した電池の組の両端に交流電流を供給し、前記交流電流を供給した状態における前記電池の組の両端電圧を測定し、前記交流電流を供給した状態で前記電池の組を流れる電流値と前記測定した両端電圧の電圧値とに少なくとも基づいて前記L個の電池の各内部インピーダンスの合計値を算出するインピーダンス測定方法であって、
前記L個の電池の組み合わせが互いに異なる(N−M)組についての前記合計値を算出すると共に、当該算出した合計値と対応する前記電池の組における前記L個の電池の各内部インピーダンスとの関係をそれぞれ示し、かつ前記既知の内部インピーダンスを含む(N−M)個の関係式に基づいて前記(N−M)個の前記内部インピーダンスが未知の電池の当該各内部インピーダンスを算出するインピーダンス測定方法。
【請求項5】
前記M個が1個で、前記L個が2個である請求項4記載のインピーダンス測定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電池の内部インピーダンスを測定するのに適したインピーダンス測定装置およびインピーダンス測定方法に関するものである。
【背景技術】
【0002】
この種の電池の内部インピーダンスを測定するための測定装置に関連する装置として、出願人は、特開平11−178197号公報に交流測定器を開示している。この交流測定器は、直流阻止用の第1コンデンサを介して測定信号印加端子に接続されている交流測定信号供給源と、測定信号印加端子と第1コンデンサとの間に接続されている第1開閉スイッチと、直流阻止用の一対の第2コンデンサを介して一対の入力端子に接続されている測定回路と、一対の入力端子と第2コンデンサとの間に接続されている第2開閉スイッチとを備えている。この交流測定器では、例えば無停電電源装置などのように、内部に直流の起電力を持つ測定対象に交流信号を供給した状態で測定対象の両端に生じた両端電圧を測定する。この際に、測定対象と測定回路との間に第2コンデンサが接続されているため、直流成分の通過が遮断される結果、測定対象の両端に生じた両端電圧に含まれている交流成分のみが測定回路に入力されて、その測定した両端電圧に基づいて測定対象の内部インピーダンスが測定される。また、交流測定信号供給源と測定対象との間に第1コンデンサが接続されているため、測定対象が有する直流成分の交流測定信号供給源内への流れ込みが阻止されている。
【0003】
また、この交流測定器では、例えば、車載用バッテリーなど非常に大きな起電力を有する測定対象のインピーダンス測定を行う際には、予め規定された基準電圧以上の過大な直流電圧が入力端子に加わったときには、第1、第2開閉スイッチをオフ状態に制御して、測定回路や交流測定信号供給源を測定対象と切り離すことにより、測定機器内の内部回路などが有効に保護されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平11−178197号公報(第2−5頁、第1図)
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところが、出願人が開示している交流測定器には、以下の改善すべき課題が存在する。すなわち、出願人が開示している交流測定器では、測定対象の有する直流起電力が非常に大きいときには、測定回路や交流測定信号供給源を測定対象と切り離すことによって過大な直流電流の測定機器内への流れ込みを阻止して内部回路を効果的に保護することはできるものの、測定対象の内部インピーダンスを測定することができないという改善すべき課題が存在する。
【0006】
また、1mHzなどの超低周波数の交流測定信号を使用して電池の内部インピーダンスを測定したいという要請もあり、このようなときには、直流阻止用の第1コンデンサや第2コンデンサの容量が大きなインピーダンスとなって測定誤差の原因となる結果、電池の内部インピーダンスを正確に測定するのが困難となるという改善すべき課題が存在する。この場合、容量の大きなコンデンサを第1コンデンサや第2コンデンサとして使用することも考えられるが、その場合には、その容量を充電するために長時間を要するため、測定時間の長時間化を招くことになり、新たな改善すべき課題が発生する。
【0007】
本発明は、かかる課題に鑑みてなされたものであり、大きな直流起電力を有する電池の内部インピーダンスを正確かつ短時間で測定し得るインピーダンス測定装置およびインピーダンス測定方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成すべく請求項1記載のインピーダンス装置は、内部インピーダンスが既知のM(Mは、自然数)個の電池を含むN(Nは、Mよりも大きい自然数)個の同種の電池のうちの当該内部インピーダンスが既知の少なくとも1個の電池と前記内部インピーダンスが未知の少なくとも1個の電池を含むL(Lは、N以下の偶数)個を順極性および逆極性が同数の状態で直列接続した電池の組の両端に交流電流を供給する交流電流供給部と、前記交流電流を供給した状態における前記電池の組の両端電圧を測定する電圧測定部と、前記交流電流を供給した状態で前記電池の組を流れる電流値と前記測定した両端電圧の電圧値とに少なくとも基づいて前記L個の電池の各内部インピーダンスの合計値を算出する処理部とを備え、前記処理部は、前記L個の電池の組み合わせが互いに異なる(N−M)組についての前記合計値を算出すると共に、当該算出した合計値と対応する前記電池の組における前記L個の電池の各内部インピーダンスとの関係をそれぞれ示し、かつ前記既知の内部インピーダンスを含む(N−M)個の関係式に基づいて前記(N−M)個の前記内部インピーダンスが未知の電池の当該各内部インピーダンスを算出する。
【0009】
また、請求項2記載のインピーダンス測定装置は、請求項1記載のインピーダンス測定装置において、入力した制御指示に従って前記N個の電池のうちの前記L個を直列接続させるスキャナ部と、前記順極性および前記逆極性が同数の前記L個の電池の組であって当該L個の電池の組み合わせが互いに異なるように前記スキャナ部に対して前記制御指示を(N−M)回行うと共に、前記交流電流供給部、前記電圧測定部および前記処理部を制御して、前記(N−M)回の制御指示によって直列接続された前記電池の組の各々についての前記各合計値を算出させると共に前記処理部を制御して前記既知の内部インピーダンスを含む前記(N−M)個の関係式に基づく前記(N−M)個の電池の各内部インピーダンスの算出を実行させる制御部とを備えている。
【0010】
また、請求項3記載のインピーダンス測定装置は、請求項1または2記載のインピーダンス測定装置において、前記M個が1個で、前記L個が2個である。
【0011】
また、請求項4記載のインピーダンス測定方法は、内部インピーダンスが既知のM(Mは、自然数)個の電池を含むN(Nは、Mよりも大きい自然数)個の同種の電池のうちの当該内部インピーダンスが既知の少なくとも1個の電池と前記内部インピーダンスが未知の少なくとも1個の電池を含むL(Lは、N以下の偶数)個を順極性および逆極性が同数の状態で直列接続した電池の組の両端に交流電流を供給し、前記交流電流を供給した状態における前記電池の組の両端電圧を測定し、前記交流電流を供給した状態で前記電池の組を流れる電流値と前記測定した両端電圧の電圧値とに少なくとも基づいて前記L個の電池の各内部インピーダンスの合計値を算出するインピーダンス測定方法であって、
前記L個の電池の組み合わせが互いに異なる(N−M)組についての前記合計値を算出すると共に、当該算出した合計値と対応する前記電池の組における前記L個の電池の各内部インピーダンスとの関係をそれぞれ示し、かつ前記既知の内部インピーダンスを含む(N−M)個の関係式に基づいて前記(N−M)個の前記内部インピーダンスが未知の電池の当該各内部インピーダンスを算出する。
【0012】
また、請求項5記載のインピーダンス測定方法は、請求項4記載のインピーダンス測定方法において、前記M個が1個で、前記L個が2個である。
【発明の効果】
【0013】
請求項1記載のインピーダンス測定装置および請求項4記載のインピーダンス測定方法では、内部インピーダンスが既知のM個の電池を含むN個の同種の電池のうちの内部インピーダンスが既知の少なくとも1個の電池と内部インピーダンスが未知の少なくとも1個の電池を含むL個を順極性および逆極性が同数の状態で直列接続して、L個の電池の各内部インピーダンスの合計値を算出し、算出した合計値と対応する電池の組におけるL個の電池の各内部インピーダンスとの関係を示し、かつ既知の内部インピーダンスを含む(N−M)個の関係式に基づいて(N−M)個の内部インピーダンスが未知の電池の各内部インピーダンスを算出する。
【0014】
したがって、このインピーダンス測定装置およびインピーダンス測定方法によれば、各電池が非常に大きな直流起電力を有していたとしても、L個の電池の組の両端電圧が充分に小さな直流電圧となる結果、測定回路(例えば、交流電流供給部、電圧測定部および電流測定部)に加わる電圧が充分に小さな電圧となるため、これらの破損を回避しつつ、直流起電力の電圧が小さな電池を測定対象とする測定と同様にして各電池の内部インピーダンスを確実に測定することができる。また、このインピーダンス測定装置およびインピーダンス測定方法によれば、測定回路に加わる電圧が小さな直流電圧となるため、測定誤差の発生や測定時間の長時間化を招く原因となる直流阻止用のコンデンサを使う必要がなくなる結果、電池の内部インピーダンスを短時間で測定することができると共に、超低周波数の検査用交流信号を使用して電池の内部インピーダンスを測定する際にも、電池の内部インピーダンスを正確に測定することができる。
【0015】
また、請求項2記載のインピーダンス測定装置によれば、制御部が、スキャナ部に対して、L個の電池の組み合わせが互いに異なるような制御指示を自動的に出力することで、測定者にとって煩雑な繋ぎ込み作業が不要となる結果、測定者は電池の内部インピーダンスを極めて確実かつ容易に測定することができる。
【0016】
また、請求項3記載のインピーダンス測定装置および請求項5記載のインピーダンス測定方法では、M個が1個で、L個が2個の状態で内部インピーダンスの測定を実行する。つまり、内部インピーダンスが既知のM個(1個)の電池と内部インピーダンスが未知の(L−1)個(1個)の電池とを互いに極性が異なる状態で直列接続してインピーダンスの合計値を算出し、算出した合計値とその電池の組におけるL個(2個)の電池の内部インピーダンスとの関係を示し、かつ既知の内部インピーダンスを含む(N−M)個(1個)の関係式に基づいて内部インピーダンスが未知の1個の電池の内部インピーダンスを算出する。したがって、このインピーダンス測定装置およびインピーダンス測定方法によれば、内部インピーダンスが既知の1個の電池のみを用いて、内部インピーダンスが未知の1個の電池を次々と交換することにより、電池の有する大きな直流起電力が原因で単体で内部インピーダンスの測定が困難であった各電池について、内部インピーダンスを確実に測定することができる。
【図面の簡単な説明】
【0017】
図1】インピーダンス測定装置1の構成を示す構成図である。
図2】電池Ba,Bbを接続したときの等価回路を示す等価回路図である。
図3】電池Ba,Bcを接続したときの等価回路を示す等価回路図である。
【発明を実施するための形態】
【0018】
以下、インピーダンス測定装置およびインピーダンス測定方法の実施の形態について、添付図面を参照して説明する。
【0019】
最初に、インピーダンス測定装置の一例として、インピーダンス測定装置1の構成について説明する。図1に示すインピーダンス測定装置1は、収納部2、スキャナ部3、交流電流供給部4、電圧測定部5、電流測定部6、処理部7および記憶部8を備えている。このインピーダンス測定装置1は、一例として、内部インピーダンス(最初の例では、内部抵抗Ra)が既知の1個(M=1の例)の電池Baを用いて、直流起電力を有する同種の複数(一例として、2個)の電池Bb,Bc(以下、電池Baを含めて区別しないときには、「電池B」ともいう)を測定対象として、各電池Bの各内部抵抗Rb,Rc(以下、電池Baの内部抵抗Raを含めて区別しないときには、「内部抵抗R」ともいう)を測定可能に構成されている。
【0020】
収納部2は、電池Bを収納する容器であって、複数(一例として3つ)の電池Bを収納可能に構成されている。具体的には、収納部2は、収納部2の外部から配線を接続可能な接続端子21a〜21c,22a〜22c(以下、接続端子21a〜21cを区別しないときには、「接続端子21」ともいい、接続端子22a〜22cを区別しないときには、「接続端子22」ともいう)と、各電池Bのプラス電極に接続される接触子23a〜23c(以下、区別しないときには、「接触子23」ともいう)と、各電池Bのマイナス電極に接続される接触子24a〜24c(以下、区別しないときには、「接触子24」ともいう)と、接続端子21および接触子23を接続する内部配線25a〜25c(以下、区別しないときには、「内部配線25」ともいう)と、接続端子22および接触子24を接続する内部配線26a〜26c(以下、区別しないときには、「内部配線26」ともいう)とを備えて構成されている。この収納部2では、電池Bを収納したときに、各電池Bのプラス電極に接触子23が接触すると共に各電池Bのマイナス電極に接触子24が接触し、その結果、各電池Bのプラス電極が内部配線25を介して接続端子21に接続される共にマイナス電極が内部配線26を介して接続端子22に接続される。
【0021】
スキャナ部3は、図示しない複数の切替スイッチを有して構成されており、収納部2の接続端子21a〜21cに外部配線を介してそれぞれ接続される接続端子31a〜31c(以下、区別しないときには、「接続端子31」ともいう)、収納部2の接続端子22a〜22cに外部配線を介してそれぞれ接続される接続端子32a〜32c(以下、区別しないときには、「接続端子32」ともいう)、並びに、交流電流供給部4、電流測定部6および電圧測定部5に外部配線を介して接続される接続端子33a〜33dを備えている。このスキャナ部3では、処理部7から出力される制御信号Scに従い、複数の切替スイッチがオン・オフ制御されて、3つの電池Bのうちの内部抵抗Rの値が既知の電池Baを含む2つが順極性および逆極性が同数(この例では、1個ずつ)の状態で直列接続されると共に、その直列接続された2つの電池Bの組の両端のうちの一端(例えば図2における電池Baのプラス電極)に接続端子21a,31a,33aを介して交流電流供給部4が接続されると共に接続端子21a,31a,33cを介して電圧測定部5の後述する差動増幅回路51における反転入力端子が接続され、かつ、2つの電池Bの組の両端のうちの他端(例えば同図における電池Bbのプラス電極)に接続端子21b,31b,33bを介して電流測定部6の後述する電流検出回路61が接続されると共に接続端子21b,31b,33dを介して差動増幅回路51における非反転入力端子が接続される。したがって、このように2つの電池Bが直列接続された状態では、2つの電池Bの組の両端間電圧は、両電池Bの直流起電力の電圧が等しいときには、各電池Bの互いの直流起電力の電圧が相殺される(打ち消し合う)ため、ほぼ0Vとなり、両電池Bの直流起電力の電圧が異なるときには、両電圧の差分電圧となる。
【0022】
交流電流供給部4は、交流定電流源または交流電流源(本例では一例として、交流電流源)で構成されると共に、スキャナ部3によって直列接続された2つの電池Bの両端のうちの一端(図2に示す例では電池Baのプラス電極)と基準電位との間に接続されて、検査用交流信号としての交流電流Iを直列接続された電池Bの組に供給する。
【0023】
電圧測定部5は、差動増幅回路51およびA/D変換器52を備えて構成されており、電圧測定対象である直列接続された一対の電池Bの両端における両端電圧を測定する。この場合、差動増幅回路51は、上記したように両入力端子がスキャナ部3に接続されており、2個の電池Bの組の両端における各電圧Va,Vbを入力し、入力した各電圧Va,Vbの差電圧を所定の増幅率で増幅して2個の電池Bの組の両端電圧を検出電圧Vdとして出力する。また、A/D変換器51は、差動増幅回路51から出力された検出電圧Vdを予め決められたサンプリングレートでサンプリングして検出電圧Vdの電圧波形を示すデジタルデータ(波形データ)Dvに変換して処理部7に出力する。
【0024】
電流測定部6は、例えば、シャント抵抗を用いた電流検出回路61、およびA/D変換器62を備えて構成されている。電流検出回路61は、直列接続された2個の電池Bの組に交流電流Iが流れる際にシャント抵抗の両端に生じる電圧を検出して、その検出電圧ViをA/D変換器62に出力する。また、A/D変換器62は、電流検出回路61から出力される検出電圧ViをA/D変換器52のサンプリングレートと同じレートでサンプリングすることにより、2個の電池Bの組に流れる交流電流Iの電流波形(その電流値を「電流値I」とする)を示すデジタルデータ(波形データ)Diに変換して出力する。
【0025】
処理部7は、「処理部」および「制御部」の一例であって、CPUを備えたデジタル回路で構成されて、N個(この例ではN=2、電池Baおよび電池Bbの2個、または電池Baおよび電池Bcの2個)の電池Bのうちから内部抵抗Rの値が既知の電池Baを含むL個(この例ではL=2)の組み合わせが互いに異なるようにスキャナ部3に対して制御信号Scを出力する。つまり、この例では、測定対象を電池Baおよび電池Bbの2個(N個)としたときには、1つのみの組み合わせとなり、また電池Baおよび電池Bcの2個(N個)としたときには、1つのみの組み合わせとなる。したがって、処理部7は、電池Baのプラス電極に対する上記の接続を固定的として、他の電池Bb,Bcが電池Baに順次接続(交換)されるように、スキャナ部3に対して制御信号Scを順次出力する。また、処理部7は、後述する測定処理および算出処理を実行して、それらの測定結果を記憶部8に出力して記憶させる。
【0026】
記憶部8は、一例として、半導体メモリで構成されており、内部抵抗Rおよび内部インピーダンスZの値が既知である電池(この例では、電池Ba)における内部抵抗R(この例では、電池Baの内部抵抗Raおよび後述する内部インピーダンスZa)を予め記憶する。また、記憶部8は、処理部7によって算出された各電池Bb,Bcの各内部抵抗Rb,Rcを記憶する。
【0027】
次に、電池Bの各内部抵抗Rを測定するインピーダンス測定方法、およびその際のインピーダンス測定装置1の動作について、図面を参照して説明する。なお、スキャナ部3の接続端子31,32と収納部2の接続端子21,22とが配線を介してそれぞれ予め接続されているものとする。
【0028】
具体的に、図2を参照して、電池Ba,Bb,Bcのうちから電池Baと電池Bbとを接続して内部抵抗Rの合計値Rtを測定する例について説明する。以下、電池Baおよび電池Bbの組を「電池Ba−Bb」、電池Baおよび電池Bcの組を「電池Ba−Bc」ともいう。
【0029】
最初に、電池Bを収納部2内に収納する。この際には、自動的に、各電池Bのプラス電極に接触子23が接触すると共に各電池Bのマイナス電極に接触子24が接触し、その結果、各電池Bのプラス電極が内部配線25を介して接続端子21に接続される共にマイナス電極が内部配線26を介して接続端子22に接続される。
【0030】
次いで、処理部7が、スキャナ部3に制御信号Scを出力して、電池Baと電池Bbが直列で、かつ順極性および逆極性が同数(この例では1個)になるように接続する。つまり、処理部7は、スキャナ部3の内部の切替スイッチをオン・オフ制御して、接続端子32aと接続端子32bとを、接続端子31aと接続端子33aとを、接続端子31bと接続端子33bとを、接続端子31aと接続端子33cとを、接続端子31bと接続端子33dとをそれぞれ接続する。これにより、電池Ba−Bbの内部抵抗Rの合計値Rtを測定可能な状態となる。
【0031】
続いて、処理部7は、測定処理を実行する。この測定処理では、処理部7は、交流電流供給部4、電圧測定部5および電流測定部6に対する制御を実行して、電池Ba−Bbの内部抵抗Rの合計値Rt(この場合、合計値Rt1=Ra+Rb)を算出(測定)する。
【0032】
具体的には、まず、交流電流供給部4が電池Ba−Bbに交流電流Iを供給する。この際に、電圧測定部5が、電池Ba−Bbの両端に生じている各電圧を検出電圧Va,Vbとしてそれぞれ検出して、差動増幅回路51に出力する。次いで、差動増幅回路51が検出電圧Va,Vbの差電圧を所定の増幅率で増幅して電池Ba−Bbの両端における各電圧の差電圧Vdとして出力する。続いて、A/D変換器52が、差動増幅回路51から出力された差電圧VdをデジタルデータDvに変換して出力する。また、電流測定部6では、電流検出回路61が、電池Ba−Bbに交流電流Iが流れる際にシャント抵抗の両端に生じる電圧を検出して検出電圧ViをA/D変換器62に出力する。この際に、A/D変換器62が、電流検出回路61から出力された検出電圧Viを電池Ba−Bbに流れる交流電流Iの電流波形を示すデジタルデータDiに変換して出力する。次いで、処理部7は、A/D変換器52およびA/D変換器62からそれぞれ出力された両デジタルデータDv,Diに基づいて電池Ba−Bbについての内部抵抗Rの合計値Rt1を算出する。
【0033】
続いて、処理部7は、算出処理を実行する。この算出処理では、処理部7は、最初に、記憶部8に予め記憶されている電池Baの内部抵抗Raを読み込む。次いで、処理部7は、算出した合計値Rt1と対応する電池Ba−BbにおけるL個(この例では2個)の電池Bの各内部抵抗(Ra,Rb)との関係を示し、かつ既知の内部抵抗R(この例ではRa)を含む(N−M)個(この例では、N=2、M=1のため1個)の関係式に基づいて(N−M)個(この例では1個)の内部抵抗Rが未知の電池Rbの内部抵抗Rbを算出する。この場合、関係式は下記の(1)式で表されるため、処理部7は、合計値Rt1から内部抵抗Raを減算することにより、電池Bbの内部抵抗Rbを算出する。次いで、処理部7は、この算出結果を記憶部8に出力して記憶させる。
合計値Rt1=Ra+Rb・・・(1)式
【0034】
また、処理部7は、上記制御信号Scを出力することにより、内部抵抗Rが既知の電池B(この例ではBa)のみを固定的に用いて、図3に示すように電池Bbから内部抵抗Rが未知の1個の電池Bcに交換した後に上記した測定処理および算出処理を実行して、合計値Rt(この場合、合計値Rt2=Ra+Rc)を算出(測定)した後に、電池Bcの内部抵抗Rbを算出する。具体的には、上記の関係式は下記の(2)式で表されるため、処理部7は、合計値Rt2から内部抵抗Raを減算することにより、電池Bcの内部抵抗Rcを算出する。次いで、処理部7は、この算出結果を記憶部8に出力して記憶させる。また、処理部7は、図示しない操作部からの操作信号に基づき、記憶部8に記憶させた上記の算出結果を図外の表示部に表示させたり、図外の外部装置に出力したりする。
合計値Rt2=Ra+Rc・・・(2)式
【0035】
次に、電池Bの各内部インピーダンスZを測定するインピーダンス測定方法、およびその際のインピーダンス測定装置1の動作について説明する。この際に、一例として、内部インピーダンスZa(=Ra+jXa、つまり、絶対値|Za|および位相差θa)が既知の1個(M=1の例)の電池Baを用いて、直流起電力を有する同種の複数(一例として、2個)の電池Bb,Bcを測定対象として、電池Bbの各内部インピーダンスZb(=Rb+jXb)および電池Bcの内部インピーダンスZc(=Rc+jXc)(以下、電池Baの内部インピーダンスZaを含めて区別しないときには、「内部インピーダンスZ」ともいう)を測定する例について説明する。
【0036】
最初に、図2を参照して、電池Ba,Bb,Bcのうちから電池Baと電池Bbとを接続して内部インピーダンスZの合計値Ztを測定する例について説明する。
【0037】
処理部7は、スキャナ部3に制御信号Scを出力して、上記した内部抵抗Rの測定と同様にして、図2に示すように、電池Baと電池Bbが直列で、かつ順極性および逆極性が同数(この例では1個)になるように接続する。次いで、処理部7は、上記した測定処理を実行して、電池Ba−Bbの内部インピーダンスZの合計値Zt(この場合、合計値Zt1=Rt1+jXt1)を両デジタルデータDv,Diに基づいて算出(測定)する。
【0038】
次いで、処理部7は、算出した合計値Zt1と対応する電池Ba−BbにおけるL個(この例では2個)の電池Bの各内部インピーダンスZ(Za,Zb)の関係を示し、かつ既知の内部インピーダンスZ(この例ではZa)を含む(N−M)個(この例では、N=2、M=1のため1個)の関係式に基づいて(N−M)個(この例では1個)の内部インピーダンスZが未知の電池Zbの内部インピーダンスZbを算出する。この場合、関係式は下記の(3)式で表されるため、処理部7は、下記の(4)式および(5)式に示すように、合計値Zt1の実数部(Rt1)および虚数部(Xt1)から内部インピーダンスZaの実数部(Ra)および虚数部(Xa)をそれぞれ減算することにより、電池Bbの内部インピーダンスZb(Zb+jXb)を算出する。次いで、処理部7は、この算出結果を記憶部8に出力して記憶させる。
Zt1=Rt1+jXt1
=(Ra+Rb)+j(Xa+Xb)・・・(3)式
Rb=Rt1−Ra・・・(4)式
Xb=Xt1−Xa・・・(5)式
【0039】
続いて、処理部7は、上記のようにして算出した電池Bbの内部インピーダンスZbの実数部Rbと虚数部Xbとから、電池Bbの内部インピーダンスZbの絶対値|Zb|および位相差θbを以下の(6)式および(7)式に基づいて演算する。次いで、処理部7は、この演算結果を記憶部8に出力して記憶させる。
|Zb|=√(Rb+Xb) ・・・(6)式
θb=arctan(Xb/Rb) ・・・(7)式
【0040】
また、処理部7は、上記制御信号Scを出力することにより、内部インピーダンスZaが既知の電池B(この例では電池Ba)のみを固定的に用いて、図3に示すように電池Bbから内部インピーダンスZが未知の1個の電池Bcに交換した後に上記した測定処理および算出処理を実行して、合計値Zt(この場合、合計値Zt2=Rt2+jXt2)を算出(測定)した後に、電池Bcの内部インピーダンスZcを算出する。具体的には、上記の関係式は下記の(8)式で表されるため、処理部7は、下記の(9)式および(10)式に示すように、合計値Zt2の実数部(Rt2)および虚数部(Xt2)から内部インピーダンスZaの実数部(Ra)および虚数部(Xa)をそれぞれ減算することにより、電池Bcの内部インピーダンスZc(Zc+jXc)を算出する。次いで、処理部7は、この算出結果を記憶部8に出力して記憶させる。
Zt2=Rt2+jXt2
=(Ra+Rc)+j(Xa+Xc)・・・(8)式
Rc=Rt1−Ra・・・・(9)式
Xc=Xt1−Xa・・・(10)式
【0041】
続いて、処理部7は、上記のようにして算出した電池Bcの内部インピーダンスZcの実数部Rcと虚数部Xcとから、電池Bcの内部インピーダンスZcの絶対値|Zc|および位相差θcを以下の(11)式および(12)式に基づいて演算する。次いで、処理部7は、この演算結果を記憶部8に出力して記憶させる。また、処理部7は、図示しない操作部からの操作信号に基づき、記憶部8に記憶させた上記の算出結果を図外の表示部に表示させたり、図外の外部装置に出力したりする。
|Zc|=√(Rc+Xc) ・・・(11)式
θc=arctan(Xc/Rc) ・・・(12)式
【0042】
このように、このインピーダンス測定装置1およびインピーダンス測定方法では、内部インピーダンス(R,Z)が既知のM個(この例では1個)の電池(この例では電池Ba)を含むN個(この例では2個)の同種の電池(この例では電池Ba,BbまたはBa,Bc)のうちの内部インピーダンス(R,Z)が既知の1個の電池Baと内部インピーダンス(R,Z)が未知の1個の電池(BbまたはBc)を含むL個(この例では2個)を順極性および逆極性が同数の状態で直列接続して、2個の電池Bの各内部インピーダンスの合計値(Rt,Zt)を算出し、算出した合計値(Rt,Zt)と対応する電池の組(この例では電池Ba,Bbの組またはBa,Bcの組)における2個の電池Bの各内部インピーダンス(R,Z)との関係を示し、かつ既知の内部インピーダンス(この例では、RaまたはZa)を含む(N−M)個(この例では1個)の関係式に基づいて(N−M)個(この例では1個)の内部インピーダンスZが未知の電池(この例では電池Bb,Bc)の各内部インピーダンス(Rb,RcまたはZb,Zc)を算出する。
【0043】
したがって、このインピーダンス測定装置1およびインピーダンス測定方法によれば、各電池Bが非常に大きな直流起電力を有していたとしても、L個(この例では2個)の電池Bの組の両端電圧が充分に小さな直流電圧となる結果、測定回路(この例では、交流電流供給部4、電圧測定部5および電流測定部6)に加わる電圧が充分に小さな電圧となるため、これらの各部4〜6の破損を回避しつつ、直流起電力の電圧が小さな電池Bを測定対象とする測定と同様にして各電池Bの内部インピーダンス(R,Z)を確実に測定することができる。
【0044】
また、測定回路に加わる電圧が小さな直流電圧となるため、測定誤差の発生や測定時間の長時間化を招く原因となる直流阻止用のコンデンサを使う必要がなくなる結果、電池Bの内部インピーダンス(R,Z)を短時間で測定することができると共に、超低周波数の検査用交流信号(交流電流I)を使用して電池Bの内部インピーダンス(R,Z)を測定する際にも、電池Bの内部インピーダンス(R,Z)を正確に測定することができる。
【0045】
また、このインピーダンス測定装置1によれば、処理部7が、スキャナ部3に対して、L個(この例では2個)の電池Bの組み合わせが互いに異なるような制御信号Sc(制御指示)を自動的に出力することで、測定者にとって煩雑な繋ぎ込み作業が不要となる結果、測定者は電池の内部インピーダンス(R,Z)を極めて確実かつ容易に測定することができる。
【0046】
また、このインピーダンス測定装置1によれば、M個が1個で、L個が2個の状態で内部インピーダンス(R,Z)の測定を実行する。つまり、内部インピーダンス(R,Z)が既知のM個(1個)の電池Baと内部インピーダンス(R,Z)が未知の(L−1)個(1個)の電池(つまりN=L=2)とを互いに極性が異なる状態で直列接続してインピーダンスの合計値(Rt,Zt)を算出し、算出した合計値(Rt,Zt)とその電池Bの組におけるL個(2個)の電池Bの内部インピーダンス(R,Z)との関係を示し、かつ既知の内部インピーダンス(Ra,Za)を含む(N−M)個(1個)の関係式に基づいて内部インピーダンスが未知の1個の電池(BbまたはBc)の内部インピーダンス(Rb,RcまたはZb,Zc)を算出する。したがって、このインピーダンス測定装置1およびインピーダンス測定方法によれば、内部インピーダンス(R,Z)が既知の1個の電池Bのみを用いて、内部インピーダンス(R,Z)が未知の1個の電池Bを次々と交換することにより、電池Bの有する大きな直流起電力が原因で単体で内部インピーダンス(R,Z)の測定が困難であった各電池Bについて、内部インピーダンス(R,Z)を確実に測定することができる。
【0047】
なお、測定対象である電池Bの数に関して、N=2のときには、上記したように、1個の関係式に基づいて内部インピーダンスが未知の1個の電池Bのその内部内部インピーダンス(R,Z)を算出することができる。同様にして、M=1、Nが複数、およびL=2のときには、関係式は複数(N−M)個得られるが、上記の例と同様にして1個の関係式に基づいて内部インピーダンスが未知の1個の電池Bのその内部インピーダンス(R,Z)をそれぞれ算出することができる。
【0048】
また、測定対象である電池Bの数に関して、M=1,N=2,L=2とする例について説明したが、この例に限らず、Mは2以上の任意の自然数、NはMよりも大きい任意の自然数、およびLはN以下の任意の偶数に規定することができる。この場合、M,N,Lの値に応じてスキャナ部3の構成を適宜変更することができる。例えば、M=2、N=6としたときには、内部インピーダンス(R,Z)が既知の2個の電池Bと内部インピーダンス(R,Z)が未知の2個の電池Bを含むL=4とすることもできる。この例では、4つの電池Bの内部インピーダンス(R,Z)を算出し得る(N−M)個(4個)の連立方程式(関係式)、すなわち各電池Bの内部インピーダンス(R,Z)を算出し得る4個の組み合わせを適宜選択することによって各電池Bの各内部インピーダンス(R,Z)を確実に算出することができる。こPの場合、この例では、スキャナ部3として、電池BをN個としての6つ、またはそれ以上の数を収納可能に構成し、かつ入力した制御信号Sc(制御指示)に従ってN個の電池BのうちのL個としての4個を直列接続させる構成を採用することができる。
【0049】
また、上記のインピーダンス測定装置1では、交流電流供給部4が交流電流Iを電池Bに供給して電流測定部6が交流電流Iの電流値Iを測定する例について説明したが、交流電流供給部4が予め規定された電流値の交流定電流を供給する構成を採用することもできる。この構成によれば、電流測定部6の配設を省略することができる。また、電池Bとしては、一次電池や二次電池などの各種の電池が含まれる。さらに、2個の電池Bを直列接続する例においてマイナス電極同士を接続する例について説明したが、プラス電極同士を接続することもできる。
【符号の説明】
【0050】
1 インピーダンス測定装置
2 収納部
3 スキャナ部
4 交流電流供給部
5 電圧測定部
6 電流測定部
7 処理部
8 記憶部
51 差動増幅回路
52 A/D変換器
61 電流検出回路
62 A/D変換器
B 電池
I 電流
図1
図2
図3