(58)【調査した分野】(Int.Cl.,DB名)
制御切換部による吸熱器における冷媒の蒸発温度の制御を蒸発温度調整弁の弁開度の調整に切換える所定の条件は、室外側膨張弁の弁開度が所定開度以上、且つ、温度検出部の検出温度が所定温度以下である
ことを特徴とする請求項1記載の車両用空気調和装置。
温度検出部の検出温度に基づいて、吸熱器における冷媒の蒸発温度を、蒸発温度調整弁の弁開度の調整による制御から室外側膨張弁の弁開度の調整による制御に切換える制御弁切換部を備えた
ことを特徴とする請求項1乃至4のいずれかに記載の車両用空気調和装置。
【発明を実施するための形態】
【0012】
図1乃至
図13は、本発明の一実施形態を示すものである。
【0013】
本発明の車両用空気調和装置は、
図1に示すように、車室内に設けられた空調ユニット10と、車室内および車室外に亘って構成された冷媒回路20と、を備えている。
【0014】
空調ユニット10は、車室内に供給する空気を流通させるための空気流通路11を有している。空気流通路11の一端側には、車室外の空気を空気流通路11に流入させるための外気吸入口11aと、車室内の空気を空気流通路11に流入させるための内気吸入口11bと、が設けられている。また、空気流通路11の他端側には、空気流通路11を流通する空気を車室内の搭乗者の足元に向かって吹き出させるフット吹出口11cと、空気流通路11を流通する空気を車室内の搭乗者の上半身に向かって吹き出させるベント吹出口11dと、空気流通路11を流通する空気を車両のフロントガラスの車室内側の面に向かって吹き出させるデフ吹出口11eと、が設けられている。
【0015】
空気流通路11内の一端側には、空気を空気流通路11の一端側から他端側に向かって流通させるためのシロッコファン等の室内送風機12が設けられている。この室内送風機12は電動モータ12aによって駆動される。
【0016】
空気流通路11の一端側には、外気吸入口11a及び内気吸入口11bの一方を開放して他方を閉鎖することが可能な吸入口切換えダンパ13が設けられている。この吸入口切換えダンパ13は電動モータ13aによって駆動される。吸入口切換えダンパ13によって内気吸入口11bが閉鎖されて外気吸入口11aが開放されると、外気吸入口11aから空気が空気流通路11に流入する外気供給モードとなる。また、吸入口切換えダンパ13によって外気吸入口11aが閉鎖されて内気吸入口11bが開放されると、内気吸入口11bから空気が空気流通路11に流入する内気循環モードとなる。さらに、吸入口切換えダンパ13が外気吸入口11aと内気吸入口11bとの間に位置し、外気吸入口11aと内気吸入口11bがそれぞれ開放されると、吸入口切換えダンパ13による外気吸入口11a及び内気吸入口11bのそれぞれの開口率に応じた割合で、外気吸入口11aと内気吸入口11bとから空気が空気流通路11に流入する外内気吸入モードとなる。
【0017】
空気流通路11の他端側のフット吹出口11c、ベント吹出口11d及びデフ吹出口11eのそれぞれには、各吹出口11c,11d,11eを開閉するための吹出口切換えダンパ13b,13c,13dが設けられている。この吹出口切換えダンパ13b,13c,13dは、図示しないリンク機構によって連動するように構成され、電動モータ13eによってそれぞれ開閉される。ここで、吹出口切換えダンパ13b,13c,13dによってフット吹出口11cが開放されてベント吹出口11dが閉鎖され、デフ吹出口11eが僅かに開放されると、空気流通路11を流通する空気の大部分がフット吹出口11cから吹き出されると共に残りの空気がデフ吹出口11eから吹き出されるフットモードとなる。また、吹出口切換えダンパ13b,13c,13dによってフット吹出口11c及びデフ吹出口11eが閉鎖されてベント吹出口11dが開放されると、空気流通路11を流通する空気の全てがベント吹出口11dから吹き出されるベントモードとなる。さらに、吹出口切換えダンパ13b,13c,13dによってフット吹出口11c及びベント吹出口11dが開放されてデフ吹出口11eが閉鎖されると、空気流通路11を流通する空気がフット吹出口11c及びベント吹出口11dから吹き出されるバイレベルモードとなる。また、吹出口切換えダンパ13b,13c,13dによってフット吹出口11c及びベント吹出口11dが閉鎖されてデフ吹出口11eが開放されると、空気流通路11を流通する空気がデフ吹出口11eから吹き出されるデフモードとなる。また、吹出口切換えダンパ13b,13c,13dによってベント吹出口11dが閉鎖されてフット吹出口11c及びデフ吹出口11eが開放されると、空気流通路11を流通する空気がフット吹出口11c及びデフ吹出口11eから吹き出されるデフフットモードとなる。尚、バイレベルモードにおいては、フット吹出口11cから吹き出される空気の温度がベント吹出口11dから吹き出される空気の温度よりも高温となる温度差が生じるような、空気流通路11、フット吹出口11c、ベント吹出口11d、後述する吸熱器及び放熱器の互いの位置関係や構造となっている。
【0018】
室内送風機12の空気流通方向下流側の空気流通路11には、空気流通路11を流通する空気を冷却及び除湿するための吸熱器14が設けられている。また、吸熱器14の空気流通方向下流側の空気流通路11には、空気流通路11を流通する空気を加熱するための放熱器15が設けられている。吸熱器14及び放熱器15は、それぞれ内部を流通する冷媒と空気流通路11を流通する空気とを熱交換させるためのフィンとチューブ等からなる熱交換器である。
【0019】
吸熱器14と放熱器15との間の空気流通路11には、空気流通路11を流通する空気の放熱器15において加熱される割合を調整するためのエアミックスダンパ16が設けられている。エアミックスダンパ16は電動モータ16aによって駆動される。エアミックスダンパ16は、空気流通路11の放熱器15の上流側に位置することによって、放熱器15において熱交換する空気の割合が減少し、空気流通路11の放熱器15以外の部分側に移動させることによって、放熱器15において熱交換する空気の割合が増加する。エアミックスダンパ16は、空気流通路11の放熱器15の上流側を閉鎖して放熱器15以外の部分を開放した状態で開度が0%となり、空気流通路11の放熱器15の上流側を開放し、放熱器15以外の部分を閉鎖した状態で開度が100%となる。
【0020】
冷媒回路20は、前記吸熱器14、前記放熱器15、冷媒を圧縮するための圧縮機21、冷媒と車室外の空気とを熱交換するための室外熱交換器22、放熱器15および室外熱交換器22の少なくとも放熱器15から流出する冷媒と吸熱器14から流出する冷媒とを熱交換させるための内部熱交換器23、暖房運転時に室外熱交換器22に流入する冷媒を減圧するための膨張手段と除湿冷房運転時に放熱器における冷媒の凝縮圧力を制御するための凝縮圧力調整手段とを有する第1制御弁24と、吸熱器14における冷媒の蒸発温度を調整するための蒸発温度調整弁としての第2制御弁25と、第1〜第3電磁弁26a,26b,26c、第1〜第2逆止弁27a,27b、室内側膨張弁としての膨張弁28、気体の冷媒と液体の冷媒を分離して液冷媒が圧縮機21に吸入されることを防止するためのアキュムレータ29を有し、これらは銅管やアルミニウム管によって接続されている。
【0021】
具体的には、圧縮機21の冷媒吐出側に放熱器15の冷媒流入側が接続されることによって、冷媒流通路20aが設けられている。また、放熱器15の冷媒流出側には、第1制御弁24の冷媒流入側が接続されることによって、冷媒流通路20bが設けられている。第1制御弁24の膨張手段側の冷媒流出側には、室外熱交換器22の一端側が接続されることによって、冷媒流通路20cが設けられている。冷媒流通路20cには、第1逆止弁27aが設けられている。また、第1制御弁24の凝縮圧力調整手段側の冷媒流出側には、室外熱交換器22の他端側が接続されることによって、冷媒流通路20dが設けられている。室外熱交換器22の他端側には、冷媒流通路20dと並列に、圧縮機21の冷媒吸入側が接続されることによって、冷媒流通路20eが設けられている。冷媒流通路20eには、冷媒流通方向の上流側から順に、第1電磁弁26a、アキュムレータ29が設けられている。冷媒流通路20bには、内部熱交換器23の高圧冷媒流入側が接続されることによって、冷媒流通路20fが設けられている。冷媒流通路20fには、第2電磁弁26bが設けられている。内部熱交換器23の高圧冷媒流出側には、吸熱器14の冷媒流入側接続されることによって、冷媒流通路20gが設けられている。冷媒流通路20gには、膨張弁28が設けられている。吸熱器14の冷媒流出側には、内部熱交換器23の低圧冷媒流入側が接続されることによって、冷媒流通路20hが設けられている。冷媒流通路20hには、第2制御弁25が設けられている。内部熱交換器23の低圧冷媒流出側には、冷媒流通路20eの第1電磁弁26aとアキュムレータ29との間が接続されることによって、冷媒流通路20iが設けられている。室外熱交換器22の一端側には、冷媒流通路20cと並列に、冷媒流通路20fの第2電磁弁26bの冷媒流通方向の下流側が接続されることによって、冷媒流通路20jが設けられている。冷媒流通路20jには、冷媒流通方向の上流側から順に、第3電磁弁26c、第2逆止弁27bが設けられている。
【0022】
圧縮機21及び室外熱交換器22は、車室外に配置されている。また、圧縮機21は電動モータ21aによって駆動される。室外熱交換器22には、車両の停止時に車室外の空気と冷媒とを熱交換させるための室外送風機30が設けられている。室外送風機30は、電動モータ30aによって駆動される。
【0023】
第1制御弁24には、膨張手段側の冷媒流路と凝縮圧力調整手段側の冷媒流路がそれぞれ形成されている。膨張手段側および凝縮圧力調整手段側の冷媒流路は、それぞれ冷媒流路の開度を調整する弁によって完全に閉鎖可能に構成されている。
【0024】
第2制御弁25は、弁開度が2段階に設定可能に構成され、冷媒流通路20hを流通する冷媒の流量を2段階に調整することが可能である。
【0025】
膨張弁28は、冷媒流通路20h(吸熱器14の冷媒流出側)を流通する冷媒の過熱度を適正に保つための温度式膨張弁である。
【0026】
さらに、車両用空気調和装置は、車室内の温度及び湿度を設定された温度及び設定された湿度とする制御を行うためのコントローラ40を備えている。
【0027】
コントローラ40は、CPU、ROM,RAMを有している。コントローラ40は、入力側に接続された装置からの入力信号を受信すると、CPUが、入力信号に基づいてROMに記憶されたプログラムを読み出すとともに、入力信号によって検出された状態をRAMに記憶したり、出力側に接続された装置に出力信号を送信したりする。
【0028】
コントローラ40の出力側には、
図2に示すように、室内送風機12駆動用の電動モータ12a、吸入口切換えダンパ13駆動用の電動モータ13a、吹出口切換えダンパ13b,13c,13d駆動用の電動モータ13e、エアミックスダンパ16駆動用の電動モータ16a、圧縮機21駆動用の電動モータ21a、第1制御弁24、第2制御弁25、第1〜第3電磁弁26a,26b,26c、室外送風機30駆動用の電動モータ30aが接続されている。
【0029】
コントローラ40の入力側には、
図2に示すように、車室外の温度Tamを検出するための外気温度センサ41、車室内の温度Trを検出するための内気温度センサ42、日射量Tsを検出するための例えばフォトセンサ式の日射センサ43、吸熱器14における冷媒の蒸発温度Teを検出するための温度検出手段としての吸熱器温度センサ44、圧縮機21に吸入される冷媒の圧力を検出するための吸入圧力センサ45、圧縮機21に吸入される冷媒の温度を検出するための吸入温度センサ46、圧縮機21から吐出される冷媒の圧力を検出するための吐出圧力センサ47、圧縮機21から吐出される冷媒の温度を検出するための吐出温度センサ48、冷媒流通路20bを流通する高圧冷媒の圧力を検出するための高圧圧力センサ49、冷媒流通路20bを流通する高圧冷媒の温度を検出するための高圧温度センサ50、目標設定温度Tsetや運転の切換えに関するモードを設定するための操作部51が接続されている。
【0030】
以上のように構成された車両用空気調和装置では、冷房運転、除湿冷房運転、暖房運転、第1除湿暖房運転、第2除湿暖房運転が行われる。以下、それぞれの運転について説明する。
【0031】
冷房運転及び除湿冷房運転において、冷媒回路20では、第1制御弁24の膨張手段側の流路を閉鎖するとともに、凝縮圧力調整手段側の流路を開放し、第3電磁弁26cを開放するとともに、第1及び第2電磁弁26a,26bを閉鎖し、圧縮機21を運転する。
これにより、圧縮機21から吐出された冷媒は、
図3に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b,20d、室外熱交換器22、冷媒流通路20j,20f、内部熱交換器23の高圧側、冷媒流通路20g、吸熱器14、冷媒流通路20h、内部熱交換器23の低圧側、冷媒流通路20i,20eの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、冷房運転において、室外熱交換器22において放熱して吸熱器14において吸熱する。除湿冷房運転として
図3の一点鎖線に示すようにエアミックスダンパ16が開放されると、冷媒回路20を流通する冷媒は放熱器15においても放熱する。
【0032】
このとき、冷房運転中の空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において冷媒と熱交換して冷却され、車室内の温度を目標設定温度Tsetとするために吹出口11c,11d,11eから吹き出すべき空気の温度である目標吹出温度TAOとなって車室内に吹き出される。
目標吹出温度TAOは、車室外の温度Tam、車室内の温度Tr、日射量Ts等の環境条件を、外気温度センサ41、内気温度センサ42、日射センサ43等によって検出し、検出された環境条件と目標設定温度Tsetに基づいて算出されるものである。
【0033】
また、除湿冷房運転中の空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において吸熱する冷媒と熱交換して冷却されることによって除湿される。吸熱器14において除湿された空気は、放熱器15おいて放熱する冷媒と熱交換して加熱され、目標吹出温度TAOの空気となって車室内に吹き出される。
【0034】
暖房運転において、冷媒回路20では、第1制御弁24の膨張手段側の冷媒流路を開放するとともに、凝縮圧力調整手段側の冷媒流路を閉鎖し、第1電磁弁26aを開放するとともに、第2および第3電磁弁26b,26cを閉鎖し、圧縮機21を運転する。
これにより、圧縮機21から吐出された冷媒は、
図4に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b、20c、室外熱交換器22、冷媒流通路20eの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、室外熱交換器22において吸熱する。
【0035】
このとき、空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において冷媒と熱交換することなく、放熱器15において冷媒と熱交換して加熱され、目標吹出温度TAOの空気となって車室内に吹き出される。
【0036】
第1除湿暖房運転において、冷媒回路20では、第1制御弁24の膨張手段側の冷媒流路を開放するとともに、凝縮圧力調整手段側の冷媒流路を閉鎖し、第1及び第2電磁弁26a,26bを開放するとともに、第3電磁弁26cを閉鎖し、圧縮機21を運転する。
これにより、圧縮機21から吐出された冷媒は、
図5に示すように、冷媒流通路20a、放熱器15、冷媒流通路20bを順に流通する。冷媒流通路20bを流通する冷媒の一部は、第1制御弁24、冷媒流通路20c、室外熱交換器22、冷媒流通路20eの順に流通して圧縮機21に吸入される。また、冷媒流通路20bを流通するその他の冷媒は、冷媒流通路20f、内部熱交換器23の高圧側、冷媒流通路20g、吸熱器14、冷媒流通路20h、内部熱交換器23の低圧側、冷媒流通路20iの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、吸熱器14及び室外熱交換器22において吸熱する。
【0037】
このとき、空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において冷媒と熱交換して冷却されることにより除湿される。吸熱器14において除湿された空気は、一部の空気が放熱器15において冷媒と熱交換することによって加熱され、目標吹出温度TAOの空気となって車室内に吹き出される。
【0038】
第2除湿暖房運転において、冷媒回路20では、第1制御弁24の膨張手段側および凝縮圧力調整手段側の両方の冷媒流路を閉鎖し、第2電磁弁26bを開放するとともに、第1及び第3電磁弁26a,26cを閉鎖し、圧縮機21を運転する。
これにより、圧縮機21から吐出された冷媒は、
図6に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b,20f、内部熱交換器23の高圧側、冷媒流通路20g、吸熱器14、冷媒流通路20h、内部熱交換器23の低圧側、冷媒流通路20i,20eの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、吸熱器14において吸熱する。
【0039】
このとき、空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、前記第1除湿暖房運転と同様に、吸熱器14において冷媒と熱交換して冷却されることにより除湿される。吸熱器14において除湿された空気は、一部の空気が放熱器15において冷媒と熱交換することによって加熱され、目標吹出温度TAOとなって車室内に吹き出される。
【0040】
コントローラ40は、オートエアコンスイッチがオンの状態に設定されている場合に、冷房運転、除湿冷房運転、暖房運転、第1除湿暖房運転、第2除湿暖房運転を、車室外の温度Tam、車室内の温度Tr、車室外の湿度、車室内の湿度Th、日射量Ts等の環境条件に基づいて切換える運転切換え制御処理を行う。
【0041】
また、コントローラ40は、吹出口切換えダンパ13b,13c,13dによって吹出口11c,11d,11eのモードを切換えるとともに、吹出口11c,11d,11eから吹出される空気の温度を目標吹出温度TAOとするために、エアミックスダンパ16の開度を制御する。
【0042】
また、コントローラ40は、運転切換え制御処理によって切り換えられる各運転において、目標吹出温度TAOに応じてフットモード、ベントモード、バイレベルモードの切り替えを行う。具体的には、目標吹出温度TAOが例えば40℃以上など、高温となる場合にフットモードに設定する。また、コントローラ40は、目標吹出温度TAOが例えば25℃未満など、低温となる場合にベントモードに設定する。さらに、コントローラ40は、目標吹出温度TAOが、フットモードが設定される目標吹出温度TAOとベントモードが設定される目標吹出温度TAOとの間の温度の場合にバイレベルモードに設定する。
【0043】
また、コントローラ40は、暖房運転および第1除湿暖房運転において、運転状態に応じて第1制御弁24の膨張手段側の弁開度を制御する膨張手段制御処理を行う。このときのコントローラ40の動作を
図7のフローチャートを用いて説明する。
【0044】
(ステップS1)
ステップS1においてCPUは、運転が暖房運転または第1除湿暖房運転であるか否かを判定する。暖房運転または第1除湿暖房運転であると判定した場合にはステップS2に処理を移し、暖房運転または第1除湿暖房運転であると判定しなかった場合には膨張手段制御処理を終了する。
【0045】
(ステップS2)
ステップS1において運転が暖房運転または第1除湿暖房運転であると判定した場合に、ステップS2においてCPUは、吸入圧力センサ45の検出圧力および吸入温度センサ46の検出温度に基づいて冷媒の過熱度SHを算出する。
【0046】
(ステップS3)
ステップS3においてCPUは、ステップS2において算出された過熱度SHが所定値以上か否かを判定する。過熱度SHが所定値以上と判定した場合にはステップS9に処理を移し、過熱度SHが所定値以上と判定しなかった場合にはステップS4に処理を移す。
【0047】
(ステップS4)
ステップS3において過熱度SHが所定値以上と判定しなかった場合に、ステップS4においてCPUは、目標吹出温度TAOに基づいて目標過冷却度SCtを設定する。例えば、目標吹出温度TAOが所定値(例えば、60℃)以上の場合には第1目標過冷却度SCt1(例えば、15℃)に設定し、目標吹出温度TAOが所定値未満の場合には第2目標過冷却度SCt2(例えば、12℃)に設定する。
【0048】
(ステップS5)
ステップS5においてCPUは、ステップS4において設定された目標過冷却度SCtに対して、室内送風機12の風量Qaに基づく補正量H1および冷媒回路20を流通する冷媒の流量Qrに基づく補正量H2を算出する。
具体的には、室内送風機12の風量Qaが所定風量以上の場合には補正量H1をゼロとし、風量Qaが所定風量未満の場合には風量Qaに応じて過冷却度SCが小さくなる補正量H1(例えば、−10≦H1≦0)とする。また、冷媒回路20の高圧側を流通する冷媒の流量Qrが所定流量以上の場合には流量Qrに応じて過冷却度が大きくなる補正量H2(例えば、0≦H2≦5)とし、流量Qrが所定流量未満の場合には流量Qrの減少に応じて過冷却度SCが小さくなる補正量H2(例えば、−5≦H2<0)とする。冷媒回路20の高圧側を流通する冷媒の流量Qrは、冷媒回路20の高圧側の圧力の上昇に従って多くなり、圧力の下降に従って少なくなる関係にあることから、高圧圧力センサ49の検出圧力に基づいて算出される。
【0049】
(ステップS6)
ステップS6においてCPUは、目標過冷却度SCtに補正量H1,H2を加えることで補正目標過冷却度SCtc(SCtc=SCt−(H1+H2))を算出する。
【0050】
(ステップS7)
ステップS7においてCPUは、高圧圧力センサ49の検出圧力および高圧温度センサ50の検出温度およびに基づいて冷媒の過冷却度SCを算出する。
【0051】
(ステップS8)
ステップS8においてCPUは、過冷却度SCが補正目標過冷却度SCtcとなるように第1制御弁24の膨張手段側の弁開度を制御し、膨張手段制御処理を終了する。
【0052】
(ステップS9)
ステップS3において過熱度SHが所定値以上と判定した場合に、ステップS9においてCPUは、低圧冷媒の過熱度SHを目標過熱度SHtとなるように第1制御弁24の膨張手段側の弁開度を制御する過熱度制御処理を行い、膨張手段制御処理を終了する。
【0053】
また、コントローラ40は、第1除湿暖房運転のときに第2制御弁25の弁開度を他の運転のときの弁開度以下とすることで吸熱器14における冷媒の蒸発温度の低下を防止するための第2制御弁制御処理を行う。このときのコントローラ40の動作を
図8のフローチャートを用いて説明する。
【0054】
(ステップS11)
ステップS11においてCPUは、運転状態が第1除湿暖房運転か否かを判定する。第1除湿暖房運転と判定した場合にはステップS12に処理を移し、第1除湿暖房運転と判定しなかった場合には第2制御弁制御処理を終了する。
【0055】
(ステップS12)
ステップS11において第1除湿暖房運転であると判定した場合に、ステップS12においてCPUは、目標吹出温度TAOに基づいて吸熱器14における冷媒の目標蒸発温度Tetを算出する。
【0056】
(ステップS13)
ステップS13においてCPUは、目標蒸発温度Tetと吸熱器温度センサ44の検出温度Teに基づいて第2制御弁25の弁開度を調整し、第2制御弁制御処理を終了する。
具体的には、目標蒸発温度Tetよりも吸熱器温度センサ44の検出温度Teが低い場合には第2制御弁25の弁開度を2段階のうちの開度小に設定し、目標蒸発温度Tetよりも検出温度Teが高い場合には開度大に設定する。
【0057】
また、コントローラ40は、第1除湿暖房運転のときに、吸熱器14における冷媒の蒸発温度を、第1制御弁24の膨張手段側の弁開度を調整する制御、または、第2制御弁25の弁開度の調整による制御と、に切換えるための蒸発温度制御切換処理を行う。このときのコントローラ40の動作を
図9のフローチャート、
図10および
図11のタイミングチャートを用いて説明する。
【0058】
(ステップS21)
ステップS21においてCPUは、運転状態が第1除湿暖房運転か否かを判定する。第1除湿暖房運転と判定した場合にはステップS22に処理を移し、第1除湿暖房運転と判定しなかった場合にはステップS28に処理を移す。
【0059】
(ステップS22)
ステップS21において第1除湿暖房運転であると判定した場合に、ステップS22においてCPUは、吸熱器14における冷媒の蒸発温度を、第1制御弁24の膨張手段側の弁開度の調整による制御中であるか否かを判定する。第1制御弁24の弁開度の調整による制御中と判定した場合にはステップS23に処理を移し、第1制御弁24の弁開度の調整による制御中と判定しなかった場合にはステップS27に処理を移す。
【0060】
(ステップS23)
ステップS22において第1制御弁24の弁開度の調整による制御中と判定した場合に、ステップS23においてCPUは、着霜回避条件が成立したか否かを判定する。着霜回避条件が成立したと判定した場合にはステップS30に処理を移し、着霜回避条件が成立したと判定しなかった場合にはステップS24に処理を移す。
具体的には、吸熱器温度センサ44の検出温度が吸熱器14において着霜が生じ得る推定着霜温度に所定温度Δd(例えば、1℃)を加算した温度未満となる状態が、所定時間(0〜3秒間)継続したときに着霜回避条件が成立したと判定する。推定着霜温度は、空気流通路11を流通する空気の湿度または露点温度と、室内送風機12の風量から算出される。
【0061】
(ステップS24)
ステップS23において着霜回避条件が成立しなかったと判定した場合に、ステップS24においてCPUは、第2制御弁25の弁開度の調整による制御を行うための条件が成立したか否かを判定する。第2制御弁25による制御を開始する条件が成立したと判定した場合にはステップS25に処理を移し、第2制御弁25による制御を開始する条件が成立したと判定しなかった場合にはステップS28に処理を移す。
具体的には、
図10に示すように、第1制御弁24の膨張手段側の弁開度が所定開度以上(例えば、全開)の状態で、且つ、吸熱器温度センサ44の検出温度が吸熱器14における冷媒の目標蒸発温度Tet(例えば、1.5〜12℃)から所定温度ΔT1(例えば、0.5〜2℃)減じた温度(Tet−ΔT1)未満となる状態が、所定時間T(0〜3秒間)継続したときに第2制御弁25による制御を開始するための条件が成立したと判定する。
【0062】
(ステップS25)
ステップS24において第2制御弁25による制御を開始するための条件が成立したと判定した場合、または、後述するステップS27において第2制御弁25による制御を解除するための条件が成立しなかった場合に、ステップS25においてCPUは、
図10に示すように、第2制御弁25の弁開度を小さくし、ステップS26に処理を移す。
【0063】
(ステップS26)
ステップS26においてCPUは、第1制御弁24の膨張手段側の弁開度を所定の弁開度に設定し(
図10では全開)、蒸発温度制御切換処理を終了する。
【0064】
(ステップS27)
ステップS22において第2制御弁25による制御中と判定した場合に、ステップS27においてCPUは、第2制御弁25による制御を解除するための条件が成立したか否かを判定する。第2制御弁25による制御を解除するための条件が成立したと判定した場合にはステップS28に処理を移し、第2制御弁25による制御を解除するための条件が成立したと判定しなかった場合にはステップS25に処理を移す。
具体的には、
図11に示すように、吸熱器温度センサ44の検出温度が吸熱器14における冷媒の目標蒸発温度Tet(例えば、1.5〜12℃)に所定温度ΔT2(例えば0.5〜2℃)加えた温度(Tet+ΔT2)以上の状態となったときに第2制御弁制御処理による第2制御弁25による制御を解除するための条件が成立したと判定する。
また、吸入圧力センサ45の検出圧力が所定圧力(0〜0.05MPaG)以下の場合、吐出圧力センサ47の検出圧力が所定圧力(2〜3MPaG)以上の場合、および、吐出温度センサ48の検出温度が所定温度(120〜130℃)以上の場合のいずれかが成立する場合には、冷媒回路20の保護を目的として、第2制御弁制御処理による第2制御弁25による制御を解除するための条件が成立したと判定する。
さらに、吸入温度センサ46の検出温度が所定温度(1〜2℃)未満の状態となったときには、圧縮機21の潤滑油の流入量の不足を防止することを目的として、第2制御弁25による制御を解除するための条件が成立したと判定する。圧縮機21の潤滑油の流入量の不足の条件の成立の判定は、アキュムレータ29の流出側の冷媒の温度(過熱度)に基づいて行ってもよい。
【0065】
(ステップS28)
ステップS21において第1除湿暖房運転であると判定しなかった場合、ステップS24において第2制御弁25による制御を開始する条件が成立したと判定しなかった場合、または、ステップS27において第2制御弁25による制御を解除するための条件が成立したと判定した場合に、ステップS28においてCPUは、
図11に示すように、第2制御弁25の弁開度を大きくし、ステップS29に処理を移す。
【0066】
(ステップS29)
ステップS29においてCPUは、
図11に示すように、第1制御弁24によって吸熱器14における冷媒の蒸発温度を制御する第1制御弁吸熱器温度制御処理を開始し、蒸発温度制御切換処理を終了する。
【0067】
(ステップS30)
ステップS23において着霜回避条件が成立したと判定した場合に、ステップS30においてCPUは、第2制御弁25の弁開度を小さくし、ステップS31に処理を移す。
【0068】
(ステップS31)
ステップS31においてCPUは、第1制御弁24によって吸熱器14における冷媒の蒸発温度を制御する第1制御弁吸熱器温度制御処理を開始し、蒸発温度制御切換手段を終了する。
【0069】
次に、第1制御弁吸熱器温度制御処理を、
図12のフローチャートを用いて説明する。
【0070】
(ステップS41)
ステップS41においてCPUは、運転状態が第1除湿暖房運転か否かを判定する。第1除湿暖房運転と判定した場合にはステップS42に処理を移し、第1除湿暖房運転と判定しなかった場合には第1制御弁吸熱器温度制御処理を終了する。
【0071】
(ステップS42)
ステップS41において運転状態が第1除湿暖房運転であると判定した場合に、ステップS42においてCPUは、オイル戻り要求があるか否かを判定する。オイル戻り要求があると判定した場合にはステップS43に処理を移し、オイル戻り要求があると判定しなかった場合にはステップS45に処理を移す。
具体的には、圧縮機21の吸入側の冷媒温度(過熱度)SH_SUCが所定値(例えば、1〜2℃)より大きくなった場合を、オイル戻り要求があると判定する。即ち、第1制御弁24の膨張手段側は、弁開度を小さくするに従って圧縮機21の消費電力が低下する一方、過熱度SH_SUCが高くなる傾向がある。したがって、圧縮機21に対する潤滑油の流入量の不足を防止するためには、圧縮機21の吸入冷媒の過熱度を所定値以下とする必要があり、冷媒温度(過熱度)SH_SUCの上限値を設定する。
【0072】
(ステップS43)
ステップS42においてオイル戻り要求があると判定した場合に、ステップS44においてCPUは、COP向上要求があるか否かを判定する。COP向上要求があると判定した場合にはステップS44に処理を移し、COP向上要求があると判定しなかった場合にはステップS45に処理を移す。
具体的には、室外熱交換器22の流入側の圧力P_ODhexが外気温に対応する冷媒飽和圧力Psatu_Tambより大きくなった場合を、COP向上要求が有ると判定する。即ち、第1制御弁24の膨張手段側は、弁開度を大きくするに従って圧縮機21の回転数が高くなるとともに、室外熱交換器22の流入側の圧力P_ODhexも高くなる。したがって、第1除湿暖房運転において吸熱器14において吸熱量を確保するためには、圧力P_ODhexを外気温に対応する冷媒飽和圧力Psatu_Tamb以下とする必要がある。
【0073】
(ステップS44)
ステップS43においてCOP向上要求がある判定した場合に、ステップS44においてCPUは、第1制御弁24の膨張手段側の弁開度の目標値を算出して弁開度を調整し、第1制御弁吸熱器温度制御処理を終了する。
具体的には、第1制御弁24の膨張手段側の弁開度の目標値TGECCVは、フィードバック目標値の比例操作量P_ECCV、フィードバック目標値の積分操作量I_EECCVおよびフィードフォワード目標値FF_ECCV基づいて、次式のように求められる。
TGECCV=P_ECCV+I_ECCV+FF_ECCV
ここで、比例操作量P_ECCV、積分操作量I_ECCVは、それぞれ目標吸熱器温度TEOおよび実際の吸熱器14の温度Teに基づいて算出される(P_ECCV=Gp_ECCV×(TEO−Te)、I_ECCV=Gi_ECCV×(TEO−Te)+I_ECCVz、Gp:比例ゲインとしての定数、Gi:積分ゲインとしての定数、I_ECCVz:積分操作量の前回値)。
【0074】
(ステップS45)
ステップS42においてオイル戻り要求があると判定しなかった場合、または、ステップS43においてCOP向上要求があると判定しなかった場合に、ステップS45においてCPUは、第1制御弁の膨張手段側の弁開度の目標値を保持して第1制御弁吸熱器温度制御処理を終了する。
【0075】
また、コントローラ40は、暖房運転または第1除湿暖房運転において、圧縮機21の回転数を調整することによって放熱器15における冷媒の凝縮温度を制御する放熱器温度制御処理を行う。このときのコントローラ40の動作を
図13のフローチャートを用いて説明する。
【0076】
(ステップS51)
ステップS51においてCPUは、運転状態が暖房運転または第1除湿暖房運転か否かを判定する。暖房運転または第1除湿暖房運転と判定した場合にはステップS52に処理を移し、暖房運転または第1除湿暖房運転と判定しなかった場合には圧縮機吸熱器温度制御処理を終了する。
【0077】
(ステップS52)
ステップS51において運転状態が暖房運転または第1除湿暖房運転であると判定した場合に、ステップS52においてCPUは、圧縮機21の回転数の目標値を算出して回転数を調整し、放熱器温度制御処理を終了する。
具体的には、圧縮機21の回転数の目標値TGNChは、フィードバック目標値の比例操作量P_TGNCh、フィードバック目標値の積分操作量I_TGNChおよびフィードフォワード目標値FF_TGNCh基づいて、次式のように求められる。
TGNCh=P_TGNCh+I_TGNCh+FF_TGNCh
ここで、比例操作量P_TGNCh、積分操作量I_TGNChは、それぞれ目標放熱器温度TCOおよび実際の放熱器15の温度Thに基づいて算出される(P_TGNCh=Gp_TGNCh×(TCO−Th)、I_TGNCh=Gi_TGNCh×(TCO−Th)+I_TGNChz、Gp_TGN:比例ゲインとしての定数、Gi_TGNCh:積分ゲインとしての定数、I_TGNChz:積分操作量の前回値)。
【0078】
このように、本実施形態の車両用空気調和装置によれば、第1制御弁24の膨張手段側の弁開度および吸熱器温度センサ44の検出温度に基づいて、吸熱器14における冷媒の蒸発温度を、第1制御弁24の膨張手段側の弁開度の調整による制御から第2制御弁25の弁開度の調整による制御に切換えている。これにより、第1除湿暖房運転時において、第1制御弁24の制御のみならず第2制御弁25の制御によって吸熱器14における冷媒の蒸発温度が低下することを防止することができるので、車室外の温度が低温の場合においても吸熱器14に着霜が生じることはなく、吸熱器14において必要な冷媒の吸熱量を確保することが可能となる。
【0079】
また、吸熱器14における冷媒の蒸発温度を、第1制御弁24の膨張手段側の弁開度の調整による制御から第2制御弁25の弁開度の調整による制御に切換える条件を、第1制御弁24の膨張手段側の弁開度が所定開度(例えば、全開)以上および吸熱器温度センサ44の検出温度が所定温度(Tet−ΔT1)未満としている。これにより、第1制御弁24の膨張手段側の弁開度の制御によって吸熱器14における冷媒の蒸発温度の低下を防ぐことができない状態を検知することができるので、第2制御弁25の制御を正確なタイミングで開始することが可能となる。
【0080】
また、第2制御弁25による吸熱器における冷媒の蒸発温度の制御中に、第1制御弁24の膨張手段側の弁開度を所定の弁開度に設定している。これにより、第1制御弁24の膨張手段側の弁開度の制御と第2制御弁25の弁開度の制御をそれぞれ同時に行うことによる例えばハンチング等の制御不能に陥ることはなく、必要な制御性能を確保することが可能となる。
【0081】
また、吸熱器温度センサ44の検出温度に基づいて、吸熱器14における冷媒の蒸発温度を、第2制御弁25の弁開度の調整による制御から第1制御弁24の膨張手段側の弁開度の調整による制御に切換えている。これにより、必要な時を除いて第1制御弁24の制御によって吸熱器14における冷媒の蒸発温度を制御することができるので、制御の構成が簡単となり、製造コストの低減を図ることが可能となる。
【0082】
また、吸熱器温度センサ44の検出温度と吸熱器14における冷媒の目標蒸発温度Tetとに基づいて、吸熱器14における冷媒の蒸発温度を、第2制御弁25の弁開度の調整による制御から第1制御弁24の膨張手段側の弁開度の調整による制御に切換えている。これにより、必要な時を除いて第1制御弁24の制御によって吸熱器14における冷媒の蒸発温度を制御することができるので、制御の構成が簡単となり、製造コストの低減を図ることが可能となる。
【0083】
また、吸入圧力センサ45の検出圧力が所定圧力(0〜0.05MPaG)以下の場合、吐出圧力センサ47の検出圧力が所定圧力(2〜3MPaG)以上の場合、および、吐出温度センサ48の検出温度が所定温度(120〜130℃)以上の場合のいずれかが成立する場合には、吸熱器14における冷媒の蒸発温度を、第2制御弁25の弁開度の調整による制御から第1制御弁24の膨張手段側の弁開度の調整による制御に切換えている。これにより、冷媒回路20の異常な高圧や低圧の発生を防止することができるので、冷媒回路20を構成する部品の故障や破損を防ぐことが可能となる。
【0084】
尚、前記実施形態では、圧縮機21から流出する冷媒が、暖房運転および第1除湿暖房運転時に、室外熱交換器22を一端側から他端側に向かって流通するようにしたものを示したがこれに限られるものではない。例えば、
図14に示すように、圧縮機21から流出する冷媒が、暖房運転および第1除湿暖房運転時に、室外熱交換器22を他端側から一端側に向かって流通するようにしてもよい。
【0085】
図14の車両用空気調和装置は、前記実施形態における冷媒流通路20cの代わりに、第1制御弁24の膨張手段側の冷媒流出側と室外熱交換器22の他端側とを接続する冷媒流通路20kが設けられている。また、車両用空気調和装置は、前記実施形態における冷媒流通路20eの代わりに、室外熱交換器22の一端側と圧縮機21の冷媒吸入側とを接続する冷媒流通路20lが設けられている。
【0086】
以上のように構成された車両用空気調和装置において、放熱器15から流出する冷媒は、暖房運転および第1除湿暖房運転時に、前記実施形態の場合と異なり、室外熱交換器22を他端側から一端側に向かって流通する。その他の運転については、前記実施形態と同様に冷媒が流通する。
【0087】
また、前記実施形態では、膨張弁28として温度式膨張弁を用いたものを示したがこれに限られるものではなく、開度可変の電子式膨張弁を用いてもよい。
【0088】
また、前記実施形態では、第2制御弁25の弁開度の制御中に、第1制御弁24の膨張手段側の弁開度を全開に設定したものを示したが、これに限られるものではない。例えば、第2制御弁25の弁開度の制御中に、第1制御弁24の膨張手段側の弁開度を90%に設定してもよい。
【0089】
また、第2制御弁25の弁開度の制御を開始する条件である第1制御弁24の膨張手段側の弁開度は全開に限られず、例えば90%の弁開度を条件としてもよい。
【0090】
また、前記実施形態では、第2制御弁25の弁開度の制御中に、第1制御弁24の膨張手段側の弁開度を所定の弁開度に設定したものを示したが、これに限られるものではない。例えば、第2制御弁25の弁開度の制御中に、第1制御弁24の膨張手段側の弁開度を、車室外の温度Tamや目標吹出温度TAO等に運転条件に応じて決定される弁開度に設定するようにしてもよい。この場合、吸熱器14における冷媒の蒸発温度の制御をより高精度に行うことができるので、制御性能を向上させることが可能となる。
【0091】
また、前記実施形態では、第1制御弁24の膨張手段側の弁開度が所定開度以上の状態で、且つ、吸熱器温度センサ44の検出温度が吸熱器14における冷媒の目標蒸発温度Tetから所定温度ΔT1減じた温度(Tet−ΔT1)未満となる状態が、所定時間T継続したときに、吸熱器14における冷媒の蒸発温度を、第1制御弁24の膨張手段側の弁開度の調整による制御から第2制御弁25の弁開度の調整による制御に切換えるようにしたものを示したが、所定時間Tを0秒としたものも含まれる。
【0092】
また、前記実施形態では、吸熱器温度センサ44の検出温度が吸熱器14における冷媒の目標蒸発温度Tetに所定温度ΔT2加えた温度(Tet+ΔT2)以上の状態となったときに第2制御弁制御処理による第2制御弁25の制御を解除するようにしたものを示したが、これに限られるものではない。例えば、吸熱器温度センサ44の検出温度が吸熱器14における冷媒の目標蒸発温度Tet以上の状態となったときに第2制御弁制御処理による第2制御弁25の制御を解除してもよい。
【0093】
また、前記実施形態では、暖房運転時に室外熱交換器22に流入する冷媒を減圧するための膨張手段と、除湿冷房運転時に放熱器における冷媒の凝縮圧力を調整するための凝縮圧力調整手段と、が一体に設けられた第1制御弁24を示したが、これに限られるものではない。例えば、膨張手段としての電子式膨張弁と、凝縮圧力調整手段としての凝縮圧力調整弁を互いに並列に室外熱交換器22の冷媒流通方向上流側に接続するようにしても前記実施形態と同様の作用効果を得ることが可能である。
【0094】
また、前記実施形態では、第2制御弁25の弁開度を2段階に設定可能に構成し、冷媒流通路20hを流通する冷媒の流量を2段階に調整するようにしたものを示したが、これに限られるものではない。例えば、第2制御弁25の弁開度を、任意の開度に設定可能に構成してもよい。この場合には、吸熱器14における吸熱量を任意に設定することができるので、吸熱器14における吸熱量の制御の精度を向上させることが可能となる。
【0095】
また、前記実施形態では、目標蒸発温度Tetと吸熱器温度センサ44の検出温度Teに基づいて第2制御弁25の弁開度を調整するようにしたものを示したが、これに限られるものではない。例えば、吸熱器14において熱交換した後の空気の温度や、吸熱器14の冷媒の圧力を検出し、その検出結果に基づいて第2制御弁25の弁開度を調整するようにしても同様の効果を得ることが可能となる。
【0096】
また、前記実施形態では、第1除湿暖房運転時に、第1制御弁24および第2制御弁25によって吸熱器14における冷媒の蒸発温度を制御するようにしたものを示している。
一方、除湿冷房運転時においては、第1制御弁24によって放熱器15における冷媒の凝縮温度を制御し、第2制御弁25によって吸熱器14における冷媒の蒸発温度を制御すればよい。このとき、放熱器15における冷媒の凝縮温度の制御、および、吸熱器14における冷媒の蒸発温度の制御は、それぞれの目標温度と検出温度との差に基づくフィードバック制御によって行う。また、圧縮機21の回転数は、圧縮機21から吐出される冷媒の温度、第2制御弁25の弁開度および第1制御弁24の弁開度の少なくとも1つの状態に基づいて設定される。
また、除湿冷房運転時においては、圧縮機21の回転数の調整によって放熱器15における冷媒の凝縮温度を制御し、第2制御弁25によって吸熱器14における冷媒の蒸発温度を制御してもよい。このとき、放熱器15における冷媒の凝縮温度の制御、および、吸熱器14における冷媒の蒸発温度の制御は、それぞれの目標温度と検出温度との差に基づくフィードバック制御によって行う。また、第1制御弁24の開度は、予め決められた設定値、放熱器15における冷媒の凝縮温度、および、室内送風機12の送風量の少なくとも1つの状態に基づいて設定される。