(58)【調査した分野】(Int.Cl.,DB名)
ほぼ同じ形状の貫通孔を有する板状体を複数枚重ねて前記貫通孔の周壁により前記流路の前記第1側壁部および前記第2側壁部以外の側壁である第3側壁部が形成される流路構造体をさらに有し、
前記貫通孔の一端側が前記第1加熱板で閉塞され、
前記貫通孔の他端側が前記閉塞板または前記第2加熱板により閉塞される
ことにより前記流路が形成されてなる請求項1記載の造形材料吐出ヘッド。
前記第1加熱板の一部に凹状の断面形状を有する溝が形成され、該凹状の溝の開口部を閉塞するように前記閉塞板または前記第2加熱板が設けられることにより、前記流路が形成されてなる請求項1記載の造形材料吐出ヘッド。
前記薄板が金属または非金属の薄板により形成され、前記熱歪み発生部材が、前記薄板とは熱膨張率の異なる金属片または非金属片からなり、前記流路に沿って前記薄板に接合されるピースである請求項6記載の造形材料吐出ヘッド。
前記熱歪み発生部材が、熱膨張率の異なる少なくとも2種類の板材の接合により形成されるバイメタルからなり、該バイメタルが前記流路に沿って前記薄板に接合されてなる請求項6記載の造形材料吐出ヘッド。
前記第3加熱板により前記特定の流路内の造形材料または前記薄板の熱膨張による造形材料の体積増加または前記薄板の膨張による前記流路の体積変化に基づき前記流路内の造形材料を吐出する請求項4または5記載の造形材料吐出ヘッド。
前記第3加熱板は、第2絶縁基板上に発熱抵抗体が前記複数個の流路のそれぞれの流路に沿って形成され、特定の前記流路内に熱作用を生じさせるように形成されてなる請求項5〜9のいずれか1項に記載の造形材料吐出ヘッド。
前記第3加熱板の前記流路に沿って形成される発熱抵抗体が2以上に分割され、分割されたそれぞれに独立して電圧を印加できるように電極端子が形成されてなる請求項10記載の造形材料吐出ヘッド。
前記第1加熱板の発熱抵抗体が、前記流路および前記吐出口近傍を加熱できるように形成され、かつ、前記流路の前記吐出口側が前記供給口側よりも温度が高くなるように前記発熱抵抗体が形成されてなる請求項12記載の造形材料吐出ヘッド。
前記第1加熱板の発熱抵抗体が、前記流路の方向に沿った2本の直線状の発熱抵抗体の部分と、該直線状の部分のそれぞれの一端部が他の発熱抵抗体で接続された構造で、平面形状がU字形状に形成され、前記U字形状の底部の発熱抵抗体が前記流路構造体の前記吐出口側になるように形成されてなる請求項13記載の造形材料吐出ヘッド。
前記発熱抵抗体が、前記流路の方向に沿って直線状に形成された部分を有し、前記直線状の部分がテーパ状もしくは段階的に幅が細くなるように形成され、または、前記直線状の部分に沿って、部分的に導体層で置き換えられることにより、前記吐出口側の温度が前記供給口側よりも高温になるように形成されてなる請求項13または14記載の造形材料吐出ヘッド。
前記流路構造体の複数枚の板状体の少なくとも1枚に前記貫通孔と連通する凹みが形成されることにより前記吐出口が形成されてなる請求項2または4〜17のいずれか1項に記載の造形材料吐出ヘッド。
前記流路構造体が、熱伝導性部材または閉塞板を介して複数個重ねられ、該複数個の流路構造体の両外側面に前記第1加熱板または薄板が接合されてなる請求項2記載の造形材料吐出ヘッド。
前記流路構造体と、該流路構造体の一面側に形成される第1加熱板と、前記流路構造体の他面側に薄板を介して形成される第3加熱板とをそれぞれ有する第1および第2の造形材料吐出ヘッドが、前記第1加熱板側をそれぞれ対向させ、かつ、前記吐出口が同じ向きに整列するように、断熱板を介して接合することにより複数列の吐出口を有する請求項2記載の造形材料吐出ヘッド。
複数の流路を有する流路構造体を複数列接合することにより複数列の吐出口を有する造形材料吐出ヘッドであって、前記吐出口の前記流路の延びる方向の位置が列により異なるように形成されてなる請求項21記載の造形材料吐出ヘッド。
融解型の造形材料を流動させて立体造形物を形成する造形方法であって、前記造形材料を流動させるための流路の一側壁を第1加熱板で閉塞して前記流路内の造形材料を融解するように加熱することにより前記造形材料を流動させると共に、前記一側壁とは異なる別の側壁を薄板で形成し、該薄板の前記流路と反対側に第3加熱板を配置し、該第3加熱板により特定の流路のみに瞬間的な熱作用を及ぼすことにより特定の流路の造形材料を吐出させながら造形することを含む立体造形物の造形方法。
前記熱作用を、前記薄板と前記第3加熱板との間に前記薄板とは熱膨張率の異なるピースを設けることにより、またはバイメタルを設けることにより、前記第3加熱板による加熱で熱膨張率の差に基づく熱歪みにより前記薄板を変形させることにより行う請求項24記載の造形方法。
【発明を実施するための形態】
【0029】
つぎに、図面を参照しながら本発明の造形材料吐出ヘッドおよびその造形方法が説明される。
図1A〜1Cに、本発明の一実施形態による造形材料吐出ヘッドの側面図、平面図および吐出口側から見た上面図がそれぞれ示され、
図2にその分解図が示されている。本実施形態の造形材料吐出ヘッドは、
図2にその分解図が示されるように、造形材料を流動させる流路12(12a、12b)(
図3参照)を形成する側壁の一部である第1側壁部121(
図2参照)を構成すると共に、流路12内の造形材料を加熱する第1加熱板2と、第1側壁部121以外の側壁の一部である第2側壁部122(
図2参照)を構成する閉塞板7または第2加熱板(図示せず)と、流路12と連通し、流路12の一端部側に形成される吐出口13(13a、13b)(
図3参照)と、流路12と連通し、流路12の他端部側に形成される材料供給口14(14a、14b)(
図3参照)と、を備えている。この全体が組立板9により図示しない供給装置に固定される。
【0030】
一実施形態の具体例では、
図3に示されるように、ほぼ同じ形状の貫通孔12a、12bを有する板状体10(10a〜10c)を複数枚重ねて貫通孔の周壁123により流路12の第1側壁部121および第2側壁部122以外の側壁である第3側壁部123が形成される流路構造体1(
図2参照)が形成されている。
図2に示されるように、貫通孔(流路12)の一端側が第1加熱板2の絶縁基板21の裏面で閉塞され、貫通孔の他端側が閉塞板7または図示しない第2加熱板により閉塞されることにより流路12が形成されている。
【0031】
また、他の実施形態では、例えば
図6に示されるように、第1加熱板2の一部に凹状の断面形状を有する溝21aが形成され、その凹状の溝21aの開口部を閉塞するように閉塞板7または図示しない第2加熱板が設けられることにより、流路12が形成されていてもよい。この流路12(溝21a)の一端部には吐出口13が溝21aより細く形成されている。
【0032】
流路構造体1は、
図1に示される例では、3枚の板状体10a、10b、10c(
図3に示されるように、共通して指す場合10)が重ね合されて接合されている。各板状体10には、
図3に示されるように、流路12(12a、12b)が貫通孔として形成され、融解した造形材料が流動するように形成されている。さらに、その流路12a、12bと連結して、それぞれの一端部に吐出口13(13a、13b)が形成されている。この吐出口13は、板状体10を貫通しないで、厚さの半分程度の深さに凹みとして形成されている。この凹みは、ハーフエッチングまたはスタンピング、または機械加工などにより形成される。この凹みの形状(吐出口13の断面形状)は、
図1Cに示されるような矩形形状には限定されず、円形やその他の形状でも構わない。この吐出口13の数、すなわち凹みの数は、用途に応じて必要な個数に形成される。また、この凹みの形成の際に、吐出ヘッドの長さに合せた位置に同様の凹みによる溝15(
図3参照)が形成され、直角方向に曲げやすくされている。
図2に示されるように、曲げられた部分は取付板5に固定する取付部16となる。17は流路構造体1を取付板5にネジで固定する際の孔(貫通孔)である。
【0033】
板状体10は、熱伝導に優れ、貫通孔17や凹みなどの加工が容易な材料により形成される。その観点からは、薄い金属板が好ましい。一例として、
図3に示される板状体10は、厚さが0.6mm程度のステンレス板であり、吐出口13の先端部から折り曲げ用の溝15までの寸法Aが13mm、溝15から、吐出口13と反対側の端部までの寸法Bが7.5mmで、幅Cが10mmである。しかし、この寸法は一例であり、この例に限定されない。また、流路12(12a、12b)の幅が2mm、吐出口13aの幅は0.4mm、吐出口13bの幅は0.8mm、貫通孔17の直径はφ3.2mmが例示される。この程度の厚さのステンレス板であれば、打抜き加工により前述の流路12や貫通孔17およびその外形形状は容易に形成される。外形形状は、用途により種々の大きさに形成される。また、吐出口13付近の形状も用途により自由に形成される。このような板状体10での形成により、流路12は板状体10への貫通孔により形成され、吐出口13は、板状体10の半分ぐらいの深さに形成された凹み部により形成されているので、材料費も、加工費も非常に安価になる。さらに、流路12が貫通孔で形成され、その開口部が直接第1加熱板2で閉塞されるので、造形材料が直接加熱され、効率的に加熱される。
【0034】
さらに、板厚も前述の例示に限定されるものではなく、用途に応じて種々の厚さのものが使用され得る。さらに板状体10の重ね合せの枚数も3枚に限定されるものではなく、さらに多くすることもできる。重ね合せる枚数を多くすれば、同じ流路12と連結する数多くの吐出口13が形成され得る。吐出量を種々変更し得る造形材料吐出ヘッドが得られる。すなわち、流路構造体1の複数枚の板状体の少なくとも1枚に貫通孔12と連通する凹みが形成されることにより吐出口13が形成される。なお、各板状体10として
図3に示されており、外形や流路12は各板状体10で共通している。しかし、吐出口13とする凹みは、その形状、数量などが異なる。例えば
図1Cに示される吐出口13c、13dが形成されるための板状体10aと板状体10bとでは、その凹みが対称になるように形成されている。また、このように2枚の板状体10を重ね合せて吐出口13が形成される場合、同じ大きさの凹みや同じ形状の凹みであることには限定されない。0.4mm幅の凹みと0.2mm幅の凹みとが重ね合されてもよいし、矩形状と円形状の凹みが向かい合されてもよい。
【0035】
吐出口13は、例えばハーフエッチングにより形成される。すなわち、吐出口13が形成される部分以外の場所にレジストマスクが形成され、エッチング液に浸漬されたり、エッチング液をスプレーで吹き付けるスプレーエッチングをしたりすることにより形成される。また、電解エッチングをすることもできる。エッチングの深さはエッチング液に晒される時間に応じて制御される。あまり深くエッチングされると、機械的強度が低下するので、板状体10の板厚の半分程度以下とすることが好ましい。板状体10が薄くて、大きな吐出口13を形成できない場合には、例えば、
図1Cの吐出口13c、13dに示されるように、2枚の板状体10aと10bの向かい合う位置に同様の凹みを形成しておくことにより(前述のように凹みの位置は2枚の板状体10a、10bで異なる)、板状体10a、10bが重ね合された際に両方の凹みを合せた深さの吐出口13c、13dが形成される。また、この凹みを金型などによるスタンピングにより形成する場合、金型の形状などにより球状や円筒状の凹みが形成され得る。このようなスタンピングで行う場合、打抜き加工(外形や貫通孔17)、溝15の加工、もしくは折り曲げと同時に、または連続的に凹みが形成される。
【0036】
このように貫通孔(流路12)や凹み(吐出口13)が形成された、例えば3枚の板状体10a、10b、10cが、例えば耐熱性接着剤などにより3枚重ね合せて接合される。そして、溝15(
図3参照)で、両サイドの板状体10a、10cがそれぞれ反対側に折り曲げられ、真ん中の板状体10bは、その溝15の部分で切断され、折り曲げられた取付部16が取付板5に固定されることにより、
図1Aに示されるように、流路構造体1が形成される。この溝15は形成されなくても折り曲げや切断は可能である。この重ね合せの際に、前述の貫通孔17や外形の凸部などが位置合せとして用いられる。なお、板状体10が2枚のときは、切断の必要はない。
【0037】
図1Aに示されるように、この流路構造体1の少なくとも一面に第1加熱板2が接合されている。流路構造体1の一面には、貫通孔で形成された流路12a、12bの第1側面側および第2側面側(
図2の流路構造体1の右側面および左側面)が開放しているが、この流路12a、12bの第1側壁部121はこの第1加熱板2の絶縁基板21の裏面で形成されて閉塞される。第1加熱板2の絶縁基板21は、その一面側に発熱抵抗体22(
図5A参照)が設けられるので、一番温度が上がっており、流路12内に供給される造形材料の温度は容易に上昇され得る。そのため、容易にフィラメントなどの造形材料は融解される。流路12内が直接加熱されるのみならず、流路構造体1自身の温度も上昇するので、反対側の面(流路構造体1の他面)の温度も上昇する。しかし、この流路構造体1の大きさが大きくて、十分に温度を上昇させられない場合には、この流路構造体1の第2側面側にも図示しない第2加熱板が設けられてもよい。すなわち、閉塞板7に代えて、第1加熱板2と同様の構造の第2加熱板が設けられ得る。図示されていないが、この第1加熱板2の絶縁基板21と反対側のカバー基板26上には、断熱部材が設けられることが好ましい。そうすることにより、第1加熱板2の熱が有効に利用され得る。
【0038】
この流路構造体1への第1加熱板2の接合は、例えば、耐熱性接着剤により接着されてもよいが、取り外しが容易な接着剤が好ましい。あるいはネジ止めなどにより接合されてもよい。これらが取り外し自在に接合されることにより、造形材料が流路12内で固まっても、分解清掃がなされ得る。その結果、メンテナンスが容易になる。
【0039】
流路構造体1の他面側には、閉塞板7が第1加熱板2と同様に流路12を構成する貫通孔の開口部を閉塞するように接合されている。この閉塞板7により第2側壁部122(
図2参照)が形成されている。流路構造体1の分解清掃を容易にするため、分解が容易な状態で接合されることが好ましい。この閉塞板7は、絶縁基板21と同様のセラミック板でもよいし、他の金属板、合成樹脂板、絶縁フィルム等でもよい。後述される吐出駆動部が形成される場合には、この閉塞板7は、薄い板材またはフィルムが好ましい。この閉塞板7は、前述のように、流路構造体1の温度が十分に上昇しない場合には、第2加熱板が設けられてもよい。そうすることにより、両側から加熱されるので、流路構造体1が大きい場合などでも、十分に加熱され得る。この閉塞板7としては、熱伝導率の小さい材料が好ましいが、熱膨張率差に基づく反りが防止される点から、第1加熱板2の絶縁基板21と同じ熱膨張率を有する材料もしくは絶縁基板21と同じ材料が用いられることが好ましい。
【0040】
前述の流路構造体1の折り曲げられた取付部16が取付板5に固定される。その結果、
図1A〜1Cに示されるような造形材料吐出ヘッドが形成される。なお、取付板5には、バレル6が取り付けられ、造形材料のフィラメント(図示せず)を一定スピードで送り出す装置がバレル6に取り付けられており、一定の間隔で造形材料が送り出される。従来のバレル62(
図17のネジ部がφ6mm)を用いた構造は、前述のように断面が円形のワイヤ状の材料を送り出す構造であるが、本発明では、流路12の断面形状が矩形状にされ得るので、バレル6内は平坦なテープ状の材料が送り出されるようにされ得る。それにより、吐出口13から一定の割合で所望の量の造形材料が吐出される。扁平なテープ状の材料であれば、リールに巻き付けられても空間の無駄がなく、持ち運びおよび保管が容易になる。さらに、バレル6が用いられないで、後述される
図7Aに示されるように、非連続吐出構造が採用されてもよい。
図1Bに示される例では、流路12(
図3参照)が2つ形成されているので、バレル6が2個形成されている。
【0041】
次に、第1加熱板2が詳細に説明される。
図4A〜4Bに第1加熱板2の一例が側面図と平面図とで示されている。第1加熱板2は、
図4A〜4Bおよび
図5A〜5Eに示されるように、第1絶縁基板21の一面に、絶縁基板21を加熱する発熱抵抗体22が形成されている。その発熱抵抗体22には、その長手方向に電流を流すための電極23が形成されている。さらに、発熱抵抗体22の近傍に温度測定用抵抗体24(
図5A参照)が形成されている。この温度測定用抵抗体24には、所定の場所の電気抵抗を測定するための測定端子25が形成されている。これらの上にカバー基板26が図示しないガラス材などにより接着され、発熱抵抗体22の電極23や温度測定用抵抗体24の測定端子25(25a、25b)と接続して、リード27、28が導出されている。このリード27、28と電極23、測定端子25との接続は、高融点ハンダ、または500℃以上の温度に対して耐熱性が必要な場合には無機導電接着剤などで接続される。また、後述されるように、造形材料吐出ヘッドとして使用するには、発熱抵抗体22の駆動回路や、絶縁基板21の温度を測定する測定回路を含む制御手段が設けられる。制御手段は、発熱抵抗体22の電流を制御して、絶縁基板21の温度が所定の温度になるように駆動回路を制御する。なお、図示されていないが、リード27、28と電極23または測定端子25a、25bとの接続部は、その接続部でリード27、28が折れないように保護部材で保護される。なお、
図4Bでは、図面の明瞭化のため、温度測定用の測定端子が、両端部の測定端子25a、25bのみで示されており、
図5A等に示されるように、途中から引き出す測定端子25c、25dは省略されている。
【0042】
この第1加熱板2は、カードなどに記録や消去をするのに用いられる従来の加熱ヘッドと同様の構造になっており、絶縁基板21の一面に図示しないガラスなどからなる断熱グレーズ層を介して発熱抵抗体22と温度測定用抵抗体24とが設けられた構造になっている。しかし、本発明では、例えば
図5Aに示されるように、発熱抵抗体22が直線状部分(第1の発熱抵抗体)22aのみではなく、2つの直線状部分22aのそれぞれの一端部が、その直線状部分22aと直角方向の成分を有するように(2つの直線状部分22aが連結されるように)設けられる第2の発熱抵抗体22bにより連結された形状になっている。その結果、例えばU字形状、V字形状、L字形状などに形成されるなど、絶縁基板21に温度勾配が形成され、そのU字形状の底部の発熱抵抗体(第2の発熱抵抗体)22bが流路構造体10の吐出口13側になるように形成されていることに特徴がある。なお、本明細書では、このU字形状は、前述のように、例えば
図5B〜5Eに示されるように、完全なU字になっていなくても、2本の直線状部22aとそれを連結する第2の発熱抵抗体22bを有する形状であればよく、コ字型など、他の形状のものも含む意味である。
【0043】
図5Aに示されるように、第2の発熱抵抗体22bが形成されることにより、この発熱抵抗体22に電流を流すと、発熱抵抗体22が発熱して絶縁基板21が加熱されるが、絶縁基板21の温度は、第2の発熱抵抗体22bが形成されている端部の方がその反対側の一対の電極23が形成されている側よりも高くなる。この場合、
図5Aに示されるように、第2の発熱抵抗体22bの幅を直線状部分の発熱抵抗体(第1の発熱抵抗体)22aの幅よりも狭く形成されていると、発熱抵抗体22の単位長さ当たりの抵抗値は、直線状部分の発熱抵抗体22aよりも大きくなる。この両者は直列に接続されているので、電流は同じであり、抵抗値の大きい部分の方の発熱量が多くなる。従って、第2の発熱抵抗体22bの部分の方がより一層基板温度を上昇させることができる。
【0044】
このように、絶縁基板21に温度勾配が形成され、吐出口13側の温度が高くされることにより、吐出口付近ではヒータから離れ温度が下がって粘度が上昇したり、固化して詰まったりしやすいが、本実施形態では吐出口付近での温度が高く、流動性よく吐出され得る。すなわち、全体が一定温度になる従来のヒータブロックでは、吐出口側の温度が下がるのを防止しようとすると、ヒータブロック全体の温度を上昇させる必要があるが、ヒータブロックの中心部での温度を高くし過ぎると、造形材料の分解や気化が始まり、炭化に至るため、余り高温にすることはできない。このように、流動性がよくなることにより、吐出口13の大きさが小さくなっても、僅かの圧力で造形材料が吐出される。
【0045】
絶縁基板21は、アルミナなどからなる熱伝導率の優れた絶縁性の基板が用いられる。形状および寸法は、目的とする造形物に応じて、吐出口13の数が多くなれば流路構造体1が大きくなり、第1加熱板2、すなわち絶縁基板21もそれに合せて大きくなる。そのため、目的に応じて必要な大きさの絶縁基板21が用いられるが、例えば前述の流路構造体1の例では、2個の流路12に対して、10mm角程度で、0.6mm厚程度のアルミナ基板が用いられる。勿論、流路構造体1の1個に対して、第1加熱板2が複数個で設けられてもよい。外形も矩形状には限定されないで、必要とされる流路構造体1の形状に合せて形成される。従って、流路12が12本形成される場合には、前述のように、10mm角の第1加熱板2が6個分(
図9Bの3個分)の大きさの第1加熱板2になる(10mm×60mm)。外形も矩形状には限定されないで、必要とされる流路構造体1の形状に合せて形成される。この絶縁基板21の大きさとしては一般的には5mm角から35mm角程度の大きさに形成されるが、これに限らず、例えば10mm×220mmなどの大型のものでもよく、ラインヘッドの吐出口の数などに合せて長いものも形成され得る。さらに、この第1加熱板2を何個も並べることにより、絶縁基板21がラインヘッドなどの大きさに合せられてもよい。
【0046】
後述されるカバー基板26は、絶縁基板21上に形成される発熱抵抗体22などを保護するために形成されると共に、絶縁基板21の熱容量を大きくし、さらには熱膨張率差に基づく絶縁基板21の反りを防止するために形成されている。従って、熱伝導性は余り求められないが、絶縁基板21と同じ厚さのアルミナ基板が用いられる。このカバー基板26側は、流路構造体1とは接触しないので、熱伝導性はよくない方が好ましい。従って、もっと熱伝導性の低い材料を用いることができる。しかし、このカバー基板26の表面に断熱性シートが貼り付けられることにより、絶縁基板21と同じ材料(熱膨張率が同じ材料)が用いられ得る。また、加熱温度は、通常の場合、最高使用温度が150℃、250℃、500℃などに製造され、使用目的に応じて必要な温度に設定して使用される。
【0047】
発熱抵抗体22は、たとえばAg、Pd、RuO
2、Pt、金属酸化物、ガラスなどの粉末を適宜選択して混合することにより温度係数、抵抗値などが最適に調整される。この混合材料は、ペースト状にして塗布され、焼成される。それにより発熱抵抗体22が形成されている。焼成により形成される抵抗膜のシート抵抗は固形絶縁粉末の量によって変えられる。両者の比率により抵抗値や温度係数を変えられる。また、導体(電極23、25、連結導体27a〜27d)として使用する材料としては、Agの割合を多くし、Pdを少なくした同様のペースト状にした材料が用いられる。そうすることにより、発熱抵抗体22と同様に、導体も印刷により形成され得る。端子接続の関係で使用温度により変る必要がある場合もある。Agが多い程抵抗値を低くすることができる。この発熱抵抗体22の抵抗温度係数は正に大きい方が好ましく、とくに1000〜3500ppm/℃の材料を用いることが好ましい。また、図示されていないが、発熱抵抗体22の電流の流れる方向に沿って適当な位置に電極が設けられることにより、部分的に電圧が印加され得る。そうすることにより、場所によって温度が変えられ得る。
【0048】
抵抗温度係数が正に大きいということは、温度が上昇すると抵抗値の増加が大きくなることである。従って、抵抗温度係数が正であることにより、温度が上昇し過ぎた場合に抵抗値が増大して電流値が下がり、抵抗による発熱量が下がる。そのため、より早く温度が飽和状態となり、高温時の温度安定性に優れている。さらに、熱暴走などによる過熱が防止され得る。なお、発熱抵抗体22の標準的な部分の幅も、用途に応じて所定の温度になるように設定されるし、複数本の発熱抵抗体22が並列に並べられてもよい。
【0049】
また、発熱抵抗体22の両端部には、たとえばパラジウムの比率を小さくした銀・パラジウム合金やAg-Pt合金などの良導電体からなる電極23が印刷などにより形成されている。この電極23は、前述の
図4A〜4Bに示されるように、リード27が接続され、電源が接続されて発熱抵抗体22に通電される構造になっている。この電源は、直流でも、交流でもよく、また、パルス電圧でもよい。パルス電圧であれば、そのデューティまたはパルスの周波数を変えることにより、印加電力が制御され得る。
【0050】
発熱抵抗体22の近傍には、発熱抵抗体22と同様に絶縁基板21の表面に温度測定用抵抗体24が形成されている。この温度測定用抵抗体24は、
図5Aに示されるように、発熱抵抗体22に沿って形成されるのが好ましい。
図5Aに示される例では、発熱抵抗体22と同様に、温度測定用抵抗体24が、2個の直線部分を連結するU字形状に形成されている。そして、その両端が一対の測定用端子25a、25bに接続されている。この測定用端子25a、25bも前述の電極23と同様に、良導電性の材料により形成されている。この温度測定用抵抗体24には、両端の一対の測定用端子25a、25bのみならず、両端からそれぞれ1/3程度の長さのところに測定用リード25eの一端部が接続され、測定用リードの他端部がそれぞれ測定用端子25c、25dに接続されているが、この理由に関しては後述される。
【0051】
温度測定用抵抗体24は、発熱抵抗体2と同じ材料で形成されてもよいが、できるだけ温度係数の絶対値(%)が大きい材料が好ましい。この温度測定用抵抗体24は、発熱させるものではなく、絶縁基板21の温度を検出して、絶縁基板21の温度が、造形材料の融解温度に達するように制御するために設けられている。そのため、例えば0.5mm幅で、発熱抵抗体22より若干短い長さで形成される。また、温度測定用抵抗体24自身は発熱しないよう印加電圧が低く抑えられて、例えば5V程度が印加される。この温度測定用抵抗体24は絶縁基板21上に直接設けられているため、両者の温度は殆ど同じである。その結果、温度測定用抵抗体24の抵抗値を測定することにより、絶縁基板21表面の温度、ひいては絶縁基板21の裏面で密着する造形用材料の温度が推定される。すなわち、抵抗体材料は、一般的にその温度が変化するとその抵抗値が変化するので、その抵抗値の変化を測定することにより、その温度が測定され得る。温度検出手段については後述されるが、この温度測定用抵抗体24の両端の電圧変化を検出することにより温度測定用抵抗体24の温度が検出される。そのため、抵抗体の温度係数が大きいことが測定誤差を小さくする。なお、この場合は、温度係数は正でも負でもよい。
【0052】
温度測定用抵抗体24は、発熱抵抗体22と同じ材料とは限らず用途に応じて印刷などにより形成される。すなわち、微小の温度差を必要とする場合には、AgとPdの混合比率を変えたものや、全く別の材料で温度係数の大きいものを用いることもできる。この温度測定用端子25a、25bの形成は、温度測定用抵抗体24の端部に設けられるとは限らない。例えば、
図5A〜5Eに示されるように、温度測定用抵抗体24がU字状に1本で形成され、その途中のところから測定用リード25eを介して温度測定用端子25c、25dが形成され、さらに、両端部に接続される測定用端子25a、25bが形成されてもよい。そうすることにより、局部的な温度測定が可能となる。すなわち、測定用端子25aと測定用端子25cを用いることにより、U字形の温度測定用抵抗体24の測定端子25a側の1/3程度の部分の温度が測定されるし、測定用端子25cと測定用端子25dとを用いて測定することにより、U字形のコーナ部近傍(第2の発熱抵抗体22bの部分)の温度が測定される。さらに、測定用端子25dと測定用端子25bとを用いて測定することにより、温度測定用抵抗体24の残り1/3程度の部分の温度が測定される。さらに、測定用端子25aと測定用端子25bとで測定することにより、全体の平均の絶縁基板21の温度が測定される。この測定用端子の数は、1/3程度の位置に限定されず、さらに細かく設けられてもよいし、粗く設けられてもよい。特に絶縁基板21が大きい場合には、絶縁基板21の位置により温度がばらつく可能性があるので、細かく測定点が設けられることが好ましい。この測定位置は、発熱抵抗体22の近傍が好ましい。
【0053】
なお、温度測定用抵抗体24は、絶縁基板21(第1加熱板2)の大きさ、または温度勾配をどの程度にするか、などの目的に応じて、形成される位置や測定端子25の位置が設定される。
【0054】
図5Bに示される例は、逆コ字状に発熱抵抗体22が形成された例であり、第2の発熱抵抗体22bの幅は、直線状部分の発熱抵抗体(第1の発熱抵抗体)22aの幅より小さく形成されている。前述のように、この部分での温度を第1の発熱抵抗体の部分よりも、より高くするためである。
図5Bに示されるように、少なくともコーナ部の一部には、連結用導体27aが設けられることが好ましい。コーナ部では、道程が短く抵抗の小さい内側部分に電流が集中して、外周側の電流が少なくなり、均一な発熱をし難くなるからである。
図5Bに示されるように、コーナ部の少なくとも一部に連結用導体(導体層)27aが設けられることにより、一定幅の発熱抵抗体22を平行に流れた電流は、連結用導体27aでは全体に均一に電流が流れる。そのため、底部の第2の発熱抵抗体22bでも均一に電流が流れ、さらに直線部分となる第1の発熱抵抗体22aにも全体を電流が均一に流れる。なお、
図5Bに示される例では、電極23等と連結用導体27aとが先に印刷形成され、その上に発熱抵抗体22等が形成された例である。
【0055】
しかし、この上下関係は逆でもよく、
図5Cに示されるように、先に発熱抵抗体22等が形成され、その後に電極23および連結用導体27bが形成されてもよい。連結用導体27a、27bが形成される部分は発熱抵抗体22が無くてもよいが、有っても電流は抵抗の小さい連結用導体27aの部分を流れるので、構わない。
【0056】
図5Dに示される例は、直線状の発熱抵抗体(第1の発熱抵抗体)22aの部分が切断されて連結用導体27cで接続された例である。このような構造にすると、連結用導体27cで連結された場所では、抵抗が殆ど無いため発熱は殆どしない。そのため、この近傍の温度は低下する。従って、電極23が設けられている端部側にこのような連結用導体27cが形成されることにより、このような連結用導体27cが設けられていない側に比べて、連結用導体27cが設けられた側の絶縁基板21の温度が低くなる。その結果、絶縁基板21に温度勾配が形成される。換言すると、前述のU字形状にされなくても、絶縁基板21に温度勾配が形成される。なお、図示されていないが、2以上に分割された発熱抵抗体22cと22dとで、その幅を異ならせ、電極23から遠くなる程その幅を小さくすることにより、より一層、絶縁基板21に温度勾配が形成され得る。
図5Dでは、第2の発熱抵抗体22bが形成されているが、無くても温度勾配が形成され得る。この発熱抵抗体22aが切断され、連結用導体層27cが形成されている場所は、1か所に限らず、複数か所に形成されてもよい。また、この場合も、連結用導体層27cが形成されるだけで、発熱抵抗体22aは連続して形成されていてもよい。さらに、連結用導体27cの形成は、発熱抵抗体22aの上側に形成されてもよい。
【0057】
図5Eは、絶縁基板21に温度勾配を形成するためのさらに他の例を示す図である。この例は、発熱抵抗体22が、流路12の方向に沿って直線状に形成された部分22eを有し、直線状の部分22eがテーパ状もしくは段階的に幅が細くなるように形成されることにより、吐出口13側の温度が供給口側よりも高温になるように形成されている。具体的には、発熱抵抗体22の幅が、一定ではなく、電極23側で幅が広く、電極23と反対側の端部側で発熱抵抗体22の幅が狭く形成された発熱抵抗体22eで形成されている。このような構造にしても、発熱抵抗体22eが狭くなると、前述のように、直列抵抗値は大きくなるので、発熱量が大きくなる。すなわち、テーパ状の発熱抵抗体22eの幅の狭い方の基板温度が上昇する。従って、この方式により温度勾配が形成されれば、第2の発熱抵抗体22bは無くてもよいが、
図5Eの例では、第2の発熱抵抗体22bも形成されている。なお、その他の部分は前述の各例と同じであり、同じ部分には同じ符号を付してその説明が省略されている。
【0058】
前述のように、発熱抵抗体22の数や温度測定用抵抗体24の数、また、温度測定用の測定端子の数などは、限定されない。流路構造体1の大きさおよび造形材料の融解温度に応じて、所望の温度に上昇することができるように、発熱抵抗体22は、その数、または各発熱抵抗体22の幅を調整することにより形成される。
【0059】
このように絶縁基板21の一面に発熱抵抗体22、温度測定用抵抗体24、電極23および測定用端子25が形成されることにより、第1加熱板2および図示しない第2加熱板が形成される。この第1加熱板2の表面側に図示しないガラス接着層を介してカバー基板26が貼り付けられている。カバー基板26は、絶縁基板21よりも熱伝導率が小さくてもよいが、熱膨張率がほぼ同じ、または絶縁基板21と同じ材料で同じ厚さであることが好ましい。一方でこの第1加熱板2で十分な発熱量が得られない場合には、この発熱抵抗体22などが形成された絶縁基板21を、絶縁体を挟んで向い合せて、またはそのまま同じ向きで重ね合せてその露出面にカバー基板26が貼り付けられることにより形成される、多重加熱板が用いられてもよい。単に第1加熱板2を重ねることにより、熱量が増やされてもよい。そういう可能性のある場合には、このカバー基板26は、絶縁基板21と同程度の熱伝導率を持つことが好ましい。
【0060】
図1A〜1Cに示される例は、流路の側壁の第3側壁部123が流路構造体1の貫通孔の側壁で形成され、貫通孔の両端部が第1加熱板2の第1側壁121と閉塞板7の第2側壁122とで構成されていた。しかし、このような流路構造体1が用いられないで、第1加熱板2の絶縁基板21またはカバー基板26の一部に凹状の断面形状を有する溝21aが形成され、その開口部が閉塞板7または第2加熱板により閉塞されて流路12が形成されてもよい。この場合、第1加熱板2に形成される溝21a(
図6参照)の周囲が流路12の第1側壁部となり、閉塞板7により閉塞される部分が第2側壁部となる。その例が
図6を参照して説明される。
【0061】
図6は、前述の第1加熱板2の絶縁基板21の裏面側を上にして描かれている。すなわち、絶縁基板21の裏面に溝21aが形成されることにより、流路12が形成され、その一端部側に細くされた吐出口13が形成されている。この面に閉塞板7、または後述される薄板31および第3加熱板4、または第2加熱板が接合されることにより、流路12の第2側壁部が形成される。このような構造でも、流路12の第1側壁部(コ字型部)が第1加熱板2により形成されているので、流路12内の造形材料は、非常に効率よく加熱される。
図6に示される例では、絶縁基板21の裏面に溝21aが形成されたが、カバー基板26またはカバー基板26に代えて形成される保護板に流路用の溝が形成されてもよい。このようなセラミック板に溝を形成することは、例えば粉末化したセラミック材料が金型で加圧成形されてから焼結されるか、グリーンシートなどの加工しやすい状態で溝加工が行われ、その後に焼結されることにより行われる。また、流路12を形成する溝の断面形状も矩形には限定されない。断面が、例えば円形の一部でもよい。
【0062】
図1A〜1Cに示される例は、造形材料を連続的に吐出する場合の吐出ヘッドの例であった。この場合には、バレル5内で、図示しないフィラメントなどの原材料を一定ピッチで送り出す装置により吐出量が定められ、所望の吐出口13から所望の造形材料が吐出されて造形物に供給される。
【0063】
図7A〜7Bは、本発明の造形材料吐出ヘッドのさらに他の実施形態を示す図である。
図7Aでは、第1加熱板2が流路構造体1の左側に設けられているが、
図1Aと同じでもよい。この実施形態では、閉塞板7が薄板31で形成され、その流路構造体1と反対側に流路12(
図8参照)を局部的に加熱し得る第3加熱板4が熱歪み発生部材32を介して設けられている。第3加熱板4の瞬間的加熱(第3加熱板4での加熱は数msであるが、造形材料への熱作用は熱伝導を考慮すると数十msになる)により薄板31の変形で流路12内の造形材料を吐出し得る。熱歪み発生部材32はなくても構わない。第3加熱板4は、後述されるが、流路12が複数個あっても、個別の流路12のみに熱作用を及ぼすように形成されている。このような第3加熱板4が設けられることにより、造形材料が融解型のものに限らず、300〜400nm程度の紫外線硬化性樹脂や400nm以上の可視光で硬化する樹脂などの光硬化性樹脂であっても、必要な吐出口のみから、間欠的に造形材料が吐出され得る。光硬化性樹脂のように、加熱する必要のない場合には、第1加熱板2を発熱させなければそのまま使用され得る。そのような光硬化性樹脂を硬化させるために、LED8が吐出口13の近傍に設けられている。LED8は、光硬化性樹脂を硬化させ得る波長の光であればよい。
【0064】
すなわち、本発明の立体造形物の造形方法は、造形材料を吐出するための流路12の一面を薄板31で形成し、薄板31の流路12と反対側に第3加熱板4を配置し、第3加熱板4を用いて、特定の流路のみに瞬間的な熱作用を及ぼすことにより特定の流路12の造形材料を吐出させることを特徴としている。この熱作用は、後述されるように、特定の流路内の造形材料の熱膨張または特定の流路12に沿った薄板31の熱膨張を局所的に起させることにより行われる。または、薄板31と第3加熱板4との間に薄板31とは熱膨張率の異なるピース32(
図10A参照)を設けることにより、またはバイメタルを設けることにより、第3加熱板4による加熱で熱膨張率の差に基づく熱歪みにより薄板31を変形させ得る。
【0065】
流路構造体1およびその取付板5への取付構造、並びに第1加熱板2の構造は、
図1A〜1Cに示される構造と殆ど同じであるが、
図7Aに示される流路構造体1は、
図8に板状体10の一例が示されるように、流路12が6個並列に形成されている(
図8では6個であるが、12個程度形成され得る)。その結果、吐出口13も、
図7Bに吐出口13側の平面図が示されるように、6個並列して形成されている。従って、板状体10自体の大きさCも大きく、幅Cは形成する流路12の数に応じて定められるが、例えば、流路12の数を12個(
図8では6個)として、60mm程度の幅になる。吐出口13を含めた流路の長さA、取付部16の長さBは、
図3に示される例と同じであり、その詳細な説明は省略される。なお、
図7Aでは、流路構造体1の板状体10a、10bが2枚の板状体10で形成されているが、本質的な差異ではない。3枚でもよいし、
図1Aの流路構造体1が2枚でもよい。4枚以上で形成されてもよい。この吐出ヘッドでは、取付板5にバレルは設けられておらず、材料供給口14に通じる開口51(
図11A、
図12A参照)が取付板5に形成されている。
【0066】
すなわち、例えば流路12が、
図3や
図8に示されるように、その流路12の延びる方向と直角方向に複数個並列して形成され得る。そして、複数個の流路12のそれぞれの第1側壁部が、第1加熱板2により形成され、複数個の流路のそれぞれの第2側壁部が、薄板31により形成され、第3加熱板4が複数個の流路12のうち、特定の流路12のみを加熱するように形成され、第3加熱板4の瞬間的加熱により特定の流路12のみから造形材料を吐出するように形成されている。
【0067】
なお、板状体10の大きさが
図1Aに示される例よりも大きく、それに伴い、第1加熱板2も大きく形成されている。すなわち、
図9A〜9Cに示されるように、
図5A等に形成される第1加熱板2の2個分が1枚の絶縁基板21に形成されている。個々の発熱抵抗体22などは、前述の例と同じであるので、その説明は省略される。なお、
図9Aでは、図面の明瞭化のため、温度測定用の測定端子が、全て25のみで示されている。
図9Cは、発熱抵抗体22の形成例の他の構造を示している。絶縁基板21の長手方向に沿って延びるように発熱抵抗体22が形成されている。なお、
図9Cでは、第3の発熱抵抗体22fが、吐出口13側で幅が広く高い熱量用として形成され、その反対側では幅が狭く、低い熱量用の第4の発熱抵抗体22gが形成されている。しかし、材料などは、前述の例と同じであり、同じ部分には同じ符号を付して、その説明は省略される。
【0068】
なお、前述の各例では、第1の発熱抵抗体22aと第2の発熱抵抗体22bとが直列に接続されているため、発熱抵抗体の幅の狭い方の温度が高くなったが、この
図9Cに示される例では、第3の発熱抵抗体22fと第4の発熱抵抗体22gとはそれぞれ別々に一対の電極23に接続されている。従って、異なる電圧を印加することにより、第3の発熱抵抗体22fの発熱量を大きくすることもできる。すなわち、
図5Aなどに示される第1加熱板2と同様に、絶縁基板21の図の左端側が右端側よりも高い温度勾配になるように形成されている。さらに、この例では、第3の発熱抵抗体22fおよび第4の発熱抵抗体22gの中間部に共通端子23bが形成され、半分ずつで、それぞれ別の電圧を印加できるようになっている。このようにすることにより、流路12により発熱温度を制御することができ、流路に供給する造形材料の融解温度が異なる場合でも、同時に利用することもできる。この共通端子23bは温度測定用抵抗体24の中間点の共通端子と兼ねられている。この
図9Cに示される発熱抵抗体22の形状は、流路12の数が多い場合に有効で、容易に吐出口13側の第1加熱板2の温度を高くすることができる。
【0069】
流路構造体1の他面側に設けられる第3加熱板4は、流路12が複数個ある場合、流路12ごとに外部からの信号により選択的パルス電流の印加などにより加熱することができるように形成されている。この第3加熱板4により特定の流路12にパルス電圧が印加されると、その流路12が薄板31を介して加熱され、その流路12の内部の造形材料が膨張する。その結果、その流路12内の造形材料が押し出されてその流路12の吐出口13から造形材料が吐出される。すなわち、この例では、
図7Aに示される熱歪み発生部材32(3)は不要である。換言すると、第3加熱板4により特定の流路12内の造形材料または薄板31の熱膨張による造形材料の体積増加または薄板31の膨張による流路12の体積変化に基づき流路12内の造形材料を吐出することができる。
【0070】
この場合、薄板31が熱膨張率の大きい材料で形成されていれば、その流路に沿って膨張し、後述される熱歪み発生部材の場合と同様の変化で造形材料が吐出され得る。また、薄板31の熱膨張率が大きくなくても、直接造形材料の温度が上昇すると、材料そのものの体積が増大する。その結果、流路12内の造形材料は吐出口13の方に押し出され、吐出口13から造形材料が吐出される。この場合も第3加熱板4が瞬間的に発熱させられることにより、膨張が瞬時に起こり、発熱作用が解除されると温度が低下し、体積は元に戻る。その結果、いずれの方法によっても、瞬時に造形材料が吐出され、その後は吐出が止まる。なお、造形材料は常に造形材料供給口側から供給され、流路12内で融解した造形材料または室温で流動状態の造形材料は、流路12内に充満した状態を維持している。この造形材料は、フィラメントや棒状の材料であれば、バレルにより送り込まれるが、光硬化性樹脂の場合、その種類により粘度は異なるものの、いずれの場合も流動物であるため、吐出口13を下側にセッティングすることにより、自重で流路12内に充満される。もし、自重により落下しない場合は、加圧することにより、常に流路12内に充満させることができる。また、樹脂や低融点の金属の場合でも、粉末状にすることにより、光硬化性樹脂などの粒状物と同様に自重による落下が可能となる。
【0071】
一方、
図7Aに示されるように、薄板31と第3加熱板4との間の薄板31に熱歪み発生部材3(金属片または非金属片からなるピース32;
図10A参照)が貼り付けられてもよい。この熱歪み発生部材3は、例えば薄板31と熱膨張率の異なる材料で、各流路12に沿ったピース32(
図10A参照)などで形成される。このピース32が加熱されると、薄板31とピース32との熱膨張率の差に基づき薄板31に反りの変形が生じる。この場合、ピース32の熱膨張率が薄板31よりも大きいと、流路12内に食い込むように薄板31が変形するので、ピース32の幅は流路の幅より狭いことが好ましい。逆にピース32の方が薄板31よりも熱膨張率が小さいと、薄板31が外側に引っ張られるように変形が生じる。従って、この場合はピース32の幅は制限されない。薄板31が内側に食い込むように変形すれば、それに伴い流路12内の造形材料は押し出される。また、外側に引っ張られても、第3加熱板4による加熱は瞬間的なパルス加熱であるため、直ちに加熱は止まり、薄板31の変形は元に戻る。そのため、流路12内の体積は、一旦大きくなりその後元に戻るため、元に戻る際に流路12内の造形材料は押し出されて吐出口13から吐出される。従って、薄板31とピース32との間の熱膨張率は、差があればよく、どちらが大きいという必要はない。この熱歪み発生部材3は、後に詳述されるように、薄板との間で熱膨張率の差を生じさせなくても、直接バイメタルが貼り付けられてもよい。その詳細例が
図10A〜10Eを参照して説明される。
【0072】
図10Aには、ピース32が設けられる構造例が示されている。
図10Aには、また、第3加熱板4のヒータ42がその位置を示すため二点鎖線で示されている。この薄板31は、前述の
図8に示される流路構造体1の複数の流路12のそれぞれの一面を被覆するように貼り付けられている。すなわち、1枚の薄板31が全ての流路12の一面を閉塞するように形成されていることが製造上簡単で好ましい。この薄板31は、例えば0.6mm程度の厚さの、アルミニウム合金板などからなる金属板でもよいし、変形しやすい多孔質セラミックスでもよいし、また、ポリエチレン、ポリテトラフルオロエチレンなどの耐熱性絶縁フィルムでもよい。耐熱性があり、変形しやすく、熱を伝達しやすい材料であることが好ましい。
【0073】
この薄板31は、目的に応じて、熱膨張率が大きく変形しやすい材料、膨張率が小さくて変形しやすい材料など、種々の材料が用いられる。前者の例としては、例えば真鍮などの銅合金、アルミニウム合金(ジュラルミン)などで、熱膨張率(線膨張率)は20〜30ppm/℃である。後者の例としては、Fe合金(Fe-Ni-Crの比率が異なる)、ステンレス鋼などの金属板で、線膨張率は6ppm前後になる。非金属板でも構わない。この薄板31は、目的に応じて、0.05〜0.6mm厚程度のいずれかの厚さのものが用いられ得る。例えば熱歪み発生部材3としてのピース32と共に、加熱により変形し得るように形成される場合には、薄板31にピース32が貼り合され、加熱されることにより、薄板31とピース32との熱膨張率の差に基づき薄板31を変形させ、それに伴って流路12内の造形材料を吐出させることができる。この場合には、薄板31は第1ピース32との熱膨張率の差が大きく、かつ、変形しやすい材料が選ばれる。例えば、薄板31として、前述のアルミニウム合金板(線膨張率:23ppm/℃)または銅合金(線膨張率:約20ppm/℃)が用いられる場合、ピース32として、0.1mm〜0.2mm厚程度の42Fe-Ni合金板(線膨張率:6ppm/℃)が用いられ得る。ここで、流路構造体1を構成する板状体10は鉄合金が用いられている。なお、この薄板31の熱膨張を利用しないで、例えば後述されるバイメタルを熱歪み発生部材3として貼り付けることもできる。この場合、薄板31の熱膨張率は小さい方が好ましい。また、熱歪み発生部材3を設けないで、直接流路12内の造形材料を加熱し膨張させるか、または薄板31自身を熱膨張させて吐出することもできる。この場合には、この薄板31は大きく変形しやすいものが好ましく、絶縁フィルムなどが用いられ得る。なお、薄板31やピース32として、金属の例が挙げられたが、金属に限らず、例えば半導体セラミックパッケージなどに用いられるセラミックスや、圧電材料などの無機物質板、石英ガラス(線膨張率:0.5ppm/℃)などが用いられてもよい。
【0074】
例えば流路12が幅1mm×深さ1mm×長さ5mm=5μl(マイクロリットル)=5000nl(ナノリットル)の場合に、吐出量(吐出口13の大きさで定まる)が0.3mm×0.3mm×0.05mm厚=0.0045mm
3=4.5nl(ナノリットル)であり、ABSの体積膨張率は1℃当たり(6〜13)×10
-5であるので、10×10
-5として10℃で0.1%膨張する(流路12内の10%が100℃上がったとすると平均10℃の上昇)。従って、5000nl×0.1%=5nlで、上記吐出量より多くなり、少量の吐出の場合には、造形材料の熱膨張だけで充分に吐出させることができる。
【0075】
また、熱歪み発生部材3を構成するピース32は、各流路12に沿って形成されるが、
図10Aに示される例では、その根元側(吐出口13と反対側)が連結部32aにより連結されて、櫛歯状に形成されている。この根元側はヒータ42の位置から離れているため、温度も殆ど上昇しない。そのため、薄板31との熱膨張率差は生じない。一方、各流路12に沿ってピース32を貼り付けるのは手間がかかるが、連結部32aがあると、各流路12に合せてピース32を位置合せするのが非常に容易になる。従って、連結部32aの位置合せをしてピース32が貼り付けられ得る。
図10Aでは、流路構造体1の表面に薄板31が貼り付けられ、その表面にピース32が貼り付けられた状態が示されており、この上に設けられる第3加熱板4のヒータ42の位置が二点鎖線で示されている。すなわち、ピース32の先端部側が加熱されるようになっている。その結果、連結部32aの方は、第3加熱板4による温度上昇を殆どもたらさない。
【0076】
図10Bに示される例は、
図10Aと同様の図であるが、ピース32の根元側が連結部32aで連結されるだけではなく、各ピース32の先端部側にハット部32bが形成されている。このハット部32bは連結されないで各流路12に沿ったピース32毎に独立して形成されている。このようなハット部32bが形成されることにより、ピース32と薄板31との接着力が向上し、ヒートサイクルに対しても剥離が生じにくくなる。すなわち、第3加熱板4のヒータ42の近傍では温度が上昇して熱膨張率差に基づく応力が発生する。そのため、剥離力が大きくなる。しかし、ハット部32bではそれ程温度は上昇しないので、熱歪みによる応力が働きにくい。その結果、応力のかかりやすいピース32の両端部が連結部32aとハット部32bとでしっかりと固定される。すなわち、ピース32の剥離力が抑制される。
【0077】
図10Cは、熱歪み発生部材3の他の実施形態を示す図である。すなわち、この例は、2種類の材料の熱膨張率差に基づく変形をピース32と薄板31の熱膨張率の差を利用しないで、前述のピース32と第2のピース33とで形成されている。この場合、薄板31の熱膨張率は問題にしていないので、絶縁フィルムなど薄い有機フィルムが用いられ得る。この場合、ピース32と第2のピース33との熱膨張率の差に基づく変形が発生する。その変形により薄板31が押し込まれたり、引っ張られたりすることにより、造形材料が吐出される。この場合、連結部32aで連結されないで、独立したピース32でもよく、市販のバイメタルが用いられ得る。すなわち、熱歪み発生部材3が、熱膨張率の異なる少なくとも2種類の板材の接合により形成されるバイメタルからなり、そのバイメタルが流路12に沿って薄板31に接合されてもよい。この場合も、薄板31が外側に引っ張られるような第2のピース33またはバイメタルの貼り付けであれば、その幅に制限されないが、薄板31が流路12内に食い込む変形をする場合には、第2のピース33またはバイメタルの幅を流路12の幅より狭くすることが好ましい。また、この場合も、第2ピース33は金属片に限らず、非金属片でも構わない。なお、熱歪み発生部材3は、熱膨張率の異なる2種類の材料を貼り合せるだけではなく、2種類の熱膨張率の異なる材料に限定されるものではない。その間に中間の熱膨張率を有する第3の板材が介在されていてもよく、種々の変形をなし得る。
【0078】
図10Dは、第3加熱板4の一例を説明する平面図である。この第3加熱板4は、詳細な図は示されていないが、前述の第1加熱板2と同様の構成で形成され得る。すなわち、第1加熱板2の絶縁基板21と同様の絶縁基板41上に、発熱抵抗体からなるヒータ42が形成され、その両端部には第1導電端子43と第2導電端子44が形成されている。この第1導電端子43および第2導電端子44は、前述の電極23とか測定用端子25、連結端子27と同様に、抵抗率の小さい材料が塗布されることにより形成されている。この
図10Dに示される例では、第1導電端子43が複数の流路12に沿って設けられるヒータ42の各先端部を連結して共通電極として形成されている。そして第2導電端子44は、それぞれ個別端子として導出され、個々の流路12の単位で信号が印加され得る。なお、
図10Dにおいて、45はヒータ42、導電端子43、44の表面を被覆して保護するガラスなどからなる保護膜(
図7A〜7Bでも省略されている)の形成範囲である。このヒータ42に印加される電圧が増やされることにより、吐出量が多くなる。また、発熱抵抗体(ヒータ42)が2か所に形成され、加熱のタイミングがずらされることによっても吐出量が増加され得る。すなわち、第3加熱板4は、
図10Dに示されるように、第2絶縁基板41上に発熱抵抗体42が複数個の流路12のそれぞれの流路12に沿って形成され、特定の流路12内に熱作用を生じさせるように形成されている。
【0079】
前述の例では、ヒータ42が1個で形成されていたが、
図10Eに示されるように、ヒータ(発熱抵抗体)42が2個以上に分割され、それぞれの第1ヒータ42a、第2ヒータ42bに別々に独立して電圧が印加されてもよい。すなわち、
図10Eにおいて、44aは第3導電端子、44bは第4導電端子であり、この例では、第1ヒータ42aと第2ヒータ42bとが直列に接続された部分に第4導電端子44bが接続されている。その結果、第1導電端子43と第3導電端子44aとの間に電圧が印加されれば、前述の
図10Dに示される例と殆ど同じになる。しかし、第1導電端子43と第4導電端子44bとの間に電圧が印加されれば、第2のヒータ42bのみが加熱される。また、第3導電端子44aと第4導電端子44bとの間に電圧が印加されることにより、第1のヒータ42aのみが加熱される。この両者の電圧の印加を数ミリ秒〜数十ミリ秒の間隔をあけて連続的に電圧が印加され得る。このような信号電圧の印加により吐出量の種々の制御が行われ得る。
【0080】
この第3加熱板4には、造形物の微小単位での造形材料の吐出の観点から、パルス電圧が印加されることが好ましい。このパルス電圧の印加時間は、数m(ミリ)秒の非常に短い時間であるが、瞬間的にヒータ42の温度が上昇し、その温度がピース32に伝わり、ピース32と薄板31の間、またはピース32と第2のピース33との間で変形が生じる。薄板31の変形により、吐出口13から造形材料が吐出される。このパルス電圧の印加は、通常のサーマルプリンタなどの各画素の信号を印加するのと同様(例えば特開昭57-98373号公報)で、データはシリアルにシフトレジスタに入れられ、電圧の印加はパラレルアウトで必要箇所だけ通電することにより行われ得る。加熱量の制御は、このシフトレジスタとAND回路の間にラッチ回路を入れて、パルス印加時間を変化させ得る。
【0081】
前述の
図8に示されるように、流路12が複数列に形成されることにより、
図7Bに示されるように、吐出口13がライン状に並列したライン型吐出ヘッドが得られる。しかし、この吐出口13は、1個の流路12に1個とは限らない。すなわち、
図11Aには、吐出口と反対側の造形材料を導入する取付板5側から見た図が、
図11Bには、
図11Aの矢視Bから見た図が、
図11Cには、
図11Bの矢視C、すなわち吐出口13側から見た図(層構造は示されないで簡略化した図)、がそれぞれ示されるように、小さい吐出口13aと大きい吐出口13bが1個の流路12に形成され、大きい吐出口13bと小さい吐出口13aを交互にライン状に並列した吐出ヘッドが得られる。この吐出口13の大きさ、形状はこの例に限定されない。任意の形状の組合せで形成される。なお、取付板5には、前述のように、バレルは取り付けられず、開口51が流路12の造形材料供給口14に連通するように形成されている。この吐出口13a、13bは、両方同時に吐出する場合もあるし、いずれか一方から吐出するが、他方は閉塞される場合もある。この吐出口13の分岐は、
図11Dに示されるように、同じ大きさの吐出口13e、13fが流路12の両側端部に形成される構造でもよい。
【0082】
このように吐出口13が形成されることにより、吐出口13のピッチが狭くなり、より一層きめ細かい微細な造形物が作製され得る。なお、この吐出口13e、13fは一列に形成されないで2列以上に形成されてもよい。流路構造体1の板状体10の積層枚数を増やすことにより、1つの流路12から一列ではない多数の吐出口13が形成され得る。このように、流路12の1個に対して複数個の吐出口13が接続して形成されることにより、多彩な造形物が得られる。また、このような微細化は、吐出ヘッドをx方向にも半ピッチ程度動かす、いわゆるシャトル方式を採用することもできる。造形物テーブルはy方向やz方向にも移動することができる。そうすることにより、1回のy方向の移動で2層分積層することができるし、同様に3層以上も可能になり得る。
【0083】
図12A〜12Bは、
図7Aに示される流路構造体1が、図示しない熱伝導性部材または閉塞板を介して2個重ねられた吐出ヘッドの例である。この流路12を構成する貫通孔の開口部には、前述の第1加熱板2および薄板31等でそれぞれ閉塞される。その結果、開口51も吐出口13a、13bも、それぞれ2列のライン状に形成された2列ラインヘッドが得られる。それぞれ
図11Aと
図11Cと同様の図が示されている。この例では、吐出口13の形成例の異なる2組の流路構造体1が2個重ねられている。なお、重ねる個数は2個には限定されず何個でもよい。これらの構成にすることにより、材料が異なる複数種類の造形材料または色の異なる複数の造形材料を用いることができる。さらに、1スキャンで多色、かつ、凹凸のある造形物の1層を形成することができる。
【0084】
図13Aは、
図7Aに示される吐出ヘッドが2個、第1加熱板2側が対向するように、断熱板71を挟んで接合された例である。なお、重ねる個数は2個には限定されない。このようにすることにより、
図13Cに吐出口13a、13c側から見た平面図が示されるように、複数の吐出口13を有するラインヘッドが2列に形成される。この造形材料吐出ヘッドは、ラインヘッドが2列に形成されるというだけではなく、
図13Cに示されるように、吐出口13aと吐出口13cとで吐出口13の大きさが変えられ得る。その結果、造形材料の吐出量が自由に変更され得る。さらに、2列のラインヘッドで、第1加熱板2が別々に設けられているので、それぞれのラインヘッドは異なる融解温度にされ得る。すなわち、異なる造形材料がその材料に合せて融解され得る。より一層種々の造形物が短時間で作製され得る。勿論、この2列で、吐出口13a、13cの大きさがさらに変えられてもよいし、第1加熱板2は発熱されないで、紫外線硬化樹脂と併用されてもよい。
図13Aにおいて、8は紫外線硬化樹脂を硬化させるLEDである。
【0085】
図13Bは、取付板5側から見た平面図である。
図13Bおよび
図13Cから明らかなように、この2列のラインヘッドでは、流路の位置が半ピッチずれるように形成されてもよい。吐出口13も半ピッチずれて形成されている。このようにラインヘッドを複数列形成する場合に、半ピッチずらせた組合せがあると、ピッチ間に造形材料の不足分がなくなり精度の優れた造形物を作製することができる。これらの構成にすることにより、材料が異なる複数種類の造形材料または色の異なる複数の造形材料を用いることができる。さらに、1スキャンで多色、かつ、凹凸のある造形物の2層以上を形成することができる。この場合も、前述の
図11Cや
図11Dの場合と同様に、吐出口13の数を増やすこともできるし、一列に吐出口13を整列させる必要はない。また、吐出口13が半ピッチずらされる必要もない。なお、
図13Bで5は取付板、51は材料供給口に通じる開口である。また、このように複数列に吐出口13の列が形成される場合、その列に応じて吐出口13の鉛直方向の位置が容易に変えられる。2組の吐出ヘッドがずらせて接合されるだけで得られる。鉛直方向の位置が例えば1mm程度異ならせることにより、1回のスキャンで2層以上の造形物が形成され得るので、より一層早く造形物が作製され得る。
【0086】
また、このように、流路12の数が多く、吐出口13がライン状に複数個形成されることにより、多色型の造形物などの場合でも簡単に作製され得る。さらに、主剤と硬化剤が別個に吐出されて混合されることも容易になる。
図14Aに吐出ヘッドの
図7Aと同様の図が概略図で示されるように、流路構造体1の吐出口13側の先端部は、流路12の延びる方向に位置ずれが形成され、段差dを有し得る。2枚の板状体10a、10bの長さを変えておくことにより形成される。この段差は、流路構造体1が2個段差を有するように接合されて形成されてもよい。また、流路構造体1が段差を有しなくても、2個以上の吐出ヘッドが先端の吐出口13に段差を有するように重ねて使用されてもよい。すなわち、吐出口が造形テーブルと交差する向きになるように複数列配列し、前記複数列の少なくとも2列で前記吐出口の列の鉛直方向の高さが異なり、前記吐出口の列の下に設けられる造形テーブルのx−y方向の1回のスキャンにより少なくとも2層分の造形物を形成することができる。
【0087】
この段差dは、例えば吐出された造形材料の高さが1mm程度であれば、この段差dも1mm程度にし、造形テーブルのスキャンの方向が長い板状体10aの方向から短い板状体10bの方向に造形物がスキャンされるようにすることにより、連続的に造形材料を吐出する場合でも、吐出された造形材料が吐出ヘッドで削られることはない。その結果、綺麗な造形物が形成され得る。逆に吐出した造形材料の頭を削り取るように段差が形成されてもよい。そうすれば表面が平坦で綺麗な造形物が作製され得る。このような形状にするのは、材料の性質、粘度などを変える場合に、次の層を付着しやすい平面にしたり、吐出しやすくしたり、付着しやすくしたりするために行われる。また、吐出物が一定の厚さを保つようにしたり、窪みの間隔を保ったりするなど、吐出物をある程度加工できるようにするためである。
【0088】
また、段差ではなく、
図14Bに示されるように、2枚の板状体10a、10bが斜め方向に切断された構造にされてもよい。そうすることによっても、同様に吐出した造形材料の吐出ヘッドによる欠落が防止される。なお、
図14Bおよび
図14Cでは、吐出口13の部分のみが示されている。さらに、
図14Cに示される例は、段差が2枚の板状体10a、10bの間で形成されるのではなく、1枚目の板状体10aの半分程度の厚さともう1枚の板状体10bの全体が凹ませた形状になっている。造形材料の吐出量が多い場合には、吐出された造形材料の広がり余地が確保され得る。なお、
図14Aで、55は隣接する流路12用の造形材料が交じり合わないようにする筒状部である。また、第1加熱板2や第3加熱板4などは概念的に示されている。
【0089】
さらに、図示されてはいないが、吐出ヘッドの先端部が造形物に対して、直角ではなく、傾けた状態で造形材料を吐出させながら、相対的にスキャンされてもよい。そうすることにより、連続的に造形材料が吐出される場合でも、前述の段差が付けられたり、先端部が斜めにカットされたりしたのと同様の効果を発揮する。厚さの厚い造形物を得やすくなる。要するに、造形物の形状に合せて吐出ヘッドの先端部の形状が変えられたり、設置の角度が調整されたりすることにより、厚い造形物でも効率よく形成され得る。
【0090】
この実施形態によれば、第3加熱板4により、複数の吐出口13の特定の吐出口13から適宜造形材料が吐出され得るので、例えば造形テーブルをスキャンしながら、造形物の特定の場所のみに造形材料を吐出することができる。また、吐出口が複数個形成されることにより、造形物の2か所以上を同時に形成することができる。さらに、複数個の吐出口が形成されることにより、吐出口の大きさを変えて吐出量を変化させることも可能になる。また、種々の色の造形材料を吐出することもできる。すなわち、造形材料を吐出後に混合することもできるし、予め混合した種々の色や材料からなる造形材料を準備しておくことにより、それぞれ別の吐出口から所望の場所に所望の造形材料が吐出され得る。その結果、大きな造形物でも自在に短時間で製造され得る。
【0091】
また、ライン状に複数個の吐出口が形成された吐出ヘッドが複数個並置されることにより、さらに吐出口の数が増え、1回のスキャンで一度に多数の場所に造形物が形成され得る。このような構造であれば、2液性の樹脂を用い、樹脂主剤が一列目の吐出口により吐出され、次の列の吐出口から硬化剤が吐出されることにより、反応硬化させることもできる。さらに複数列の吐出ヘッドの吐出口の鉛直方向の位置が列ごとにずらされることにより、吐出口の低い位置のヘッドで造形材料が吐出された後に、高い位置の吐出口の列で同じスキャンの工程で造形材料が吐出されることにより、1回のスキャンで2層以上の造形物が形成され得る。その結果、大きな造形物でも、非常に短時間で形成され得る。
【0092】
第1加熱板2が吐出口13側で供給口側よりも温度が高くなるように温度勾配が形成されることにより、常に吐出口13側の方が融解した状態になるため、流路12内への薄板31の変形により、または造形材料の熱膨張により押出しの力が加わった場合に、吐出口13側に押し出されやすくなる。
【0093】
本発明の熱歪み発生部材による薄板の変形による造形材料の吐出または流路内の造形材料の温度を上昇させることによる造形材料の吐出の方法によれば、瞬間的に造形材料の吐出を制御することができるので、造形テーブルをスキャンさせながら造形材料を吐出させることができるので、大きな造形物でも、非常に容易に作製することができる。
【0094】
さらに、本発明の複数列に形成されるライン状ヘッドの列ごとに吐出口の高さを変えて吐出させる方法によれば、1回のスキャンで2層以上の造形物を形成することができるので、大きな造形物でも非常に短時間で作製することができる。なお、各層の厚さを変えることもできる。
【0095】
図1Aなどに示される吐出ヘッドの温度制御手段(駆動回路)が
図15に示されている。すなわち、この駆動回路は直流または交流の電源390で駆動する例で電源390としては、電池、商用電源または商用電源390をトランスなどにより電圧や印加時間を調整して、印加電力を調整する調整部370を介して発熱抵抗体22に接続される電極23(
図A参照)に駆動電力が供給されるようになっている。その結果、交流電源をそのまま使用することもでき、商用の交流電源390により供給される電圧は、電力の調整部370により調整され、所望の温度になるように調整される。その結果、直流電源が不要で、電源冷却ファンも不要になる。しかし、電池による直流電源が用いられてもよい。また、図示されていないが、パルスを印加するパルス駆動により加熱がされてもよい。その場合、電圧を変える以外にもデューティサイクルを変えることにより印加電力が調整され得る。その温度は、温度測定用抵抗体24を利用して、定電流回路350により測定用電源310の電流を一定にして供給される電流と、温度測定用抵抗体24の両端の電圧Vの測定により、その時点の温度測定用抵抗体24の抵抗値が分る。その抵抗値の変化により温度測定用抵抗体24、すなわち絶縁基板21(
図1A参照)の温度が測定されて、その温度により電力の調整部370で印加電圧などが調整され得る。調整部370は、特に複数の発熱抵抗体22が並べて加熱される場合に、各発熱抵抗体22の温度が均一にされる。または複数の発熱抵抗体22で、温度を異ならせる場合に有効である。そのため、複数の温度測定用抵抗体24が設けられている場合には、それぞれ別々にその近傍の温度が測定され、各発熱抵抗体22で印加電圧などが調整されることが好ましい。
【0096】
この温度測定の原理を、もう少し詳しくした
図16を参照しながら説明する。例えば直流電源からなる測定用電源310の両端に定電流回路CCR(current controlled regulator)350が温度測定用抵抗体24と直列に接続される。そして、温度測定用抵抗体24の両端の電圧Vが測定され、温度検出手段330により、その電圧を定電流で割り算することにより、温度測定用抵抗体24のその時点での抵抗値が分り、予め分っている温度測定用抵抗体24の温度係数(材料により定まる)とから温度が算出される。その検出温度に応じて、制御手段360から調整部37により発熱抵抗体22の両端に印加する電力が制御されることにより、絶縁基板21の温度が所定の温度に維持される。この制御手段360による発熱用抵抗体22の温度制御は、前述のように、印加電圧をパルスにして、そのパルスのデューティサイクルが変えられてもよいし、電圧そのものが変化されてもよい。
図16に示される例では、定電流回路350が設けられたが、それに代えて、温度が変化しない場所に基準抵抗が設けられ、その基準抵抗の電圧が測定されることにより、電流が求められ、温度測定用抵抗体22の両端の電圧が測定されてもよい。また、温度測定用電源310は、直流電源とは限らない。交流でもパルス的に定電流が得られる。
板材などの非常に安価な材料で、しかも容易に作製することができる流路構造体を用い、粘度の大きい材料でも、所定量の造形材料を所定の場所に吐出することができる造形材料吐出ヘッドを提供する。造形材料を流動させる流路を形成する側壁の一部である第1側壁部(121)を構成すると共に、流路内の造形材料を加熱する第1加熱板(2)と、第1側壁部(121)以外の側壁の一部である第2側壁部(122)を構成する閉塞板(7)と、流路と連通し、流路の一端部側に形成される吐出口と、流路と連通し、流路の他端部側に形成される材料供給口を具備している。