(58)【調査した分野】(Int.Cl.,DB名)
強化繊維と熱可塑性樹脂とを含有する繊維強化樹脂材料からなる繊維強化プラスチック成形体であって、前記強化繊維として短繊維を含み、かつ厚み方向に波状配列した強化繊維が層状に存在している強化繊維層を有し、前記強化繊維層が厚み方向に屈曲又は湾曲していることにより前記強化繊維が厚み方向に波状配列していることを特徴とする、繊維強化プラスチック成形体。
厚み方向において、前記厚み方向に波状配列した強化繊維が存在している領域の割合が、繊維強化プラスチック成形体の厚みの5%〜95%の範囲内であることを特徴とする、請求項1から請求項3までのいずれか1項に記載の繊維強化プラスチック成形体。
前記厚み方向に波状配列した強化繊維の配向角度が10°〜90°の範囲内であることを特徴とする、請求項1から請求項4までのいずれか1項に記載の繊維強化プラスチック成形体。
前記強化繊維が繊維束状であり、かつ平均繊維長が1mm〜100mmの範囲内であることを特徴とする、請求項1から請求項5までのいずれか1項に記載の繊維強化プラスチック成形体。
【発明を実施するための形態】
【0013】
上述した通り、本発明の繊維強化プラスチック成形体は、強化繊維と熱可塑性樹脂とを含有する繊維強化樹脂材料からなるものであって、上記強化繊維として短繊維を含み、かつ厚み方向に波状配列した強化繊維を含むことを特徴とするものである。
【0014】
このような本発明の繊維強化プラスチック成形体について図を参照しながら説明する。
図1は、本発明の繊維強化プラスチック成形体の一例を示す概略図である。
図1に例示するように、本発明の繊維強化プラスチック成形体10は、強化繊維11と熱可塑性樹脂12とを含有する繊維強化樹脂材料からなるものであって、上記強化繊維11には短繊維が含まれ、かつ厚み方向に波状配列した強化繊維11を含むことを特徴とするものである。
【0015】
なお、
図1においては図説の関係上、強化繊維11を直線状に図示しているが、これはあくまで図説の便宜のためであり、
図1における図示と関係なく、本発明における上記強化繊維には少なくとも短繊維が含まれるものであり、必要に応じて長繊維又は連続繊維が併用されてもよいものである。このことは、本願明細書における
図1以外の図面についても同様である。
【0016】
本発明の繊維強化プラスチック成形体においては、厚み方向に波状配列した上記強化繊維を含むことにより、少なくとも一部の強化繊維を長軸方向が厚み方向に傾いた状態で存在させることができるため、厚み方向の機械強度を向上させることができる。また、上記波状配列においては、上記強化繊維が破断されて短くなることがないため、ニードルパンチ法のような面内方向の機械強度の極端な低下を抑えることができる。
さらに、本発明の繊維強化プラスチック成形体は、例えば、プリプレグ等の予備成形品を圧縮成形する際に強化繊維を厚み方向に波状配列させることによって製造することができるが、このような製造方法によれば予備成形品の厚みに大きな制限が生じることはなく、薄肉の成形品を得るために薄肉の予備成形品を適用することが可能になる。また、いわゆるスプリングバックによる厚み方向への膨張も抑えることが可能となるため、強化繊維が嵩高くなることによって成形性を阻害することもない。このようなことから、本発明の繊維強化プラスチック成形体を製造する際に、より簡易な金型構造を適用しやすくなる。さらに、所定の位置に厚み方向の波状配列した強化繊維を存在させるための機構の配置も簡易なものとなり、局所的に厚み方向の機械強度を向上させた繊維強化プラスチック成形体を得ることが容易となる。
さらにまた、本発明の繊維強化プラスチック成形体は、上記強化繊維として短繊維が含まれることにより、例えば、強化繊維を波状配列させる際に間隙が発生した場合であっても、当該間隙に強化繊維を存在させることができるため、繊維強化プラスチック成形体中に強化繊維が存在しない領域が形成されることを抑制できる。
以上から、本発明の繊維強化プラスチック成形体は、面内方向の機械強度を損なうことなく、優れた厚み方向の機械強度を有するという効果を奏する。
【0017】
本発明の繊維強化プラスチック成形体は、上述した通り、強化繊維と熱可塑性樹脂とを含有する繊維強化樹脂材料からなるものであり、上記強化繊維として短繊維を含み、かつ厚み方向に波状配列した強化繊維を含むことを特徴とするものである。このように、本発明の繊維強化プラスチック成形体は、厚み方向に波状配列した上記強化繊維を含むことを特徴とするものであるため、以下では、まず上記厚み方向の波状配列に説明し、次いで、本発明に用いられる繊維強化樹脂材料について説明する。
【0018】
1 厚み方向の波状配列
上述した通り、本発明の繊維強化プラスチック成形体は、厚み方向に波状配列した強化繊維を含むことを特徴とするものである。ここで、本発明において強化繊維が「厚み方向に波状配列した」とは、強化繊維それ自体、または強化繊維が面内方向に配列して存在する強化繊維層が、厚み方向に屈曲又は湾曲して存在していることを意味する。また、強化繊維が厚み方向に屈曲又は湾曲して存在している場合としては、強化繊維が厚み方向に屈曲または湾曲して存在している場合(たとえば
図5に示す概略図、
図6に示す概略図のような場合)の他、強化繊維がそれ自体は屈曲又は湾曲していなくても、任意の断面において隣接する繊維の長軸方向を結ぶ線が屈曲又は湾曲している場合(たとえば
図7に示す概略図のような場合)も含まれるものとする。さらに、厚み方向に波状配列した強化繊維は、短繊維であってもよく、連続繊維又は長繊維であってもよい。なお、以下では、上記厚み方向の波状配列のことを単に「波状配列」という場合がある。
【0019】
上記波状配列の振幅(厚み方向に波状配列した強化繊維が存在している領域の厚み)は、本発明の繊維強化プラスチック成形体の厚み方向の強度を所望の程度にできる範囲内であれば特に限定されるものではない。また、本発明においては、波状配列の振幅が均一であってもよく、又は不均一であってもよい。もっとも、本発明の繊維強化プラスチック成形体の厚みが変化している位置に波状配列した強化繊維が含まれる場合は、その厚みの変化に沿うように振幅が変化していることが好ましい。
【0020】
本発明においては、繊維強化プラスチック成形体に含まれる強化繊維のうち少なくとも一部が上記波状配列をしていればよいものである。したがって、本発明においては繊維強化プラスチック成形体に含まれる全ての強化繊維が波状配列していてもよく、あるいは強化繊維の一部のみが波状配列していてもよいものであるが、なかでも本発明においては強化繊維の一部のみが波状配列していることが好ましい。本発明の繊維強化プラスチック成形体は、プリプレグを成形することによって製造することができるところ、全ての強化繊維を波状配列させる場合は、材料の強化繊維斑などにより瞬間的な加圧斑が発生しやすく、波状配列が崩れやすくなる場合がある。それを解消するには成形工程において特別な機構を備える金型を用いることが必要となるが、その場合、生産性が著しく低下してしまうおそれがある。しかしながら、一部の強化繊維のみが波状配列していることにより、このような問題は生じることが少なく、成形工程においてより簡易な機構や型構造を採用することが可能になるため、より安価に厚み方向の機械強度に優れた繊維強化プラスチック成形体を得ることが可能となるからである。
【0021】
本発明において、強化繊維の一部のみが上記波状配列をしている態様としては、本発明の繊維強化プラスチック成形体の用途や製造方法等に応じて適宜決定できるものであり特に限定されるものではない。したがって、上記態様としては、例えば、厚み方向の一部分のみにおいて強化繊維が上記波状配列をしている態様(第1態様)であってもよく、面内方向の一部分のみにおいて強化繊維が上記波状配列をしている態様(第2態様)であってもよく、さらには上記第1態様及び第2態様を組み合わせた態様(第3態様)であってもよい。
【0022】
これらの各態様について図を参照しながら説明する。
図2は本発明の繊維強化プラスチック成形体において、強化繊維の一部のみが波状配列している態様の一例を示す概略図である。
図2に例示するように、本発明の繊維強化プラスチック成形体10において、強化繊維11の一部のみが波状配列している態様としては、厚み方向の一部分のみにおいて強化繊維11が上記波状配列をしている態様(第1態様)であってもよく(
図2(a))、面内方向の一部分のみにおいて強化繊維が上記波状配列をしている態様(第2態様)であってもよく(
図2(b))、さらには上記第1態様及び第2態様を組み合わせた態様であってもよい(
図2(c))。
【0023】
本発明においては、上記第1態様から上記第3態様までのいずれの態様であっても好適に用いることができる。上記第1態様は、波状配列した強化繊維と面内方向に配列した強化繊維が存在するため、厚み方向の機械強度を向上させつつ面内方向の強度低下を抑えることができるという利点がある。また、上記第2態様は、波状配列した強化繊維が存在する箇所でのみ厚み方向の機械強度を向上させ、厚み方向において波状配列した強化繊維が存在しない箇所では面内方向の機械強度をそのままに保つことが可能である。したがって、面内方向において局所的に厚み方向の機械強度を向上させることができるという利点がある。さらに、上記第3態様は、波状配列した強化繊維が存在する箇所の面内方向の強度の低下を抑えることが可能となるという利点がある。
【0024】
上記強化繊維が厚み方向の一部分のみにおいて上記波状配列している態様の場合、厚み方向において上記波状配列した強化繊維が存在している領域の割合は、本発明の繊維強化プラスチック成形体の用途や製造方法に応じて適宜決定することができるものであり特に限定されるものではない。なかでも本発明においては、厚み方向において上記波状配列した強化繊維が存在している領域の割合が、繊維強化プラスチック成形体の厚みの5%〜95%の範囲内であることがより好ましく、50%〜90%の範囲内であることがより好ましく、70%〜80%の範囲内であることがさらに好ましい。このような範囲内であることにより、さらに面内方向の機械強度の低下を抑制しながら、厚み方向の機械強度を向上させることができるからである。
【0025】
ここで、厚み方向において波状配列した強化繊維が存在している領域の割合を求める方法について図を参照しながら説明する。
図3は、上記割合の求め方について説明する説明図である。
図3に示すように、上記割合は繊維強化プラスチック成形体10の厚さaに対し、厚み方向に波状配列した強化繊維が存在している領域の厚みbの割合(b/a×100)を計算することにより求めることができる。厚み方向に波状配列した強化繊維が存在している領域の厚みbは、厚み方向における該領域の最高点と最低点の厚み方向の距離である。厚み方向に波状配列した強化繊維が存在している領域が複数ある場合、上記bはすべての領域の厚みを合計した値とする。
【0026】
上記強化繊維が厚み方向の一部分のみにおいて上記波状配列している態様の場合、厚み方向において上記波状配列した強化繊維が存在している位置は特に限定されるものではないが、内層のみに存在していることが好ましい。上記波状配列した強化繊維が内層のみに存在していることにより、その断面を対称構造に近くすることが容易になるため、反りなどの変形を発生しにくくできるからである。ここで、上記波状配列した強化繊維が、「内層のみ」に存在しているとは、本発明の繊維強化プラスチック成形体の表層に存在する強化繊維は波状配列をしておらず、表層以外に存在する強化繊維の少なくとも一部が波状配列していることを意味するものである。
【0027】
上記波状配列における強化繊維の配向角度は、本発明の繊維強化プラスチック成形体の厚み方向の強度を所望の程度にできる範囲内であれば特に限定されるものではない。ここで、当該配向角度が90°に近いほど波状配列した強化繊維が存在する領域の厚み方向の強度が大きくなり、逆に0°に近いほど当該部位の厚み方向の強度が小さくなる。本発明においては上記配向角度が10°〜90°の範囲内であることが好ましく、60°〜90°の範囲内であることがより好ましく、85°〜90°の範囲内であることがさらに好ましい。配向角度がこのような範囲内であることにより、さらに面内方向の機械強度の低下を抑制しながら、厚み方向の機械強度の向上させることができるからである。
なお、本発明の繊維強化プラスチック成形体において、上記配向角度が異なる複数の強化繊維が含まれる場合、上記配向角度は平均値を意味するものとする。
【0028】
ここで、上記「配向角度」とは、本発明の繊維強化プラスチック成形体の面内方向と、波状配列した強化繊維が成す角度のうち、最も大きい角度を意味する。
【0029】
上記配向角度について図を参照しながら説明する。
図4は上記配向角度について説明する説明図である。
図4に示すように波状配列している強化繊維11の配向角度とは、繊維強化プラスチック成形体10の面内方向Xと、波状配列した強化繊維11が成す角度のうち、最も大きい角度αを意味する。
【0030】
本発明において、上記強化繊維が厚み方向の一部分において上記波状配列している態様としては、厚み方向において上記波状配列した強化繊維が散在していてもよく、あるいは上記波状配列した強化繊維が厚み方向において層状に存在していてもよい。なかでも本発明においては層状に存在していることが好ましい。上記波状配列した強化繊維が厚み方向において層状に存在していることにより、熱可塑性樹脂が強化繊維により効果的に補強されやすく、また熱可塑性樹脂が補強されていることにより、強化繊維に繊維座屈が生じにくくなるため、強化繊維の長軸方向の強度をより向上させることができるからである。
【0031】
上記波状配列した強化繊維が厚み方向において層状に存在する場合、厚み方向に存在する波状配列した強化繊維の層は1層のみであってもよく、あるいは2層以上であってもよい。また、2層以上存在する場合、各層における波状配列の位相は同一であってもよく、異なっていてもよい。
【0032】
上記強化繊維が厚み方向の一部において上記波状配列している場合、波状配列していない強化繊維の配列状態は特に限定されるものではない。したがって、例えば、波状配列していない強化繊維の配向状態は、一方向に配向した状態であってもよく、又はランダムに配向した状態であってもよい。また、上記一方向配向と2次元ランダム配向の中間の無規則配向(強化繊維の長軸方向が完全に一方向に配列しておらず、かつ完全にランダムでない配列状態)であってもよい。さらに、強化繊維の繊維長によっては、強化繊維の長軸方向が繊維強化プラスチック成形体の面内方向に対して角度を有するように配向していてもよく、強化繊維が綿状に絡み合うように配向していてもよく、さらには強化繊維が平織や綾織などの二方向織物、多軸織物、不織布、マット、ニット、組紐、強化繊維を抄紙した紙等のように配向していてもよい。なかでも本発明においては、厚み方向及び面内方向の機械強度向上の観点から、波状配列していない強化繊維は、強化繊維の長軸方向が面内方向においてランダムに配向した、2次元ランダム配向をしていることが好ましい。
【0033】
2 繊維強化樹脂材料
次に、本発明に用いられる繊維強化樹脂材料について説明する。本発明に用いられる繊維強化樹脂材料は、強化繊維と熱可塑性樹脂とを含有するものである。
【0034】
(1)強化繊維
(強化繊維の種類)
本発明に用いられる強化繊維の種類は、後述する熱可塑性樹脂の種類や本発明の繊維強化プラスチック成形体に付与する強度の程度に応じて適宜選択することができるものであり特に限定されるものではない。このため、本発明に用いられる強化繊維としては、無機繊維又は有機繊維のいずれであっても好適に用いることができる。
【0035】
上記無機繊維としては、例えば、炭素繊維、活性炭繊維、黒鉛繊維、ガラス繊維、タングステンカーバイド繊維、シリコンカーバイド繊維(炭化ケイ素繊維)、セラミックス繊維、アルミナ繊維、天然繊維、玄武岩などの鉱物繊維、ボロン繊維、窒化ホウ素繊維、炭化ホウ素繊維、及び金属繊維等を挙げることができる。上記金属繊維としては、例えば、アルミニウム繊維、銅繊維、黄銅繊維、ステンレス繊維、スチール繊維を挙げることができる。上記ガラス繊維としては、Eガラス、Cガラス、Sガラス、Dガラス、Tガラス、石英ガラス繊維、ホウケイ酸ガラス繊維等からなるものを挙げることができる。上記有機繊維としては、例えば、ポリベンザゾール、アラミド、PBO(ポリパラフェニレンベンズオキサゾール)、ポリフェニレンスルフィド、ポリエステル、アクリル、ポリアミド、ポリオレフィン、ポリビニルアルコール、ポリアリレート等の樹脂材料からなる繊維を挙げることができる。
【0036】
本発明においては2種類以上の強化繊維を併用してもよい。この場合、複数種の無機繊維を併用してもよく、複数種の有機繊維を併用してもよく、無機繊維と有機繊維とを併用してもよい。複数種の無機繊維を併用する態様としては、例えば、炭素繊維と金属繊維とを併用する態様、炭素繊維とガラス繊維を併用する態様等を挙げることができる。一方、複数種の有機繊維を併用する態様としては、例えば、アラミド繊維と他の有機材料からなる繊維とを併用する態様等を挙げることができる。さらに、無機繊維と有機繊維を併用する態様としては、例えば、炭素繊維とアラミド繊維とを併用する態様を挙げることができる。
【0037】
本発明に用いられる強化繊維は、炭素繊維、ガラス繊維、金属繊維、セラミックス繊維、ポリベンザゾール繊維およびアラミド繊維からなる群より選ばれる少なくとも1種以上であることが好ましく、なかでも炭素繊維であることが好ましい。炭素繊維を用いることにより、軽量で高い強度や剛性を確保できるため、例えば、本発明の繊維強化プラスチック成形体を自動車に適用した場合に、燃費向上や走行性能を向上できるという利点があるからである。
【0038】
上記炭素繊維としては、一般的にポリアクリロニトリル(PAN)系炭素繊維、石油・石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、気相成長系炭素繊維などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができる。
【0039】
本発明に用いられる強化繊維は、表面にサイジング剤が付着しているものであってもよい。サイジング剤が付着している強化繊維を用いる場合、当該サイジング剤の種類は、強化繊維及び熱可塑性樹脂の種類に応じて適宜選択することができるものであり、特に限定されるものではない。
【0040】
(強化繊維の繊維長)
本発明に用いられる強化繊維には短繊維が含まれるものである。本発明に用いられる短繊維の平均繊維長としては、強化繊維の種類や熱可塑性樹脂の種類等に応じて本発明の繊維強化プラスチック成形体に所望の強度を付与できるよう適宜決定することができるものであり、特に限定されるものではない。なかでも本発明においては、上記短繊維の平均繊維長が、1mm〜100mmの範囲内であることが好ましく、5mm〜75mmの範囲内であることがより好ましく、10mm〜50mmの範囲内であることが特に好ましい。短繊維の平均繊維長がこのような範囲内であることにより、より簡易に強化繊維を波状配列させることができるからである。
【0041】
本発明に用いられる強化繊維としては、少なくとも短繊維が含まれればよい。したがって、強化繊維として短繊維のみを用いてもよく、又は短繊維と長繊維とを併用してもよい。なお、長繊維とは、上記短繊維よりも平均繊維長が長いものを意味し、短繊維よりも平均繊維長が長いものであれば、不連続繊維及び連続繊維のいずれであってもよい。
【0042】
強化繊維として短繊維のみを用いる場合は、繊維長が互いに異なるものを併用してもよい。換言すると、本発明に用いられる強化繊維は、繊維長の分布において単一のピークを有するものであってもよく、あるいは複数のピークを有するものであってもよい。複数のピークを有する場合は、少なくとも一つのピーク値が上述した好ましい平均繊維長の範囲に属することが好ましい。ここで、強化繊維の平均繊維長(La)は、例えば、繊維強化樹脂材料から無作為に抽出した100本の強化繊維の繊維長(Li)を、ノギス等を用いて1mm単位まで測定し、下記式に基づいて求めることができる。繊維強化樹脂材料からの強化繊維の抽出は、例えば、繊維強化樹脂材料に対し、500℃×1時間程度の加熱処理を施し、炉内にて樹脂を除去することによって行うことができる。
La=ΣLi/100
【0043】
上記平均繊維長の測定方法は、数平均繊維長の測定方法を述べたものであるが、本発明における短繊維は、重量平均繊維長が1mm〜100mmの範囲内であることが好ましく、5mm〜75mmの範囲内であることがより好ましく、10mm〜50mmの範囲内であることが特に好ましい。ここで、個々の炭素繊維の繊維長をLi、測定本数をjとすると、重量平均繊維長(Lw)は、以下の式により求められる。
Lw=(ΣLi
2)/(ΣLi)
なお、後述するロータリーカッターで切断した場合など、繊維長が一定長の場合は数平均繊維長と重量平均繊維長は同じ値になる。
【0044】
(強化繊維の繊維径)
本発明に用いられる強化繊維の繊維径は、強化繊維の種類に応じて適宜決定すればよく、特に限定されるものではない。例えば、強化繊維として炭素繊維が用いられる場合、平均繊維径は、通常、3μm〜50μmの範囲内であることが好ましく、4μm〜12μmの範囲内であることがより好ましく、5μm〜8μmの範囲内であることがさらに好ましい。
一方、強化繊維としてガラス繊維を用いる場合、平均繊維径は、通常、3μm〜30μmの範囲内であることが好ましい。ここで、上記平均繊維径は、強化繊維の単糸の直径を指すものとする。したがって、強化繊維が繊維束状である場合は、繊維束の径ではなく、繊維束を構成する強化繊維(単糸)の直径を指すことになる。強化繊維の平均繊維径は、例えば、JIS R−7607:2000に記載された方法によって測定することができる。
【0045】
(強化繊維の状態)
本発明に用いられる強化繊維は、その種類に関わらず単糸からなる単糸状であってもよく、複数の単糸からなる繊維束状であってもよい。また、本発明に用いられる強化繊維は、単糸状のもののみであってもよく、繊維束状のもののみであってもよく、両者が混在していてもよい。繊維束状の強化繊維を用いる場合、各繊維束を構成する単糸の数は、各繊維束において均一であってもよく、あるいは異なっていてもよい。本発明に用いられる強化繊維が繊維束状である場合、各繊維束を構成する単糸の数は特に限定されるものではないが、通常、1000本〜10万本の範囲内とされる。
【0046】
一般的に、炭素繊維は、数千〜数万本のフィラメントが集合した繊維束状となっている。上記強化繊維として炭素繊維を用いる場合に、炭素繊維をこの繊維束状のまま使用すると、繊維束の交絡部が局部的に厚くなり薄肉の繊維強化樹脂材料を得ることが困難になる場合がある。このため、強化繊維として炭素繊維を用いる場合は、繊維束を拡幅したり、又は開繊したりして使用するのが好ましい。
【0047】
炭素繊維束を開繊して用いる場合、開繊後の炭素繊維束の開繊程度は特に限定されるものではないが、繊維束の開繊程度を制御し、特定本数以上の炭素繊維からなる炭素繊維束と、それ未満の炭素繊維(単糸)又は炭素繊維束を含むことが好ましい。この場合、具体的には、下記式(1)で定義される臨界単糸数以上で構成される炭素繊維束(A)と、それ以外の開繊された炭素繊維、すなわち単糸の状態または臨界単糸数未満で構成される繊維束とからなることが好ましい。
臨界単糸数=600/D (1)
(ここでDは炭素繊維の平均繊維径(μm)である)
【0048】
さらに、本発明においては、繊維強化樹脂材料中の炭素繊維全量に対する炭素繊維束(A)の割合が0Vol%超99Vol%未満であることが好ましく、20Vol%以上99Vol未満であることがより好ましく、30Vol%以上95Vol%未満であることがさらに好ましく、50Vol%以上90Vol%未満であることが最も好ましい。このように特定本数以上の炭素繊維からなる炭素繊維束と、それ以外の開繊された炭素繊維又は炭素繊維束を特定の比率で共存させることで、繊維強化樹脂材料中の炭素繊維の存在量、すなわち繊維体積含有率(Vf)を高めることが可能となるからである。
【0049】
炭素繊維の開繊程度は、繊維束の開繊条件を調整することにより目的の範囲内とすることができる。例えば、繊維束に空気を吹き付けて繊維束を開繊する場合は、繊維束に吹き付ける空気の圧力等をコントロールすることにより開繊程度を調整することができる。この場合、空気の圧力を強くすることにより、開繊程度が高く(各繊維束を構成する単糸数が少なく)なり、空気の圧力を弱くすることより開繊程度が低く(各繊維束を構成する単糸数が多く)なる傾向がある。
【0050】
本発明において強化繊維として炭素繊維を用いる場合、炭素繊維束(A)中の平均繊維数(N)は本発明の目的を損なわない範囲で適宜決定することができるものであり、特に限定されるものではない。
炭素繊維の場合、上記Nは通常1<N<12000の範囲内とされるが、下記式(2)を満たすことがより好ましい。
0.6×10
4/D
2<N<6×10
5/D
2 (2)
(ここでDは炭素繊維の平均繊維径(μm)である)
【0051】
(2)熱可塑性樹脂
本発明に用いられる熱可塑性樹脂としては、本発明の繊維強化プラスチック成形体の用途や製造方法に応じて適宜選択して用いることができるものであり、特に限定されるものではない。また、本発明に用いられる熱可塑性樹脂は、通常、軟化点が180℃〜350℃の範囲内のものが用いられるが、これに限定されるものではない。
【0052】
本発明に用いられる熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、ポリスチレン樹脂、熱可塑性ポリアミド樹脂、ポリエステル樹脂、ポリアセタール樹脂(ポリオキシメチレン樹脂)、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ポリエーテルニトリル樹脂、フェノキシ樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリケトン樹脂、ポリエーテルケトン樹脂、熱可塑性ウレタン樹脂、フッ素系樹脂、熱可塑性ポリベンゾイミダゾール樹脂等を挙げることができる。
【0053】
上記ポリオレフィン樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブタジエン樹脂、ポリメチルペンテン樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂等を挙げることができる。上記ポリスチレン樹脂としては、例えば、ポリスチレン樹脂、アクリロニトリル−スチレン樹脂(AS樹脂)、アクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂)等を挙げることができる。上記ポリアミド樹脂としては、例えば、ポリアミド6樹脂(ナイロン6)、ポリアミド11樹脂(ナイロン11)、ポリアミド12樹脂(ナイロン12)、ポリアミド46樹脂(ナイロン46)、ポリアミド66樹脂(ナイロン66)、ポリアミド610樹脂(ナイロン610)等を挙げることができる。上記ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、液晶ポリエステル等を挙げることができる。上記(メタ)アクリル樹脂としては、例えば、ポリメチルメタクリレートを挙げることができる。上記ポリフェニレンエーテル樹脂としては、例えば、変性ポリフェニレンエーテル等を挙げることができる。上記ポリイミド樹脂としては、例えば、熱可塑性ポリイミド、ポリアミドイミド樹脂、ポリエーテルイミド樹脂等を挙げることができる。上記ポリスルホン樹脂としては、例えば、変性ポリスルホン樹脂、ポリエーテルスルホン樹脂等を挙げることができる。上記ポリエーテルケトン樹脂としては、例えば、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂を挙げることができる。上記フッ素系樹脂としては、例えば、ポリテトラフルオロエチレン等を挙げることができる。
【0054】
本発明に用いられる熱可塑性樹脂は1種類のみであってもよく、2種類以上であってもよい。本発明において2種類以上の熱可塑性樹脂を併用する態様としては、例えば、相互に軟化点又は融点が異なる熱可塑性樹脂を併用する態様や、相互に平均分子量が異なる熱可塑性樹脂を併用する態様等を挙げることができるが、この限りではない。
【0055】
(3)繊維強化樹脂材料
本発明に用いられる繊維強化樹脂材料中における熱可塑性樹脂の存在量は、熱可塑性樹脂の種類や強化繊維の種類等に応じて適宜決定することができるものであり、特に限定されるものではないが、通常、強化繊維100質量部に対して3質量部〜1000質量部の範囲内とされる。
【0056】
また、上記繊維強化樹脂材料における強化繊維の体積含有率(Vf)は、繊維強化プラスチック成形体の強度を所望の程度にできる範囲内であれば特に限定されるものではなく、強化繊維の種類、強化繊維の平均繊維長等に応じて適宜決定することができる。なかでも本発明においては上記強化繊維の体積含有率(Vf)の下限は10%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがさらに好ましい。一方、上記強化繊維の体積含有率の下限は70%以下であることが好ましく、60%以下であることがより好ましく、50%以下であることがさらに好ましい。
【0057】
上述したように、本発明に用いられる繊維強化樹脂材料は少なくとも強化繊維と熱可塑性樹脂とを含むものであるが、本発明の目的を損なわない範囲内であれば、必要に応じて各種添加剤を含んでもよい。本発明に用いられる各種添加剤としては、本発明の繊維強化プラスチック成形体の用途等に応じて、繊維強化樹脂材料に所望の機能又は性質等を付与できるものであれば特に限定されるものではない。このような各種添加剤としては、例えば、溶融粘度低下剤、帯電防止剤、顔料、軟化剤、可塑剤、界面活性剤、導電性粒子、フィラー、カーボンブラック、カップリング剤、発泡剤、滑剤、腐食防止剤、結晶核剤、結晶化促進剤、離型剤、安定剤、紫外線吸収剤、着色剤、着色防止剤、酸化防止剤、難燃剤、難燃助剤、滴下防止剤、滑剤、蛍光増白剤、蓄光顔料、蛍光染料、流動改質剤、無機および有機の抗菌剤、防虫剤、光触媒系防汚剤、赤外線吸収剤、フォトクロミック剤等を挙げることができる。
【0058】
また、本発明に用いられる繊維強化樹脂材料には、上記各種添加剤として、繊維長が短い短繊維が含まれていてもよい。ここで用いられる短繊維とは、上述した強化繊維よりも平均繊維長(重量平均繊維長、数平均繊維長)が短いこと以外は、上述した強化繊維と同様のものを用いることができる。当該短繊維は、上述した強化繊維よりも繊維長が短いものであり、例えば、平均繊維長(重量平均繊維長、数平均繊維長)が、1mm以下のものを例示することができる。
【0059】
繊維強化樹脂材料における強化繊維の目付量は、特に限定されるものではないが、通常、25g/m
2〜10000g/m
2の範囲内とされる。
【0060】
3 繊維強化プラスチック成形体
本発明の繊維強化プラスチック成形体は、単一層からなるものであってもよく、あるいは複数層に積層されることによって構成された積層構造を有するものであってもよい。本発明の繊維強化プラスチック成形体が積層構造を有する態様としては、同一の組成を有する複数の層が積層された態様であってもよく、又は互いに異なる組成を有する複数の層が積層された態様であってもよい。
【0061】
本発明の繊維強化プラスチック成形体の厚みは特に限定されるものではないが、通常、0.01mm〜100mmの範囲内が好ましく、0.01mm〜10mmの範囲内が好ましく、0.1〜5mmの範囲内がより好ましい。なお、本発明の繊維強化プラスチック成形体が上記積層構造を有する場合、上記厚みは各層の厚みを指すのではなく、各層の厚みを合計した繊維強化プラスチック成形体の厚みを指すものとする。
【0062】
4 繊維強化プラスチック成形体の製造方法
本発明の繊維強化プラスチック成形体は、例えば、1.強化繊維をカットする工程、2.カットされた強化繊維を開繊させる工程、3.開繊させた強化繊維と繊維状又は粒子状の熱可塑性樹脂を混合した後、加熱圧縮してプリプレグを得る工程、4.プリプレグを成形する工程により製造することができる。上記工程1〜3については、例えば、国際公開第2012/105080号に記載された方法を採用することができる。
【0063】
強化繊維を波状配列させる方法としては、特に限定は無く、繊維強化プラスチックの性状、成形条件、金型構造などを制御することによって波状配列を形成することができる。例えば、上記工程4おいて、特定の金型を用いて圧縮成形することによっても強化繊維を波状配列させることができる。具体的には、圧縮成形に用いる金型として、強化繊維を波状配列させるための構造または機構を持たせることにより容易に強化繊維を波状配列させることができる。金型の具体的な構造又は機構としては、例えば、強化繊維を波状配列させる位置に賦形する機構、強化繊維を波状配列させる位置にのみ金型に凹部分を設け、その凹部分が設けられた位置において強化繊維を波状配列させる方法等を挙げることができる。後者の方法の場合、金型の当該凹部分は上下型のどちらに配置してもよいが、より定常的な波状配列を得ることができるという点において上型に設けることが好ましい。
【0064】
繊維強化プラスチックの性状においては、例えば流動性を挙げることができるが一般的には流動性が高いほど強化繊維を波状配列させやすい。しかしながら、流動性の高い繊維強化プラスチックは機械強度に劣ることが多いため目的に応じた設計を必要とする。繊維強化プラスチックの成形条件としては、例えば、成形温度、加圧速度、チャージ率を挙げることが出来るが一般的には成形温度が高いほど、加圧速度が速いほど、チャージ率が高いほど強化繊維を波状配列させやすい。ただし、成形温度が高すぎると繊維強化プラスチック成形体の機械物性を損なう懸念があり、加圧速度を上げるためにはより高価な設備が必要であり、またチャージ率は成形体の形状なども考慮した上で決定する必要があるため、目的に応じた成形条件を選択する必要がある。
【0065】
本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と、実質的に同一の構成を有し、同様な作用効果を奏するものは、いかなる態様であっても本発明の技術的範囲に包含される。
【実施例】
【0066】
以下に実施例を示すが、本発明はこれらに制限されるものではない。
なお、各実施例、及び各比較例における各値は、以下の方法に従って求めた。
(1)炭素繊維の平均繊維長の測定は、繊維強化プラスチック成形体を500℃に加熱し樹脂を除去して残った炭素繊維構造物から無作為に抽出した300本の繊維の繊維長をノギスにより1mm単位まで測定し、その平均を求めた。炭素繊維束の平均厚み、重量平均繊維幅は、上記炭素繊維構造物から無作為に抽出した300本の繊維束の厚み、幅、重量をノギスにより1mm単位まで測定し求めた。
(2)プリプレグの繊維束分析は、国際公開第2012/105080号に記載の方法に準じて実施した。
【0067】
[製造例1]
炭素繊維として、平均繊維長20mmにカットした東邦テナックス社製の炭素繊維“テナックス”(登録商標)STS40−24KS(平均繊維径7μm)を使用し、マトリックス樹脂として、ユニチカ社製のナイロン6樹脂A1030を用いて、国際公開第2012/105080号に記載された方法に基づき、炭素繊維目付け1800g/m
2、ナイロン6樹脂目付け1500g/m
2であり、炭素繊維が2次元ランダム配向したマットを作成した。具体的には、炭素繊維の分繊装置には、超硬合金を用いて円盤状の刃を作成し、0.5mm間隔に配置したスリッターを用いた。カット装置には、超硬合金を用いて螺旋状ナイフを表面に配置したロータリーカッターを用いた。このとき、刃のピッチを20mmとし、炭素繊維を繊維長20mmにカットするようにした。
カッターを通過したストランドをロータリーカッターの直下に配置したフレキシブルな輸送配管に導入し、引き続き、これを開繊装置に導入した。開繊装置としては、径の異なるSUS304製のニップルを溶接し、二重管を製作して使用した。二重管の内側の管に小孔を設け、外側の管との間にコンプレッサーを用いて圧縮空気を送気した。この時、小孔からの風速は、100m/secであった。この管の下部には下方に向けて径が拡大するテーパー管を溶接した。
上記テーパー管の側面より、マトリックス樹脂を供給した。そして、テ―パー管出口の下部に、一定方向に移動する通気性の支持体(以後、定着ネットと呼ぶ)を設置し、その下方よりブロワにて吸引を行い、その定着ネット上に、該フレキシブルな輸送配管とテーパー管を幅方向に往復運動させながら、カットした炭素繊維とナイロン樹脂の混合体を帯状に堆積させた。そして、炭素繊維の供給量を500g/min、ナイロン6樹脂の供給量を530g/minにセットして装置を稼動し、定着ネット上に炭素繊維とナイロン6樹脂が混合されたランダムマットを得た。このマットを、上部に凹部を有する金型を用いて260℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、厚さ2.3mmのプリプレグ(I)を得た。
【0068】
得られたプリプレグ(I)について、それに含まれる炭素繊維の解析を行ったところ、上記式(1)で定義される臨界単糸数は86本、臨界単糸数以上で構成される炭素繊維束(A)中の平均単糸数(N)は420本であり、臨界単糸数以上で構成される炭素繊維束(A)の割合は全炭素繊維量の85Vol%であった。また、炭素繊維体積含有率は43%(質量基準の炭素繊維含有率54%)であった。また、炭素繊維束は平均厚みが30μmであり、重量平均繊維幅が0.5mmであった。
【0069】
[製造例2]
炭素繊維の供給量を340g/min、ナイロン6樹脂の供給量を530g/minとし、炭素繊維目付け1200g/m
2、ナイロン6樹脂目付け1500g/m
2とした以外は製造例1と同様にしてプリプレグ(II)を製造した。
【0070】
得られたプリプレグ(II)について、それに含まれる炭素繊維の解析を行ったところ、上記式(1)で定義される臨界単糸数は86本、臨界単糸数以上で構成される炭素繊維束(A)中の平均単糸数(N)は420本であり、臨界単糸数以上で構成される炭素繊維束(A)の割合は全炭素繊維量の85Vol%であった。また、炭素繊維体積含有率は31%(質量基準の炭素繊維含有率42%)であった。また、炭素繊維束は平均厚みが30μmであり、重量平均繊維幅が0.5mmであった。
【0071】
[製造例3]
強化繊維の供給量を170g/min、マトリックス樹脂の供給量を530g/minとし、強化繊維目付け600g/m
2、ナイロン6樹脂目付け1500g/m
2とした以外は製造例1と同様にしてプリプレグ(III)を製造した。
【0072】
得られたプリプレグ(III)について、それに含まれる炭素繊維の解析を行ったところ、上記式(1)で定義される臨界単糸数は86本、臨界単糸数以上で構成される炭素繊維束(A)中の平均単糸数(N)は420本であり、臨界単糸数以上で構成される炭素繊維束(A)の割合は全炭素繊維量の85Vol%であった。また、炭素繊維体積含有率は25%(質量基準の炭素繊維含有率31%)であった。また、炭素繊維束は平均厚みが30μmであり、重量平均繊維幅が0.5mmであった。
【0073】
[エネルギー吸収能評価]
各実施例および比較例で得られた各繊維強化プラスチック成形体に対して、下記条件により錘を自由落下させる打ち抜き試験を行い、エネルギー吸収能を評価した。
試験条件は以下のとおりである。
試験片形状:幅60mm×長さ60mmの強化繊維プラスチック成形体
試験機:IMATEC IM10
錘形状(圧子):r=5mm
錘重量:9.3kg
【0074】
[実施例1]
プリプレグ(I)を380mm×380mmに切り出し、120℃の熱風乾燥機で4時間乾燥した後、赤外線加熱機により300℃まで昇温した。金型として400mm×400mmの面積であり、上型には80mm×370mmの凹部分を有するものを使用した。この金型を140℃に設定し、プリプレグ(I)を加熱後二枚重ねて同金型内に導入し、プレス圧力20MPaで1分間加圧し、繊維強化プラスチック成形体1を作製した。得られた繊維強化プラスチック成形体1は、金型の凹部分に相当する部分において、厚み方向に波状配列した強化繊維が含まれていた。また、厚みは4.5mmであり、厚み方向に波状配列した強化繊維が存在している領域の厚みは3.5mmであった。厚み方向に波状配列した強化繊維が存在している領域の割合は、繊維強化プラスチック成形体の厚みの78%であった。さらに、波状配列した強化繊維の配向角度は85°であった。この繊維強化プラスチック成形体1に対してエネルギー吸収能の測定を実施した。得られた結果は表1の通りである。
【0075】
[実施例2]
実施例1と同様の手法で、プリプレグ(I)を三枚重ねて成形することにより、厚みが5.7mmであり、波状配列した強化繊維が存在する領域の厚みが4.2mmであり、波状配列した強化繊維の配向角度が75°である繊維強化プラスチック成形体2を得た。厚み方向に波状配列した強化繊維が存在している領域の割合は、繊維強化プラスチック成形体の厚みの74%であった。この繊維強化プラスチック成形体2に対してエネルギー吸収能の測定を実施した。得られた結果は表の通りである。
【0076】
[比較例1]
実施例1と同様の手法で、波状形状とならないよう上型の凹部分が充填されるよう75mm×360mmの成形板を追加で重ねることにより、厚み4.5mmからなる繊維強化プラスチック成形体3を得た。繊維強化プラスチック成形体3においては、波状配列した強化繊維は含まれなかった。また、この繊維強化プラスチック成形体3に対してエネルギー吸収能の測定を実施した結果、表1の通り、実施例1に対して約30%低い結果であった。
【0077】
[比較例2]
比較例1と同様の手法で、波状形状の発生していない厚み5.7mmからなる繊維強化プラスチック成形体4を得た。繊維強化プラスチック成形体4においては、波状配列した強化繊維は含まれなかった。また、この繊維強化プラスチック成形体4に対してエネルギー吸収能の測定を実施した結果、表1の通り、実施例2に対して約25%低い結果であった。
【0078】
[実施例3]
実施例1よりプリプレグ(I)の加熱温度を240℃へと変更することにより、厚みが4.5mmであり、波状配列した強化繊維が存在する領域の厚みが2.4mmであり、波状配列した強化繊維の配向角度が55°である繊維強化プラスチック成形体5を得た。厚み方向に波状配列した強化繊維が存在している領域の割合は、繊維強化プラスチック成形体の厚みの53%であった。この繊維強化プラスチック成形体5に対してエネルギー吸収能の測定を実施した。得られた結果は表の通りであり、同一厚みである比較例1に対し、約25%高い結果となった。
【0079】
[実施例4]
実施例3と同様の手法で、プリプレグ(I)を三枚重ねて成形することにより、厚みが5.7mmであり、波状配列した強化繊維が存在する領域の厚みが2.7mmであり、波状配列した強化繊維の配向角度が45°である繊維強化プラスチック成形体6を得た。厚み方向に波状配列した強化繊維が存在している領域の割合は、繊維強化プラスチック成形体の厚みの47%であった。この繊維強化プラスチック成形体6に対してエネルギー吸収能の測定を実施した。得られた結果は表の通りであり、同一厚みである比較例2に対し、約6%高い結果となった。
【0080】
[実施例5]
実施例3より金型温度を100℃へと変更することにより、厚みが4.5mmであり、波状配列した強化繊維が存在する領域の厚みが1.8mmであり、波状配列した強化繊維の配向角度が40°である繊維強化プラスチック成形体7を得た。厚み方向に波状配列した強化繊維が存在している領域の割合は、繊維強化プラスチック成形体の厚みの40%であった。この繊維強化プラスチック成形体7に対してエネルギー吸収能の測定を実施した。得られた結果は表の通りであり、同一厚みである比較例1に対し、約10%高い結果となった。
【0081】
[実施例6]
実施例5と同様の手法で、プリプレグ(I)を重ねずに成形することにより、厚みが3.2mmであり、波状配列した強化繊維が存在する領域の厚みが0.6mmであり、波状配列した強化繊維の配向角度が25°である繊維強化プラスチック成形体8を得た。厚み方向に波状配列した強化繊維が存在している領域の割合は、繊維強化プラスチック成形体の厚みの19%であった。この繊維強化プラスチック成形体8に対してエネルギー吸収能の測定を実施した。得られた結果は表の通りである。
【0082】
[比較例3]
比較例1と同様の手法で、波状形状の発生していない厚み3.2mmからなる繊維強化プラスチック成形体9を得た。繊維強化プラスチック成形体9においては、波状配列した強化繊維は含まれなかった。また、この繊維強化プラスチック成形体9に対してエネルギー吸収能の測定を実施した結果、表1の通り、実施例6に対して約10%低い結果であった。
【0083】
[実施例7]
実施例1より金型温度を150℃へと変更することにより、厚みが4.5mmであり、波状配列した強化繊維が存在する領域の厚みが3.9mmであり、波状配列した強化繊維の配向角度が85°である繊維強化プラスチック成形体10を得た。厚み方向に波状配列した強化繊維が存在している領域の割合は、繊維強化プラスチック成形体の厚みの87%であった。この繊維強化プラスチック成形体10に対してエネルギー吸収能の測定を実施した。得られた結果は表の通りであり、同一厚みである比較例1に対し、約35%高い結果となった。
【0084】
[実施例8]
実施例7と同様の手法で、プリプレグ(I)を三枚重ねて成形することにより、厚みが5.7mmであり、波状配列した強化繊維が存在する領域の厚みが5.2mmであり、波状配列した強化繊維の配向角度が70°である繊維強化プラスチック成形体11を得た。厚み方向に波状配列した強化繊維が存在している領域の割合は、繊維強化プラスチック成形体の厚みの91%であった。この繊維強化プラスチック成形体11に対してエネルギー吸収能の測定を実施した。得られた結果は表の通りであり、同一厚みである比較例2に対し、約20%高い結果となった。
【0085】
[実施例9]
実施例7と同様の手法で、プリプレグ(I)を重ねずに成形することにより、厚みが3.2mmであり、波状配列した強化繊維が存在する領域の厚みが2.4mmであり、波状配列した強化繊維の配向角度が85°である繊維強化プラスチック成形体12を得た。厚み方向に波状配列した強化繊維が存在している領域の割合は、繊維強化プラスチック成形体の厚みの75%であった。この繊維強化プラスチック成形体12に対してエネルギー吸収能の測定を実施した。得られた結果は表の通りであり、同一厚みである比較例3に対し、約40%高い結果となった。
【0086】
【表1】