特許第5986423号(P5986423)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社カネカの特許一覧 ▶ 松本油脂製薬株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5986423
(24)【登録日】2016年8月12日
(45)【発行日】2016年9月6日
(54)【発明の名称】硬化性組成物およびその硬化物
(51)【国際特許分類】
   C08L 101/10 20060101AFI20160823BHJP
   C08L 101/02 20060101ALI20160823BHJP
   C08K 7/22 20060101ALI20160823BHJP
   C09J 201/02 20060101ALI20160823BHJP
   C09J 11/06 20060101ALI20160823BHJP
   C09J 133/04 20060101ALI20160823BHJP
   C09J 171/02 20060101ALI20160823BHJP
   C09K 3/10 20060101ALI20160823BHJP
【FI】
   C08L101/10
   C08L101/02
   C08K7/22
   C09J201/02
   C09J11/06
   C09J133/04
   C09J171/02
   C09K3/10 G
   C09K3/10 Z
   C09K3/10 E
【請求項の数】12
【全頁数】32
(21)【出願番号】特願2012-113077(P2012-113077)
(22)【出願日】2012年5月17日
(65)【公開番号】特開2013-237815(P2013-237815A)
(43)【公開日】2013年11月28日
【審査請求日】2015年3月20日
(73)【特許権者】
【識別番号】000000941
【氏名又は名称】株式会社カネカ
(73)【特許権者】
【識別番号】000188951
【氏名又は名称】松本油脂製薬株式会社
(74)【代理人】
【識別番号】110000556
【氏名又は名称】特許業務法人 有古特許事務所
(72)【発明者】
【氏名】矢野 理子
(72)【発明者】
【氏名】鳥巣 修一
【審査官】 安田 周史
(56)【参考文献】
【文献】 特開2011−219554(JP,A)
【文献】 特開平05−001225(JP,A)
【文献】 特開2002−155201(JP,A)
【文献】 特開2006−249232(JP,A)
【文献】 特開2005−206632(JP,A)
【文献】 特開2005−171217(JP,A)
【文献】 国際公開第2005/049698(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 101/10
C08L 101/02
C08K 7/22
(57)【特許請求の範囲】
【請求項1】
反応性ケイ素基を有する有機重合体(A)と、
ニトリル系単量体を含有する重合性成分の重合体である熱可塑性樹脂からなる外殻と、当該外殻に内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性マイクロカプセルが膨張してなる中空粒子(B)と、
を含有する一液型の硬化性組成物であって、
前記中空粒子の真比重が0.025〜0.100の範囲にあり、前記中空粒子の強熱残分が20%以下であり、前記中空粒子の平均粒子径が30〜60μmの範囲にあり、かつ、前記発泡剤のうち沸点が20〜40℃の範囲にある化合物が占める割合が50重量%以上であることを特徴とする硬化性組成物。
【請求項2】
(A)成分の主鎖が、ポリオキシアルキレン系重合体および/又は(メタ)アクリル酸エステル系重合体であることを特徴とする、請求項1に記載の硬化性組成物。
【請求項3】
(A)成分の主鎖が直鎖構造であることを特徴とする、請求項1〜2のいずれかに記載の硬化性組成物。
【請求項4】
前記発泡剤のうち沸点が20〜40℃の範囲にある化合物が、イソペンタンおよびノルマルペンタンから選ばれる少なくとも一種であることを特徴とする、請求項1〜3のいずれかに記載の硬化性組成物。
【請求項5】
前記硬化性組成物の比重が0.9〜1.3の範囲にあることを特徴とする、請求項1〜4のいずれかに記載の硬化性組成物。
【請求項6】
シランカップリング剤をさらに含有することを特徴とする、請求項1〜5のいずれかに記載の硬化性組成物。
【請求項7】
有機スズ系硬化触媒をさらに含有することを特徴とする、請求項1〜6のいずれかに記載の硬化性組成物。
【請求項8】
ノズルを備えた容器に充填され、加圧して前記ノズルから吐出して使用されるための、請求項1〜7のいずれかに記載の硬化性組成物。
【請求項9】
請求項1〜8のいずれかに記載の硬化性組成物からなるシーリング材。
【請求項10】
請求項1〜8のいずれかに記載の硬化性組成物からなるタイル用接着剤。
【請求項11】
請求項1〜8のいずれかに記載の硬化性組成物からなる床用接着剤。
【請求項12】
請求項1〜8のいずれかに記載の硬化性組成物を硬化して得られる硬化物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ケイ素原子に結合した水酸基または加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素基(以下、「反応性ケイ素基」ともいう。)を含有する有機重合体と、膨張した熱膨張性マイクロカプセルを中空粒子として含む硬化性組成物およびその硬化物に関する。
【背景技術】
【0002】
分子中に少なくとも1個の反応性ケイ素基を含有する有機重合体は、室温においても湿分による反応性ケイ素基の加水分解反応などを伴うシロキサン結合の形成によって架橋し、ゴム状の硬化物が得られるという性質を有することが知られている。
【0003】
これらの反応性ケイ素基を含有する有機重合体の中で、主鎖骨格がポリオキシアルキレン系重合体、飽和炭化水素系重合体、および、ポリ(メタ)アクリル酸エステル共重合体については、特許文献1で開示されており、既に工業的に生産され、シーリング材、接着剤、コーティング材、塗料などの用途に広く使用されている。
【0004】
反応性ケイ素基を含有する有機重合体と中空粒子を併用することで、糸引きやスランプ性が改善することは、特許文献2、特許文献3に開示されている。中空粒子は、ガラスバルーンやシラスバルーンのような無機物のもの(無機バルーン)と、熱膨張した熱膨張性マイクロカプセルに代表される有機物のもの(有機バルーン)に大別できる。
【0005】
無機バルーンと呼ばれるものは、概して真比重が大きいため、比重低減効果が小さい。さらに、無機バルーンの表面は硬く、ミキサー等で混練するとバルーン構造が崩壊し易いため混練するのに技術を要する、粘度が上昇して作業性が悪化し易い、種類によっては着色する、等の課題があり、使用できる用途は限定的であった。
【0006】
一方、有機バルーンは比重低減効果が大きく、ゴム素材や軽量化が求められる車両用途に広く使用されている。既に、熱膨張した熱膨張性マイクロカプセルが中空粒子として添加された2液型の建築用シーリング材が日本国内で市販されている。
【0007】
しかし、熱膨張した熱膨張性マイクロカプセルが中空粒子として添加されている1液型の硬化性組成物はほとんどなく、添加されているとしてもその量は微量であり、本来の中空粒子の効果が十分発揮されたものはなかった。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特許第2708833号公報
【特許文献2】特開2002−155201号公報
【特許文献3】特開平05−1225号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
熱膨張性マイクロカプセルを膨張させて得られる中空粒子が1液型の硬化性組成物において使用しづらい原因の一つとして、当該硬化性組成物が充填されたカートリッジ容器から専用のガンで必要量の硬化性組成物を押し出す際に、押し出しを止めても組成物がノズルからだらだらと出続ける現象がある。ノズルから硬化性組成物がだらだらと出てくる現象をスプリングバックと呼んでおり、この改善が従来から求められている。
【0010】
本発明は、弾性シーリング材組成物、タイル用接着剤、床用接着剤等に使用できる一液型硬化性組成物で、熱膨張した熱膨張性マイクロカプセルを中空粒子として使用した場合に生じるスプリングバックの問題を解決した硬化性組成物を提供することを目的とする。
【課題を解決するための手段】
【0011】
熱膨張した熱膨張性マイクロカプセルを使用した際にスプリングバックが生じるのは、カートリッジ内に圧力をかけると、弾性体である熱膨張した熱膨張性マイクロカプセルが凹み、少し時間が経ってからその凹みが回復するためと考えられる。
【0012】
本発明者らは、上記課題を解決するために鋭意検討を行った結果、熱膨張した熱膨張性マイクロカプセルを中空粒子として、真比重および強熱残分が特定範囲にあり、かつ、熱膨張性マイクロカプセルに含まれる発泡剤の沸点が特定範囲にあるものを使用することで、反応性ケイ素基を有する有機重合体を含有する一液型硬化性組成物のスプリングバックが改善されることを見出した。さらに、最適な発泡剤の種類を見出したことで発明を完成させた。
【0013】
すなわち、本発明は、反応性ケイ素基を有する有機重合体(A)と、
ニトリル系単量体を含有する重合性成分を重合することによって得られる熱可塑性樹脂からなる外殻と、当該外殻に内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性マイクロカプセルを膨張させることによって得られる中空粒子(B)と、
を含有する一液型の硬化性組成物であって、
前記中空粒子の真比重が0.025〜0.100の範囲にあり、前記中空粒子の強熱残分が20%以下であり、前記中空粒子の平均粒子径が30〜60μmの範囲にあり、かつ、前記発泡剤のうち沸点が20〜40℃の範囲にある化合物が占める割合が50重量%以上であることを特徴とする硬化性組成物に関する。
【0014】
また、本発明は、前記硬化性組成物からなるシーリング材、タイル用接着剤、または、床用接着剤に関し、更には、前記硬化性組成物を硬化して得られる硬化物に関する。
【発明の効果】
【0015】
本発明は、スランプや糸切れ性、ヘラ切れ性が改善できるという効果に加え、ノズルを備えたカートリッジ容器に詰めた一液型硬化性組成物を使用する際に、押し出しを止めた後にノズルの先から組成物がだらだらと出てくる課題を解決した硬化性組成物を提供することができる。
【発明を実施するための形態】
【0016】
以下、本発明について詳しく説明する。
【0017】
本発明に用いる反応性ケイ素基を有する有機重合体(A)の主鎖骨格は特に制限はなく、各種の主鎖骨格を持つものを使用することができるが、得られる組成物の硬化性や接着性に優れることから、水素原子、炭素原子、窒素原子、酸素原子、硫黄原子から選択される1つ以上からなることが好ましい。
【0018】
具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン−ポリオキシプロピレン共重合体、ポリオキシプロピレン−ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;エチレン−プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリルおよびスチレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、または、ラクトン類の開環重合で得られるポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;前記有機重合体中でビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ε−カプロラクタムの開環重合によるナイロン6、ヘキサメチレンジアミンとアジピン酸の縮重合によるナイロン6・6、ヘキサメチレンジアミンとセバシン酸の縮重合によるナイロン6・10、ε−アミノウンデカン酸の縮重合によるナイロン11、ε−アミノラウロラクタムの開環重合によるナイロン12、上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等のポリアミド系重合体;例えばビスフェノールAと塩化カルボニルより縮重合して製造されるポリカーボネート系重合体、ジアリルフタレート系重合体等が例示される。
【0019】
ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体は比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることからより好ましい。
【0020】
(A)成分である有機重合体のガラス転移温度は、特に限定は無いが、20℃以下であることが好ましく、0℃以下であることがより好ましく、−20℃以下であることが特に好ましい。ガラス転移温度が20℃を上回ると、冬季または寒冷地での粘度が高くなり作業性が悪くなる場合があり、また、硬化物の柔軟性が低下し、伸びが低下する場合がある。前記ガラス転移温度はDSC測定による値を示す。
【0021】
また、ポリオキシアルキレン系重合体および(メタ)アクリル酸エステル系重合体は、透湿性が高く1液型組成物にした場合に深部硬化性に優れ、更に接着性にも優れることから特に好ましく、ポリオキシアルキレン系重合体は最も好ましい。ポリオキシアルキレン系重合体の中でも、ポリオキシプロピレン系重合体が特に好ましい。
【0022】
本発明の有機重合体中に含有される反応性ケイ素基は、ケイ素原子に結合したヒドロキシ基または加水分解性基を有し、シラノール縮合触媒によって加速される反応によりシロキサン結合を形成することにより架橋しうる基である。反応性ケイ素基としては、一般式(1):
−SiR3−a (1)
(Rは、それぞれ独立に炭素原子数1から20のアルキル基、炭素原子数6から20のアリール基、炭素原子数7から20のアラルキル基、または、−OSi(R’)(R’は、それぞれ独立に炭素原子数1から20の炭化水素基である)で示されるトリオルガノシロキシ基である。また、Xは、それぞれ独立にヒドロキシ基または加水分解性基である。更に、aは1から3の整数である)で表される基があげられる。
【0023】
加水分解性基としては、特に限定されず、従来公知の加水分解性基であればよい。具体的には、例えば水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。これらの内では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、および、アルケニルオキシ基が好ましく、加水分解性が穏やかで取扱いやすいという観点からアルコキシ基が特に好ましい。
【0024】
加水分解性基やヒドロキシ基は、1個のケイ素原子に1から3個の範囲で結合することができる。加水分解性基やヒドロキシ基が反応性ケイ素基中に2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。
【0025】
上記一般式(1)におけるaは、硬化性の点から、2または3であることが好ましく、特に速硬化性を求める場合には3であることが好ましく、貯蔵中の安定性を求める場合には2であることが好ましい。
【0026】
また上記一般式(1)におけるRの具体例としては、例えばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R’がメチル基、フェニル基等である−OSi(R’)で示されるトリオルガノシロキシ基、クロロメチル基、メトキシメチル基等があげられる。これらの中ではメチル基が特に好ましい。
【0027】
反応性ケイ素基のより具体的な例示としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジイソプロポキシメチルシリル基が挙げられる。活性が高く良好な硬化性が得られることから、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基がより好ましく、ジメトキシメチルシリル基が特に好ましい。また、貯蔵安定性の点からはジメトキシメチルシリル基、トリエトキシシリル基が特に好ましい。また、トリエトキシシリル基およびジエトキシメチルシリル基は、反応性ケイ素基の加水分解反応に伴って生成するアルコールが、エタノールであり、より高い安全性を有することから特に好ましい。
【0028】
反応性ケイ素基の導入は公知の方法で行えばよい。すなわち、例えば以下の方法が挙げられる。
【0029】
(I)分子中にヒドロキシ基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基および不飽和基を有する有機化合物を反応させ、不飽和基を含有する有機重合体を得る。もしくは、不飽和基含有エポキシ化合物との共重合により不飽和基含有有機重合体を得る。次いで得られた反応生成物に反応性ケイ素基を有するヒドロシランを作用させてヒドロシリル化する。
【0030】
(II)(I)法と同様にして得られた不飽和基を含有する有機重合体にメルカプト基および反応性ケイ素基を有する化合物を反応させる。
【0031】
(III)分子中にヒドロキシ基、エポキシ基やイソシアネート基等の官能基を有する有機重合体に、この官能基に対して反応性を示す官能基および反応性ケイ素基を有する化合物を反応させる。
【0032】
以上の方法のなかで、(I)の方法、または(III)のうち末端にヒドロキシ基を有する重合体とイソシアネート基および反応性ケイ素基を有する化合物を反応させる方法は、比較的短い反応時間で高い転化率が得られる為に好ましい。更に、(I)の方法で得られた反応性ケイ素基を有する有機重合体は、(III)の方法で得られる有機重合体よりも低粘度で作業性の良い硬化性組成物となること、また、(II)の方法で得られる有機重合体は、メルカプトシランに基づく臭気が強いことから、(I)の方法が特に好ましい。
【0033】
(I)の方法において用いるヒドロシラン化合物の具体例としては、例えば、トリクロロシラン、メチルジクロロシラン、ジメチルクロロシラン、フェニルジクロロシランのようなハロゲン化シラン類;トリメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、メチルジメトキシシラン、フェニルジメトキシシラン、1−[2−(トリメトキシシリル)エチル]−1,1,3,3−テトラメチルジシロキサンのようなアルコキシシラン類;メチルジアセトキシシラン、フェニルジアセトキシシランのようなアシロキシシラン類;ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシランのようなケトキシメートシラン類などがあげられるが、これらに限定されるものではない。これらのうちでは特にハロゲン化シラン類、アルコキシシラン類が好ましく、特にアルコキシシラン類は、得られる硬化性組成物の加水分解性が穏やかで取り扱いやすいために最も好ましい。アルコキシシラン類の中で、メチルジメトキシシランは、入手し易く、得られる有機重合体を含有する硬化性組成物の硬化性、貯蔵安定性、伸び特性、引張強度が高い為に好ましい。また、トリメトキシシランは、得られる硬化性組成物の硬化性および復元性の点から特に好ましい。
【0034】
(II)の合成法としては、例えば、メルカプト基および反応性ケイ素基を有する化合物を、ラジカル開始剤および/またはラジカル発生源存在下でのラジカル付加反応によって、有機重合体の不飽和結合部位に導入する方法等が挙げられるが、特に限定されるものではない。前記メルカプト基および反応性ケイ素基を有する化合物の具体例としては、例えば、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシランなどがあげられるが、これらに限定されるものではない。
【0035】
(III)の合成法のうち末端にヒドロキシ基を有する重合体とイソシアネート基および反応性ケイ素基を有する化合物を反応させる方法としては、例えば、特開平3−47825号公報に示される方法等が挙げられるが、特に限定されるものではない。前記イソシアネート基および反応性ケイ素基を有する化合物の具体例としては、例えば、γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジエトキシシラン、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、イソシアネートメチルジメトキシメチルシラン、イソシアネートメチルジエトキシメチルシランなどがあげられるが、これらに限定されるものではない。
【0036】
トリメトキシシラン等の一つのケイ素原子に3個の加水分解性基が結合しているシラン化合物は不均化反応が進行する場合がある。不均化反応が進むと、ジメトキシシランのような不安定な化合物が生じ、取り扱いが困難となることがある。しかし、γ−メルカプトプロピルトリメトキシシランやγ−イソシアネートプロピルトリメトキシシランでは、このような不均化反応は進行しない。このため、ケイ素含有基としてトリメトキシシリル基など3個の加水分解性基が一つのケイ素原子に結合している基を用いる場合には、(II)または(III)の合成法を用いることが好ましい。
【0037】
一方、一般式(2):
H−(SiRO)SiR−R−SiX (2)
(Xは前記に同じ。2m+2個のRは、それぞれ独立に炭化水素基であり、入手性およびコストの点から、炭素原子数1から20の炭化水素基が好ましく、炭素原子数1から8の炭化水素基がより好ましく、炭素原子数1から4の炭化水素基が特に好ましい。Rは2価の有機基であり、入手性およびコストの点から、炭素原子数1から12の2価の炭化水素基が好ましく、炭素原子数2から8の2価の炭化水素基がより好ましく、炭素原子数2の2価の炭化水素基が特に好ましい。また、mは0から19の整数であり、入手性およびコストの点から、1が好ましい)で表されるシラン化合物は、不均化反応が進まない。この為、(I)の合成法で、3個の加水分解性基が1つのケイ素原子に結合している基を導入する場合には、一般式(2)で表されるシラン化合物を用いることが好ましい。一般式(2)で示されるシラン化合物の具体例としては、1−[2−(トリメトキシシリル)エチル]−1,1,3,3−テトラメチルジシロキサン、1−[2−(トリメトキシシリル)プロピル]−1,1,3,3−テトラメチルジシロキサン、1−[2−(トリメトキシシリル)ヘキシル]−1,1,3,3−テトラメチルジシロキサンが挙げられる。
【0038】
反応性ケイ素基を有する有機重合体(A)は直鎖状、または分岐を有してもよい。(A)成分の数平均分子量は、水酸基量から換算した数平均分子量で8,000から50,000程度、より好ましくは9,000から30,000であり、特に好ましくは10,000から25,000である。数平均分子量が8,000未満では、硬化物の伸び特性の点で不都合な傾向があり、50,000を越えると、高粘度となる為に作業性の点で不都合な傾向がある。
【0039】
本発明では、高強度、高伸びで、低弾性率を示すゴム状硬化物を得るためには、有機重合体(A)に含有される反応性ケイ素基は重合体1分子中に平均して1.1〜3個存在することが好ましく、1.2〜2.5個がさらに好ましく、1.4〜2.3個が最も好ましい。分子中に含まれる反応性ケイ素基の数が平均して1.1個未満になると、硬化性が不充分になり、良好なゴム弾性挙動を発現しにくくなる。一方、反応性ケイ素基の数が平均して3個以上の場合には、硬化物が硬くなり、高伸びが発現しにくくなるためである。
【0040】
有機重合体(A)の主鎖中の分岐数は3以下が好ましく、2以下がさらに好ましく、1以下がさらに望ましいが、分岐がないのが最も好ましい。分岐がないというのは、主鎖が直鎖状であるという意味である。本発明は、低モジュラスかつ高伸びという効果を達成するものであり、この観点から、(A)成分の主鎖は、直鎖構造であることが好ましい。
【0041】
前記ポリオキシアルキレン系重合体は、本質的に一般式(3):
−R−O− (3)
(Rは、炭素原子数1から14の直鎖状もしくは分岐アルキレン基である)で示される繰り返し単位を有する重合体であり、一般式(3)におけるRは、炭素原子数1から14の、更には2から4の、直鎖状もしくは分岐アルキレン基が好ましい。一般式(3)で示される繰り返し単位の具体例としては、
−CHO−、−CHCHO−、−CHCH(CH)O−、−CHCH(C)O−、−CHC(CHO−、−CHCHCHCHO−
等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特にシーリング材等に使用される場合には、プロピレンオキシド重合体を主成分とする重合体から成るものが非晶質であることや比較的低粘度である点から好ましい。
【0042】
ポリオキシアルキレン系重合体の合成法としては、例えば、KOHのようなアルカリ触媒による重合法、特開昭61−215623号に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷移金属化合物−ポルフィリン錯体触媒による重合法、特公昭46−27250号、特公昭59−15336号、米国特許3278457号、米国特許3278458号、米国特許3278459号、米国特許3427256号、米国特許3427334号、米国特許3427335号等に示される複合金属シアン化物錯体触媒による重合法、特開平10−273512号に例示されるポリホスファゼン塩からなる触媒を用いる重合法、特開平11−060722号に例示されるホスファゼン化合物からなる触媒を用いる重合法等があげられるが、特に限定されるものではない。
【0043】
反応性ケイ素基を有するポリオキシアルキレン系重合体の製造方法は、特公昭45−36319号、同46−12154号、特開昭50−156599号、同54−6096号、同55−13767号、同55−13468号、同57−164123号、特公平3−2450号、米国特許3632557、米国特許4345053、米国特許4366307、米国特許4960844等の各公報に提案されているもの、また特開昭61−197631号、同61−215622号、同61−215623号、同61−218632号、特開平3−72527号、特開平3−47825号、特開平8−231707号の各公報に提案されている数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体が例示できるが、特にこれらに限定されるものではない。
【0044】
上記の反応性ケイ素基を有するポリオキシアルキレン系重合体は、単独で使用してもよいし2種以上併用してもよい。
【0045】
前記(メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては特に限定されず、各種のものを用いることができる。例示するならば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸3−メトキシブチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシ)プロピルトリメトキシシラン、γ−(メタクリロイルオキシ)プロピルジメトキシメチルシラン、メタクリロイルオキシメチルトリメトキシシラン、メタクリロイルオキシメチルトリエトキシシラン、メタクリロイルオキシメチルジメトキシメチルシラン、メタクリロイルオキシメチルジエトキシメチルシラン、(メタ)アクリル酸のエチレンオキサイド付加物等の(メタ)アクリル酸系モノマーが挙げられる。
【0046】
前記(メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマーとともに、以下のビニル系モノマーを共重合することもできる。該ビニル系モノマーを例示すると、スチレン、ビニルトルエン、α−メチルスチレン、クロルスチレン、スチレンスルホン酸およびその塩等のスチレン系モノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステルおよびジアルキルエステル;フマル酸、フマル酸のモノアルキルエステルおよびジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。
【0047】
これらは、単独で用いても良いし、複数を共重合させても構わない。なかでも、生成物の物性等から、スチレン系モノマーおよび(メタ)アクリル酸系モノマーからなる重合体が好ましい。より好ましくは、アクリル酸エステルモノマーおよびメタクリル酸エステルモノマーからなる(メタ)アクリル系重合体であり、特に好ましくはアクリル酸エステルモノマーからなるアクリル系重合体である。一般建築用等の用途においては配合物の低粘度、硬化物の低モジュラス、高伸び、耐候、耐熱性等の物性が要求される点から、アクリル酸ブチル系モノマーが更に好ましい。一方、自動車用途等の耐油性等が要求される用途においては、アクリル酸エチルを主とした共重合体が更に好ましい。このアクリル酸エチルを主とした重合体は耐油性に優れるが低温特性(耐寒性)にやや劣る傾向があるため、その低温特性を向上させるために、アクリル酸エチルの一部をアクリル酸ブチルに置き換えることも可能である。ただし、アクリル酸ブチルの比率を増やすに伴いその良好な耐油性が損なわれていくので、耐油性を要求される用途にはその比率は40%以下にするのが好ましい。また、耐油性を損なわずに低温特性等を改善するために側鎖のアルキル基に酸素が導入されたアクリル酸2−メトキシエチルやアクリル酸2−エトキシエチル等を用いるのも好ましい。ただし、側鎖にエーテル結合を持つアルコキシ基の導入により耐熱性が劣る傾向にあるので、耐熱性が要求されるときには、その比率は40%以下にするのが好ましい。各種用途や要求される目的に応じて、必要とされる耐油性や耐熱性、低温特性等の物性を考慮し、その比率を変化させ、適した重合体を得ることが可能である。例えば、限定はされないが耐油性や耐熱性、低温特性等の物性バランスに優れている例としては、アクリル酸エチル/アクリル酸ブチル/アクリル酸2−メトキシエチル(重量比で40〜50/20〜30/30〜20)の共重合体が挙げられる。本発明においては、これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共重合させても構わなく、その際は、これらの好ましいモノマーが重量比で40%以上含まれていることが好ましい。なお上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。
【0048】
(メタ)アクリル酸エステル系重合体の合成法としては、特に限定されず、公知の方法で行えばよい。但し、重合開始剤としてアゾ系化合物、過酸化物などを用いる通常のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2以上と大きく、粘度が高くなるという問題を有している。従って、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得るためには、リビングラジカル重合法を用いることが好ましい。
【0049】
「リビングラジカル重合法」の中でも、有機ハロゲン化物あるいはハロゲン化スルホニル化合物等を開始剤、遷移金属錯体を触媒として(メタ)アクリル酸エステル系モノマーを重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有する(メタ)アクリル酸エステル系重合体の製造方法としてはさらに好ましい。この原子移動ラジカル重合法としては例えば、Matyjaszewskiら、ジャーナル・オブ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)1995年、117巻、5614頁などが挙げられる。
【0050】
反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体の製法としては、例えば、特公平3−14068号公報、特公平4−55444号公報、特開平6−211922号公報等に、連鎖移動剤を用いたフリーラジカル重合法を用いた製法が開示されている。また、特開平9−272714号公報等に、原子移動ラジカル重合法を用いた製法が開示されているが、特にこれらに限定されるものではない。上記の反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体は、単独で使用してもよいし2種以上併用してもよい。
【0051】
これらの反応性ケイ素基を有する有機重合体は、単独で使用してもよいし2種以上併用してもよい。具体的には、反応性ケイ素基を有するポリオキシアルキレン系重合体、反応性ケイ素基を有する飽和炭化水素系重合体、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体、からなる群から選択される2種以上をブレンドしてなる有機重合体も使用できる。
【0052】
反応性ケイ素基を有するポリオキシアルキレン系重合体と反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法は、特開昭59−122541号、特開昭63−112642号、特開平6−172631号、特開平11−116763号公報等に提案されているが、特にこれらに限定されるものではない。好ましい具体例は、反応性ケイ素基を有し分子鎖が実質的に、下記一般式(4):
−CH−C(R)(COOR)− (4)
(Rは水素原子またはメチル基、Rは炭素原子数1から8のアルキル基を示す)で表される炭素原子数1から8のアルキル基を有する(メタ)アクリル酸エステル単量体単位と、下記一般式(5):
−CH−C(R)(COOR)− (5)
(Rは前記に同じ、Rは炭素原子数9以上のアルキル基を示す)で表される炭素原子数9以上のアルキル基を有する(メタ)アクリル酸エステル単量体単位からなる共重合体に、反応性ケイ素基を有するポリオキシアルキレン系重合体をブレンドして製造する方法である。
【0053】
前記一般式(4)のRとしては、例えば、メチル基、エチル基、プロピル基、n−ブチル基、t−ブチル基、2−エチルヘキシル基等の炭素原子数1から8、好ましくは1から4、さらに好ましくは1または2のアルキル基があげられる。なお、Rのアルキル基は単独でもよく、2種以上混合していてもよい。
【0054】
前記一般式(5)のRとしては、例えば、ノニル基、デシル基、ラウリル基、トリデシル基、セチル基、ステアリル基、ベヘニル基等の炭素原子数9以上、通常は10から30、好ましくは10から20の長鎖のアルキル基があげられる。なお、Rのアルキル基はRの場合と同様、単独でもよく、2種以上混合したものであってもよい。
【0055】
該(メタ)アクリル酸エステル系重合体の分子鎖は実質的に一般式(4)および一般式(5)の単量体単位からなるが、ここでいう「実質的に」とは該共重合体中に存在する一般式(4)および一般式(5)の単量体単位の合計が50重量%をこえることを意味する。一般式(4)および一般式(5)の単量体単位の合計は好ましくは70重量%以上である。
【0056】
また、一般式(4)の単量体単位と一般式(5)の単量体単位の存在比は、重量比で95:5から40:60が好ましく、90:10から60:40がさらに好ましい。
該共重合体に含有されていてもよい一般式(4)および一般式(5)以外の単量体単位としては、例えば、アクリル酸、メタクリル酸等のアクリル酸;アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド等のアミド基、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、アミノエチルビニルエーテル等のアミノ基を含む単量体;その他アクリロニトリル、スチレン、α−メチルスチレン、アルキルビニルエーテル、塩化ビニル、酢酸ビニル、プロピオン酸ビニル、エチレン等に起因する単量体単位があげられる。
【0057】
反応性ケイ素基を有する飽和炭化水素系重合体と反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体は、特開平1−168764号、特開2000−186176号公報等に提案されているが、特にこれらに限定されるものではない。
【0058】
更に、反応性ケイ素官能基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法としては、他にも、反応性ケイ素基を有する有機重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。この製造方法は、特開昭59−78223号、特開昭59−168014号、特開昭60−228516号、特開昭60−228517号等の各公報に具体的に開示されているが、これらに限定されるものではない。
【0059】
一方、有機重合体の主鎖骨格中には本発明の効果を大きく損なわない範囲でウレタン結合成分等の他の成分を含んでいてもよい。
【0060】
前記ウレタン結合成分としては特に限定されないが、イソシアネート基と活性水素基との反応により生成する基(以下、アミドセグメントともいう)を挙げることができる。
【0061】
前記アミドセグメントは一般式(6):
−NR−C(=O)− (6)
(Rは有機基または水素原子を表す)で表される基である。
【0062】
前記アミドセグメントとしては、具体的には、イソシアネート基とヒドロキシ基との反応により生成するウレタン基;イソシアネート基とアミノ基との反応により生成する尿素基;イソシアネート基とメルカプト基との反応により生成するチオウレタン基などを挙げることができる。また、本発明では、上記ウレタン基、尿素基、および、チオウレタン基中の活性水素が、更にイソシアネート基と反応して生成する基も、一般式(6)の基に含まれる。
【0063】
アミドセグメントと反応性ケイ素基を有する有機重合体の工業的に容易な製造方法を例示すると、末端に活性水素含有基を有する有機重合体に、過剰のポリイソシアネート化合物を反応させて、ポリウレタン系主鎖の末端にイソシアネート基を有する重合体とした後、あるいは同時に、該イソシアネート基の全部または一部に一般式(7):
W−R−SiR3−a (7)
(R、X、aは前記と同じ。Rは2価の有機基であり、より好ましくは炭素原子数1から20の炭化水素基である。Wはヒドロキシ基、カルボキシ基、メルカプト基およびアミノ基(1級または2級)から選ばれた活性水素含有基である)で表されるケイ素化合物のW基を反応させる方法により製造されるものを挙げることができる。この製造方法に関連した、有機重合体の公知の製造法を例示すると、特開2002−212415号、特開2001−323040号等が挙げられる。
【0064】
また、末端に活性水素含有基を有する有機重合体に一般式(8):
O=C=N−R−SiR3−a (8)
(R、R、X、aは前記に同じ)で示される反応性ケイ素基含有イソシアネート化合物とを反応させることにより製造されるものを挙げることができる。この製造方法に関連した、有機重合体の公知の製造法を例示すると、特開平11−279249号、WO03/059981等が挙げられる。
【0065】
末端に活性水素含有基を有する有機重合体としては、末端にヒドロキシ基を有するオキシアルキレン重合体(ポリエーテルポリオール)、ポリアクリルポリオール、ポリエステルポリオール、末端にヒドロキシ基を有する飽和炭化水素系重合体(ポリオレフィンポリオール)、ポリチオール化合物、ポリアミン化合物等が挙げられる。これらの中でも、ポリエーテルポリオール、ポリアクリルポリオール、および、ポリオレフィンポリオールは、得られる有機重合体のガラス転移温度が比較的低く、得られる硬化物が耐寒性に優れることから好ましい。特に、ポリエーテルポリオールは、得られる有機重合体の粘度が低く作業性が良好であり、深部硬化性および接着性が良好である為に特に好ましい。また、ポリアクリルポリオールおよび飽和炭化水素系重合体は、得られる有機重合体の硬化物の耐候性、耐熱性が良好である為により好ましい。
【0066】
ポリエーテルポリオールとしては、いかなる製造方法において製造されたものでも使用することが出来るが、全分子平均で分子末端当り少なくとも0.7個のヒドロキシ基を末端に有するものが好ましい。具体的には、従来のアルカリ金属触媒を使用して製造したオキシアルキレン重合体や、複合金属シアン化物錯体やセシウムの存在下、少なくとも2つのヒドロキシ基を有するポリヒドロキシ化合物などの開始剤に、アルキレンオキシドを反応させて製造されるオキシアルキレン重合体などが挙げられる。
【0067】
上記の各重合法の中でも、複合金属シアン化物錯体を使用する重合法は、より低不飽和度で、Mw/Mnが狭く、より低粘度でかつ、高耐酸性、高耐候性のオキシアルキレン重合体を得ることが可能であるため好ましい。
【0068】
前記ポリアクリルポリオールとしては、(メタ)アクリル酸アルキルエステル(共)重合体を骨格とし、かつ、分子内にヒドロキシ基を有するポリオールを挙げることができる。この重合体の合成法は、分子量分布が狭く、低粘度化が可能なことからリビングラジカル重合法が好ましく、原子移動ラジカル重合法がさらに好ましい。また、特開2001−207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温、高圧で連続塊状重合によって得た、いわゆるSGOプロセスによる重合体を用いるのが好ましい。具体的には、東亞合成(株)製のアルフォンUH−2000等が挙げられる。
【0069】
前記ポリイソシアネート化合物の具体例としては、トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネートなどを挙げることができる。
【0070】
一般式(7)のケイ素化合物としては特に限定はないが、具体的に例示すると、γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、(N−フェニル)−γ−アミノプロピルトリメトキシシラン、N−エチルアミノイソブチルトリメトキシシラン、N−シクロヘキシルアミノメチルトリエトキシシラン、N−シクロヘキシルアミノメチルジエトキシメチルシラン、N−フェニルアミノメチルトリメトキシシラン等のアミノ基含有シラン類;γ−ヒドロキシプロピルトリメトキシシラン等のヒドロキシ基含有シラン類;γ−メルカプトプロピルトリメトキシシラン等のメルカプト基含有シラン類;等が挙げられる。また、特開平6−211879号に記載されている様に、各種のα,β−不飽和カルボニル化合物と一級アミノ基含有シランとのMichael付加反応物、または、各種の(メタ)アクリロイル基含有シランと一級アミノ基含有化合物とのMichael付加反応物もまた、一般式(7)のケイ素化合物として用いることができる。
【0071】
一般式(8)の反応性ケイ素基含有イソシアネート化合物としては特に限定はないが、具体的に例示すると、γ−トリメトキシシリルプロピルイソシアネート、γ−トリエトキシシリルプロピルイソシアネート、γ−メチルジメトキシシリルプロピルイソシアネート、γ−メチルジエトキシシリルプロピルイソシアネート、トリメトキシシリルメチルイソシアネート、トリエトキシメチルシリルメチルイソシアネート、ジメトキシメチルシリルメチルイソシアネート、ジエトキシメチルシリルメチルイソシアネート等が挙げられる。また、特開2000−119365号に記載されている様に、一般式(7)のケイ素化合物と、過剰の前記ポリイソシアネート化合物を反応させて得られる化合物もまた、一般式(8)の反応性ケイ素基含有イソシアネート化合物として用いることができる。
【0072】
上記の方法で得られる有機重合体は、主鎖骨格中に一般式(9):
−NR10−C(=O)− (9)
(R10は水素原子または置換あるいは非置換の有機基を表す)で表される基を有する。この構造は極性が比較的高いため、硬化物の強度や基材への接着性が高くなる傾向にあり望ましい。
【0073】
本発明では、(B)成分として中空粒子を使用する。(B)成分は、熱可塑性樹脂からなる外殻と、当該外殻に内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性マイクロカプセルを加熱膨張することによって得られる中空粒子である。当該中空粒子は、真比重が0.025〜0.100の範囲にあり、強熱残分(灰分)が20%以下であり、平均粒子径が30〜60μmの範囲にあり、かつ、前記発泡剤は沸点が20〜40℃の範囲にある化合物を含有する。前記発泡剤を構成する成分の沸点が20〜40℃の範囲にある化合物を含有すると、中空粒子を硬化性組成物に添加した場合にスプリングバック抑制効果が向上するため好ましい。
【0074】
前記熱膨張性マイクロカプセルの発泡剤を構成する成分に占める沸点が20〜40℃の範囲にある化合物の重量割合は、50重量%以上、好ましくは65重量%以上、さらに好ましくは80重量%以上、特に好ましくは95重量%以上である。発泡剤を構成する成分に占める沸点が20〜40℃の範囲にある化合物の重量割合の好ましい範囲の上限は100重量%である。発泡剤を構成する成分が上記範囲にあると、中空粒子を硬化性組成物に添加した場合にスプリングバック抑制効果が向上し、また、カートリッジに充填後に塗布された硬化性組成物が所望の比重で安定に得られるため好ましい。
【0075】
本発明では、発泡剤を構成する成分のうち沸点が20〜40℃の範囲にある化合物が、ノルマルペンタンおよび/またはイソペンタンのみから構成されると、中空粒子を硬化性組成物に添加した場合にスプリングバック抑制効果が向上するため望ましい。
【0076】
発泡剤を構成するその他の成分としては、加熱して気化する炭化水素(特に脂肪族炭化水素)であればよく、特に限定はないが、炭化水素の炭素数は、好ましくは4〜12、さらに好ましくは5〜8である。発泡剤としては、たとえば、プロパン、ノルマルブタン、イソブタン、(イソ)ヘキサン、(イソ)ヘプタン、(イソ)オクタン、(イソ)ノナン、(イソ)デカン、(イソ)ドデカン等を挙げることができる。これらの発泡剤は、1種または2種以上を併用してもよい。上記発泡剤は、直鎖状、分岐状、脂環状のいずれでもよく、脂肪族であるものが好ましい。
【0077】
熱膨張性マイクロカプセルを加熱によって膨張させるために、上記発泡剤とともに、炭素数3〜12のハロゲン化物;ハイドロフルオロエーテル等の含弗素化合物;テトラアルキルシラン;加熱により熱分解してガスを生成する化合物等を併用してもよい。
【0078】
前記熱膨張性マイクロカプセルの外殻を形成する熱可塑性樹脂は、重合性成分を(好ましくは重合開始剤存在下で)重合することによって得られる。重合性成分は、単量体成分を必須とし、架橋剤を含むことがある成分である。
【0079】
単量体成分は、一般には、重合性二重結合を1個有する(ラジカル)重合性単量体と呼ばれている成分を含む。
【0080】
単量体成分としては、特に限定はないが、たとえば、アクリロニトリル、メタクリロニトリル、フマロニトリル等のニトリル系単量体;塩化ビニル等のハロゲン化ビニル系単量体;塩化ビニリデン等のハロゲン化ビニリデン系単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル系単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリル酸エステル系単量体等を挙げることができる。なお、(メタ)アクリルは、アクリルまたはメタクリルを意味する。
【0081】
外殻を構成する熱可塑性樹脂は、ニトリル系単量体を含有する単量体成分を重合することによって得られる(共)重合体から構成される。単量体成分に占めるニトリル系単量体の重量割合が、好ましくは95重量%以上、特に好ましくは98重量%以上であると、外殻を構成する熱可塑性樹脂のガスバリア性が向上するために好ましい。ニトリル系単量体の重量割合の上限は100重量%である。
【0082】
重合性成分は、上記単量体成分以外に、重合性二重結合を2個以上有する重合性単量体(架橋剤)を含んでいてもよい。架橋剤を用いて重合させることにより、熱膨張時に内包された発泡剤の保持率(内包保持率)の低下が抑制され、効果的に熱膨張させることができる。
【0083】
架橋剤としては、特に限定はないが、たとえば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、PEG#200ジ(メタ)アクリレート、PEG#600ジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート等の化合物等を挙げることができる。これらの架橋剤は、1種または2種以上を併用してもよい。なお、(メタ)アクリレートは、アクリレートまたはメタクリレートを意味する。
【0084】
架橋剤の量については、特に限定はないが、前記単量体成分100重量部に対して、好ましくは0.01〜5重量部、さらに好ましくは0.1〜1重量部、特に好ましくは0.15〜0.8重量部である。
【0085】
熱膨張性マイクロカプセルの製造方法においては、重合開始剤を含有する油性混合物を用いて、重合性成分を重合開始剤の存在下で重合させることが好ましい。以下に示す製造方法の説明では、重複を避けるために断りのない限り、上記熱膨張性マイクロカプセルに関する種々の説明をそのまま適用してもよい。
【0086】
重合開始剤としては、特に限定はないが、過酸化物やアゾ化合物等を挙げることができる。
【0087】
過酸化物としては、たとえば、ジイソプロピルパーオキシジカーボネート、ジ−sec−ブチルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート等のパーオキシジカーボネート;t−ブチルパーオキシピバレート、t−ヘキシルパーオキシピバレート等のパーオキシエステル;カプロイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、ベンゾイルパーオキサイド等のジアシルパーオキサイド等を挙げることができる。
【0088】
アゾ化合物としては、たとえば、2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2′−アゾビスイソブチロニトリル、2,2′−アゾビス(2,4−ジメチルバレロニトリル)、2,2′−アゾビス(2−メチルプロピオネート)、2,2′−アゾビス(2−メチルブチロニトリル)等を挙げることができる。上記重合開始剤のなかでも、パーオキシジカーボネートが好ましい。
【0089】
これらの重合開始剤は、1種または2種以上を併用してもよい。重合開始剤としては、単量体成分に対して可溶な油溶性の重合開始剤が好ましい。
【0090】
重合開始剤の量については、特に限定はないが、前記単量体成分100重量部に対して0.3〜8.0重量部であると好ましい。
【0091】
前記熱膨張性マイクロカプセルの平均粒子径は特に限定されないが、好ましくは5〜50μm、より好ましくは7〜30μm、特に好ましくは10〜20μmである。
【0092】
前記平均粒子径とは、レーザー回折法で測定した体積累積頻度50%(D50)の数値のことである。本発明では、レーザー回折式粒度分布測定装置(SYMPATEC社製 HEROS&RODOS)を使用した。乾式分散ユニットの分散圧は5.0bar、真空度は5.0mbarで乾式測定法により測定し、D50値を平均粒子径とした。
【0093】
熱膨張性マイクロカプセルの粒度分布の変動係数CVは特に限定されないが、好ましくは35%以下、さらに好ましくは30%以下、特に好ましくは25%以下である。熱膨張性マイクロカプセルの変動係数CVが35%を超えると、硬化性組成物の硬化後の表面が粗くなり、汚れが付着しやすくなることがあり好ましくない。変動係数CVは、以下に示す計算式(1)および(2)で算出される。
【0094】
【数1】
【0095】
(式中、sは粒子径の標準偏差、<x>は平均粒子径、xはi番目の粒子径、nは粒子の数である。)
<中空粒子>
中空粒子の製造方法は、熱膨張性マイクロカプセルを加熱膨張させて製造する方法であれば特に限定はないが、特開2006−213930号公報に記載されている内部噴射方法等を採用することができる。
【0096】
中空粒子の真比重については、0.025〜0.100であり、好ましくは、0.030〜0.080、より好ましくは0.035〜0.075、特に好ましくは0.040〜0.065である。真比重については、イソプロピルアルコールを用いた液置換法により測定することができる。真比重が0.025より小さいとスプリングバック低減効果が低くなることがあるため好ましくない。真比重が0.100より大きい場合は、所望の比重に軽量化した硬化性組成物を得るために多くの中空粒子を添加することが必要になり、伸び物性の低下を引き起こすことがあり好ましくない。
【0097】
中空粒子の強熱残分(灰分)は、20%以下であり、好ましくは15%以下、より好ましくは12%以下、最も好ましくは10%以下である。強熱残分の好ましい下限値は0%である。中空粒子の強熱残分が20%より多い場合は、中空粒子の真比重が大きくなることがあり、さらには所望の比重に軽量化した硬化性組成物を得るために多くの中空粒子を添加することが必要になり、伸び物性の低下を引き起こすことがあり好ましくない。強熱残分についてはJIS K 0067第3法「燃焼後に強熱する方法」に記載の方法により測定することができる。具体的には、恒量となったC(g)のるつぼに試料を0.3〜0.5gの範囲でA(g)を正しく量りとる。これを電熱器で加熱し、点火して燃焼させ炭化させる。次に650〜700℃に温度調整した電気炉の中にるつぼを入れ、約30分間強熱して灰化させる。その後、るつぼをデシケーターへ移し、室温まで冷却した後にるつぼの重量B(g)を正しく量る。
【0098】
続いて得られた値を用いて下式(3)より、強熱残分を算出する。
【0099】
強熱残分(%)=(B−C)/(A−C)×100・・・(3)
中空粒子の平均粒子径については、特に限定はないが、好ましくは30〜60μm、より好ましくは35〜55μm、最も好ましくは39〜50μmである。中空粒子の平均粒子径が30μmより小さい場合は、硬化性組成物の粘度が上昇することがあり好ましくない。中空粒子の平均粒子径が60μmより大きい場合は、硬化性組成物の硬化後の表面が粗くなり、汚れが付着しやすくなることがあり好ましくない。中空粒子の平均粒子径は、上記熱膨張性マイクロカプセルの平均粒子径と同様の方法で測定することができる。
【0100】
中空粒子の粒度分布の変動係数CVは特に限定されないが、好ましくは35%以下、さらに好ましくは30%以下、特に好ましくは25%以下である。中空粒子の変動係数CVが35%を超えると、硬化性組成物の硬化後の表面が粗くなり、汚れが付着しやすくなることがあり好ましくない。変動係数CVは、上記熱膨張性マイクロカプセルの変動係数CVと同様の方法で算出することができる。
熱膨張性マイクロカプセルを加熱膨張させて中空粒子を製造する際に発泡剤が中空粒子に残存して、中空粒子はその内部に発泡剤を含有していると好ましい。
【0101】
中空粒子の含有水分率としては、特に限定はないが、好ましくは5重量%以下、さらに好ましくは3重量%以下、もっとも好ましくは2重量%以下である。含有水分率の好ましい下限値は0重量%である。含有水分率が5重量%より大きい場合は、硬化性組成物の経時安定性に問題が生じることがあり好ましくない。
【0102】
中空粒子(B)は、(A)成分100重量部に対して、好ましくは0.01から20重量部、より好ましくは0.05から10重量部、特に好ましくは0.1から5重量部の範囲で使用される。(B)成分の使用量が0.01重量部より少ない場合は、硬化性組成物の比重低下の度合いが小さく、糸引き性改良効果が十分に得られないためである。一方、(B)成分の使用量が20重量部を超えると、硬化性組成物の粘度が上昇して作業性が悪くなるだけでなく、硬化物の伸びや強度が低下し、シーリング材や接着剤として求められる性能を発揮できないためである。
【0103】
本発明の硬化性組成物には、膠質炭酸カルシウムを使用することができる。膠質炭酸カルシウムは、充填材として一般的な物質であり、硬化性組成物のチキソ性を付与したり、硬化物の破断強度や伸びを向上させることができる。また、白色であり硬化性組成物の外観を良好にする働きもある。膠質炭酸カルシウムの粒径としては、0.02〜0.2μmのものが好ましく、0.04〜0.15μmのものがさらに好ましく、0.04〜0.1μmのものが最も好ましい。膠質炭酸カルシウムは、(A)成分100重量部に対して、10〜500重量部、好ましくは50〜300重量部、さらに好ましくは80〜200重量部の範囲で使用される。
【0104】
膠質炭酸カルシウム以外に、重質炭酸カルシウムや軽質炭酸カルシウムも併用することができる。これらは膠質炭酸カルシウムに比べて一般的に粒径が大きく、硬化性組成物の粘度を下げることができ、またレベリング性を高めたい場合は、これらの割合を増やすことで可能となる。
【0105】
本発明の硬化性組成物には、炭酸カルシウム以外の充填剤を添加することができる。充填剤としては、フュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、およびカーボンブラックの如き補強性充填剤;炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、シラスバルーン、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーン、PVC粉末、PMMA粉末など樹脂粉末の如き充填剤;ガラス繊維およびフィラメントの如き繊維状充填剤等が挙げられる。充填剤を使用する場合、その使用量は(A)成分100重量部に対して1から250重量部、好ましくは10から200重量部である。
【0106】
これら充填剤の使用により強度の高い硬化物を得たい場合には、主にヒュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸およびカーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、および活性亜鉛華などから選ばれる充填剤が好ましく、(A)成分100重量部に対し、1から200重量部の範囲で使用すれば好ましい結果が得られる。また、低強度で破断伸びが大である硬化物を得たい場合には、主に酸化チタン、重質炭酸カルシウムなどの炭酸カルシウム、炭酸マグネシウム、タルク、酸化第二鉄、酸化亜鉛、およびシラスバルーンなどから選ばれる充填剤を、(A)成分100重量部に対して、5から200重量部の範囲で使用すれば好ましい結果が得られる。なお、一般的に炭酸カルシウムは、比表面積の値が大きいほど硬化物の破断強度、破断伸び、接着性の改善効果は大きくなる。もちろんこれら充填剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。炭酸カルシウムを使用する場合、表面処理微細炭酸カルシウムと重質炭酸カルシウムなどの粒径が大きい炭酸カルシウムを併用することが望ましい。表面処理微細炭酸カルシウムの粒径は0.5μm以下が好ましく、表面処理は脂肪酸や脂肪酸塩で処理されていることが好ましい。また、粒径が大きい炭酸カルシウムの粒径は1μm以上が好ましく表面処理されていないものを用いることができる。
【0107】
本発明の硬化性組成物は、シラノール縮合触媒を含有することが好ましい。シラノール縮合触媒として有機錫系硬化触媒が好ましい。有機錫系硬化触媒の具体例としては、ジメチル錫ジアセテート、ジメチル錫ビス(アセチルアセトナート)、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫フタレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(2−エチルヘキサノエート)、ジブチル錫ビス(メチルマレエート)、ジブチル錫ビス(エチルマレエート)、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ビス(オクチルマレエート)、ジブチル錫ビス(トリデシルマレエート)、ジブチル錫ビス(ベンジルマレエート)、ジブチル錫ジアセテート、ジオクチル錫ビス(エチルマレエート)、ジオクチル錫ビス(オクチルマレエート)、ジブチル錫ジメトキサイド、ジブチル錫ビス(ノニルフェノキサイド)、ジブテニル錫オキサイド、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジブチル錫ビス(エチルアセトアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物、ジオクチル錫ジラウレート、ジオクチル錫ジアセテート、ジオクチル錫ビス(アセチルアセトナート)等の4価の有機錫化合物;であるが、これらに限定されるものではない。
【0108】
上記に示した有機錫系以外の、硬化触媒も使用することができる。その具体例としては、テトラブチルチタネート、テトラプロピルチタネート、チタンテトラキス(アセチルアセトナート)、ビス(アセチルアセトナート)ジイソプロポキシチタン、ジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物;アルミニウムトリス(アセチルアセトナート)、アルミニウムトリス(エチルアセトアセテート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどの有機アルミニウム化合物類;ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類が挙げられる。また、カルボン酸および/またはカルボン酸金属塩を硬化触媒として使用することもできる。また、WO2008/078654号公報に記載されているようなアミジン化合物も使用できる。アミジン化合物の例として、1−(o−トリル)ビグアニド、1−フェニルグアニジン、1,2−ジメチル−1,4,5,6−テトラヒドロピリミジン、1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン、7−メチル−1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン等を挙げることができるが、これらに限られるものではない。
【0109】
上記硬化触媒の使用量は、(A)成分100重量部に対して0.1から20重量部、好ましくは0.2から10重量部、更に好ましくは0.3から5重量部である。0.1重量部未満では適切な硬化性が発現しなくなり、20重量部を越えると硬化が速すぎて、適切な硬化物を形成できず、所望の性能が十分発揮できなくなるためである。
【0110】
本発明の硬化性組成物には、可塑剤を使用してもよい。可塑剤の例としては、ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸ジイソデシル等の非芳香族二塩基酸エステル類;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;塩素化パラフィン類;アルキルジフェニル、部分水添ターフェニル、等の炭化水素系油;プロセスオイル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤類をあげることができる。
【0111】
また、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジイソブチル、フタル酸ジノルマルヘキシル、フタル酸ビス(2−エチルヘキシル)、フタル酸ジノルマルオクチル、フタル酸ジイソノニル、フタル酸ジノニル、フタル酸ジイソデシル、フタル酸ジイソウンデシル、フタル酸ビスブチルベンジル等のフタル酸エステル類も使用することはできるが、人体や環境への影響を考慮すると、これらの使用量は少ない方が好ましく、使用しないことが望ましい。また、上記のフタル酸エステル類を水添加して得られる、シクロヘキサンジカルボキシレートは、安全性を憂慮せずに使用することができる。この可塑剤は、BASF社からHexamoll DINCHという商品名で販売されており、容易に入手することができる。
【0112】
また、本発明の硬化性組成物には、高分子可塑剤を使用することができる。高分子可塑剤を使用すると重合体成分を分子中に含まない可塑剤である低分子可塑剤を使用した場合に比較して、初期の物性を長期にわたり維持する。更に、該硬化物にアルキド塗料を塗布した場合の乾燥性(塗装性ともいう)を改良できる。高分子可塑剤の具体例としては、ビニル系モノマーを種々の方法で重合して得られるビニル系重合体;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤;分子量500以上、更には1,000以上のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールあるいはこれらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレンやポリ−α−メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン−アクリロニトリル、ポリクロロプレン等が挙げられるが、これらに限定されるものではない。
【0113】
これらの高分子可塑剤のうちで、(A)成分の重合体と相溶するものが好ましい。この点から、ポリエーテル類やビニル系重合体が好ましい。また、ポリエーテル類を可塑剤として使用すると、表面硬化性および深部硬化性が改善され、貯蔵後の硬化遅延も起こらないことから好ましく、中でもポリプロピレングリコールがより好ましい。また、相溶性および耐候性、耐熱性の点からビニル系重合体が好ましい。ビニル系重合体の中でもアクリル系重合体および/またはメタクリル系重合体が好ましく、ポリアクリル酸アルキルエステルなどアクリル系重合体が更に好ましい。この重合体の合成法は、分子量分布が狭く、低粘度化が可能なことからリビングラジカル重合法が好ましく、原子移動ラジカル重合法が更に好ましい。また、特開2001−207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温、高圧で連続塊状重合によって得た、いわゆるSGOプロセスによる重合体を用いるのが好ましい。この可塑剤は、東亞合成株式会社からアルフォンという商品名で販売されている。
【0114】
高分子可塑剤の数平均分子量は、好ましくは500から15,000であるが、より好ましくは800から10,000であり、更に好ましくは1,000から8,000、特に好ましくは1,000から5,000である。最も好ましくは1,000から3,000である。分子量が低すぎると熱や降雨により可塑剤が経時的に流出し、初期の物性を長期にわたり維持できず、アルキド塗装性が改善できない。また、分子量が高すぎると粘度が高くなり、作業性が悪くなる。高分子可塑剤の分子量分布は特に限定されないが、狭いことが好ましく、1.80未満が好ましい。1.70以下がより好ましく、1.60以下がなお好ましく、1.50以下が更に好ましく、1.40以下が特に好ましく、1.30以下が最も好ましい。
【0115】
数平均分子量はビニル系重合体の場合はGPC法で、ポリエーテル系重合体の場合は末端基分析法で測定される。また、分子量分布(Mw/Mn)GPC法(ポリスチレン換算)で測定される。
【0116】
可塑剤は、単独で使用してもよく、2種以上を併用してもよい。また低分子可塑剤と高分子可塑剤を併用してもよい。なおこれら可塑剤は、重合体製造時に配合することも可能である。
【0117】
可塑剤の使用量は、(A)成分100重量部に対して5から150重量部、好ましくは10から120重量部、更に好ましくは20から100重量部である。5重量部未満では可塑剤としての効果が発現しなくなり、150重量部を越えると硬化物の機械強度が不足する。
【0118】
本発明の硬化性組成物には、シランカップリング剤としてアミノシランを添加することができる。アミノシランとは、分子中に反応性ケイ素基とアミノ基を有する化合物であり、通常、接着性付与剤と称される。これを使用することで、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩化ビニル、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。他にも物性調整剤、無機充填材の分散性改良剤等として機能し得る化合物である。
【0119】
アミノシランの反応性ケイ素基の具体的な例としては、既に例示した基を挙げることができるが、メトキシ基、エトキシ基等が加水分解速度の点から好ましい。加水分解性基の個数は、2個以上、特に3個以上が好ましい。アミノシランの具体例としては、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリイソプロポキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリイソプロポキシシラン、γ−(2−(2−アミノエチル)アミノエチル)アミノプロピルトリメトキシシラン、γ−(6−アミノヘキシル)アミノプロピルトリメトキシシラン、3−(N−エチルアミノ)−2−メチルプロピルトリメトキシシラン、γ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−ベンジル−γ−アミノプロピルトリメトキシシラン、N−ビニルベンジル−γ−アミノプロピルトリエトキシシラン、N−シクロヘキシルアミノメチルトリエトキシシラン、N−シクロヘキシルアミノメチルジエトキシメチルシラン、N−フェニルアミノメチルトリメトキシシラン、(2−アミノエチル)アミノメチルトリメトキシシラン、N,N’−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン等のアミノ基含有シラン類;N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン等のケチミン型シラン類を挙げることができる。
【0120】
これらのうち良好な接着性を確保するためには、γ−アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシランが好ましい。アミノシランは1種類のみ使用してもよいし、2種類以上を併用してもよい。γ−(2−アミノエチル)アミノプロピルトリメトキシシランは他のアミノシランに比べて刺激性があることが指摘されており、このアミノシランを減量する代わりに、γ−アミノプロピルトリメトキシシランを併用することで刺激性を緩和させることができる。
【0121】
アミノシランの配合量は、(A)成分100重量部に対して1〜20重量部程度が好ましく、更に2〜10重量部がより好ましい。アミノシランの配合量が1重量部未満であると十分な接着性が得られない場合がある。一方、配合量が20重量部を越えると、硬化物がもろくなって十分な強度が得られなくなり、また硬化速度が遅くなる場合がある。
【0122】
本発明の硬化性組成物には、接着性付与剤として、アミノシラン以外のシランカップリング剤を使用することができる。アミノシラン以外の接着性付与剤の具体例としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類;γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジエトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)ジメトキシメチルシラン等のイソシアネート基含有シラン類;γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基含有シラン類;β−カルボキシエチルトリエトキシシラン、β−カルボキシエチルフェニルビス(2−メトキシエトキシ)シラン、N−β−(カルボキシメチル)アミノエチル−γ−アミノプロピルトリメトキシシラン等のカルボキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルトリエトキシシラン等のビニル型不飽和基含有シラン類;γ−クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシリル)イソシアヌレート等のイソシアヌレートシラン類等を挙げることができる。また、上記シラン類を部分的に縮合した縮合体も使用できる。さらに、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポリエステル等もシランカップリング剤として用いることができる。本発明に用いるシランカップリング剤は、通常、反応性ケイ素基を有する有機重合体(A)100重量部に対して、0.1〜20重量部の範囲で使用される。特に、0.5〜10重量部の範囲で使用するのが好ましい。
【0123】
本発明の硬化性組成物に添加されるシランカップリング剤の効果は、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩化ビニル、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。
【0124】
これらのうち、良好な接着性を確保するためには、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシランが好ましい。
【0125】
シランカップリング剤の使用量としては、(A)成分100重量部に対し、0.01から20重量部程度が好ましく、0.1から10重量部程度がより好ましく、1から7重量部程度が特に好ましい。シランカップリング剤の配合量がこの範囲を下回ると、接着性が十分に得られない場合がある。一方、シランカップリング剤の配合量がこの範囲を上回ると実用的な深部硬化性が得られない場合がある。
【0126】
接着性付与剤として、上記のシランカップリング剤以外にも、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が使用できる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。しかしながら、エポキシ樹脂は添加量に応じて触媒活性を低下させる場合があるため、本発明の硬化性組成物には、エポキシ樹脂の添加量は少ないことが好ましい。エポキシ樹脂の使用量としては、(A)成分100重量部に対して、5重量部以下が好ましく、0.5重量部以下がより好ましく、実質的に含有していないことが特に好ましい。
【0127】
本発明の硬化性組成物には酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐熱性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できるが、特にヒンダードフェノール系が好ましい。同様に、チヌビン622LD,チヌビン144,CHIMASSORB944LD,CHIMASSORB119FL(以上いずれもBASFジャパン株式会社製);MARK LA−57,MARK LA−62,MARK LA−67,MARK LA−63,MARK LA−68(以上いずれも株式会社ADEKA製);サノールLS−770,サノールLS−765,サノールLS−292,サノールLS−2626,サノールLS−1114,サノールLS−744(以上いずれも三共ライフテック株式会社製)に示されたヒンダードアミン系光安定剤を使用することもできる。酸化防止剤の具体例は特開平4−283259号公報や特開平9−194731号公報にも記載されている。酸化防止剤の使用量は、(A)成分100重量部に対して0.1〜10重量部の範囲で使用するのがよく、さらに好ましくは0.2〜5重量部である。
【0128】
本発明の硬化性組成物には光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。光安定剤の使用量は、(A)成分100重量部に対して0.1〜10重量部の範囲で使用するのがよく、さらに好ましくは0.2〜5重量部である。光安定剤の具体例は特開平9−194731号公報にも記載されている。
【0129】
本発明の硬化性組成物に光硬化性物質を併用する場合、特に不飽和アクリル系化合物を用いる場合、特開平5−70531号公報に記載されているようにヒンダードアミン系光安定剤として3級アミン含有ヒンダードアミン系光安定剤を用いるのが組成物の保存安定性改良のために好ましい。3級アミン含有ヒンダードアミン系光安定剤としてはチヌビン622LD,チヌビン144,CHIMASSORB119FL(以上いずれもBASFジャパン株式会社製);MARK LA−57,LA−62,LA−67,LA−63(以上いずれも株式会社ADEKA製);サノールLS−765,LS−292,LS−2626,LS−1114,LS−744(以上いずれもBASFジャパン株式会社製)などの光安定剤が例示できる。
【0130】
本発明の硬化性組成物には紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリシレート系、置換トリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましい。紫外線吸収剤の使用量は、(A)成分100重量部に対して0.1〜10重量部の範囲で使用するのがよく、さらに好ましくは0.2〜5重量部である。フェノール系やヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤を併用して使用するのが好ましい。
【0131】
本発明の組成物は硬化物の耐薬品性が良好であるなどの理由により、サイディングボード、特に窯業系サイディングボード、など住宅の外壁の目地や外壁タイルの接着剤、外壁タイルの接着剤であって目地に接着剤がそのまま残るものなどに好適に用いられるが、外壁の意匠とシーリング材の意匠が調和することが望ましい。特に、外壁としてスパッタ塗装、着色骨材などの混入により高級感のある外壁が用いられるようになっている。本発明の組成物に直径が0.1mm以上、好ましくは0.1から5.0mm程度の鱗片状または粒状の物質が配合されていると、硬化物はこのような高級感のある外壁と調和し、耐薬品性が優れるためこの硬化物の外観は長期にわたって持続するすぐれた組成物となる。粒状の物質を用いると砂まき調あるいは砂岩調のざらつき感がある表面となり、鱗片状物質を用いると鱗片状に起因する凹凸状の表面となる。
【0132】
鱗片状または粒状の物質の好ましい直径、配合量、材料などは特開平9−53063号公報に記載されているように次の通りである。
【0133】
直径は0.1mm以上、好ましくは0.1から5.0mm程度であり、外壁の材質、模様等に合わせて適当な大きさのものが使用される。0.2mmから5.0mm程度や0.5mmから5.0mm程度のものも使用可能である。鱗片状の物質の場合には、厚さが直径の1/10から1/5程度の薄さ(0.01から1.00mm程度)とされる。鱗片状または粒状の物質は、シーリング主材内に予め混合されてシーリング材として施工現場に運搬されるか、使用に際して、施工現場にてシーリング主材内に混合される。
【0134】
鱗片状または粒状の物質は、(A)成分100重量部に対して、1から200重量部程度が配合される。配合量は、個々の鱗片状または粒状の物質の大きさ、外壁の材質、模様等によって、適当に選定される。
【0135】
鱗片状または粒状の物質としては、ケイ砂、マイカ等の天然物、合成ゴム、合成樹脂、アルミナ等の無機物が使用される。目地部に充填した際の意匠性を高めるために、外壁の材質、模様等に合わせて、適当な色に着色される。
【0136】
また、本発明の組成物には、シリケートを用いることができる。このシリケートは、架橋剤として作用し、本発明の(A)成分の有機重合体の復元性、耐久性、および、耐クリープ性を改善する機能を有する。また更に、接着性および耐水接着性、高温高湿条件での接着耐久性を改善する効果も有する。シリケートとしてはテトラアルコキシシランまたはその部分加水分解縮合物が使用できる。シリケートを使用する場合、その使用量は(A)成分100重量部に対して0.1から20重量部、好ましくは0.5から10重量部である。
【0137】
シリケートの具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、エトキシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−i−ブトキシシラン、テトラ−t−ブトキシシランなどのテトラアルコキシシラン(テトラアルキルシリケート)、および、それらの部分加水分解縮合物があげられる。
【0138】
テトラアルコキシシランの部分加水分解縮合物は、本発明の復元性、耐久性、および、耐クリープ性の改善効果がテトラアルコキシシランよりも大きい為により好ましい。
【0139】
前記テトラアルコキシシランの部分加水分解縮合物としては、例えば、通常の方法でテトラアルコキシシランに水を添加し、部分加水分解させて縮合させたものがあげられる。また、オルガノシリケート化合物の部分加水分解縮合物は、市販のものを用いることができる。このような縮合物としては、例えば、メチルシリケート51、エチルシリケート40(いずれもコルコート(株)製)等が挙げられる。
【0140】
本発明の硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n−プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ−グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルジメチルメトキシシラン、γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等の官能基を有するアルコキシシラン類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本発明の組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。
【0141】
特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、特開平5−117521号公報に記載されている化合物をあげることができる。また、ヘキサノール、オクタノール、デカノール等のアルキルアルコールの誘導体であって加水分解によりトリメチルシラノール等のRSiOHを生成するシリコン化合物を生成する化合物、特開平11−241029号公報に記載されているトリメチロールプロパン、グリセリン、ペンタエリスリトールあるいはソルビトール等のヒドロキシ基数が3以上の多価アルコールの誘導体であって加水分解によりトリメチルシラノールなどのRSiOHを生成するシリコン化合物を生成する化合物をあげることができる。
【0142】
また、特開平7−258534号公報に記載されているようなオキシプロピレン重合体の誘導体であって加水分解によりトリメチルシラノールなどのRSiOHを生成するシリコン化合物を生成する化合物もあげることができる。更に特開平6−279693号公報に記載されている架橋可能な反応性ケイ素含有基と加水分解によりモノシラノール含有化合物となりうるケイ素含有基を有する重合体を使用することもできる。
【0143】
物性調整剤は、(A)成分100重量部に対して、0.1から20重量部、好ましくは0.5から10重量部の範囲で使用される。
【0144】
本発明の硬化性組成物には、必要に応じて垂れを防止し、作業性を良くするためにチクソ性付与剤(垂れ防止剤)を添加しても良い。垂れ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。また、特開平11−349916号公報に記載されているような粒子径10から500μmのゴム粉末や、特開2003−155389号公報に記載されているような有機質繊維を用いると、チクソ性が高く作業性の良好な組成物が得られる。これらチクソ性付与剤(垂れ防止剤)は単独で用いてもよく、2種以上併用してもよい。チクソ性付与剤は(A)成分100重量部に対して、0.1から20重量部の範囲で使用される。
【0145】
本発明の組成物においては1分子中にエポキシ基を含有する化合物を使用できる。エポキシ基を有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環式エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物およびそれらの混合物等が例示できる。具体的には、エポキシ化大豆油、エポキシ化アマニ油、ビス(2−エチルヘキシル)−4,5−エポキシシクロヘキサン−1,2−ジカーボキシレート(E−PS)、エポキシオクチルステアレ−ト、エポキシブチルステアレ−ト等があげられる。これらのなかではE−PSが特に好ましい。エポキシ化合物は、(A)成分100重量部に対して0.5から50重量部の範囲で使用するのがよい。
【0146】
本発明の組成物には光硬化性物質を使用できる。光硬化性物質を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや耐候性を改善できる。光硬化性物質とは、光の作用によってかなり短時間に分子構造が化学変化をおこし、硬化などの物性的変化を生ずるものである。この種の化合物には有機単量体、オリゴマー、樹脂或いはそれらを含む組成物等多くのものが知られており、市販の任意のものを採用し得る。代表的なものとしては、不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。不飽和アクリル系化合物としては、アクリル系またはメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物であって、プロピレン(またはブチレン、エチレン)グリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の単量体または分子量10,000以下のオリゴエステルが例示される。具体的には、例えば特殊アクリレート(2官能)のアロニックスM−210,アロニックスM−215,アロニックスM−220,アロニックスM−233,アロニックスM−240,アロニックスM−245;(3官能)のアロニックスM−305,アロニックスM−309,アロニックスM−310,アロニックスM−315,アロニックスM−320,アロニックスM−325,および(多官能)のアロニックスM−400などが例示できるが、特にアクリル官能基を含有する化合物が好ましく、また1分子中に平均して3個以上の同官能基を含有する化合物が好ましい。(以上アロニックスはいずれも東亞合成株式会社の製品である。)
ポリケイ皮酸ビニル類としては、シンナモイル基を感光基とする感光性樹脂でありポリビニルアルコールをケイ皮酸でエステル化したものの他、多くのポリケイ皮酸ビニル誘導体が例示される。アジド化樹脂は、アジド基を感光基とする感光性樹脂として知られており、通常はジアジド化合物を感光剤として加えたゴム感光液の他、「感光性樹脂」(昭和47年3月17日出版、印刷学会出版部発行、第93頁から、第106頁から、第117頁から)に詳細な例示があり、これらを単独または混合し、必要に応じて増感剤を加えて使用することができる。なお、ケトン類、ニトロ化合物などの増感剤やアミン類などの促進剤を添加すると、効果が高められる場合がある。光硬化性物質は、(A)成分100重量部に対して0.1から20重量部、好ましくは0.5から10重量部の範囲で使用するのがよく、0.1重量部以下では耐候性を高める効果はなく、20重量部以上では硬化物が硬くなりすぎて、ヒビ割れを生じる傾向がある。
【0147】
本発明の組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性してえられる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコン樹脂;ブタジエン、クロロプレン、イソプレン、1,3−ペンタジエンなどのジエン系化合物を重合または共重合させてえられる1,2−ポリブタジエン、1,4−ポリブタジエン、C5からC8ジエンの重合体などの液状重合体や、これらジエン系化合物と共重合性を有するアクリロニトリル、スチレンなどの単量体とをジエン系化合物が主体となるように共重合させてえられるNBR、SBRなどの液状共重合体や、さらにはそれらの各種変性物(マレイン化変性物、ボイル油変性物など)などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。これらのうちではキリ油や液状ジエン系重合体がとくに好ましい。又、酸化硬化反応を促進する触媒や金属ドライヤーを併用すると効果が高められる場合がある。これらの触媒や金属ドライヤーとしては、ナフテン酸コバルト、ナフテン酸鉛、ナフテン酸ジルコニウム、オクチル酸コバルト、オクチル酸ジルコニウム等の金属塩や、アミン化合物等が例示される。酸素硬化性物質の使用量は、(A)成分100重量部に対して0.1から20重量部の範囲で使用するのがよく、さらに好ましくは0.5から10重量部である。前記使用量が0.1重量部未満になると汚染性の改善が充分でなくなり、20重量部をこえると硬化物の引張り特性などが損なわれる傾向が生ずる。特開平3−160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用して使用するのがよい。
【0148】
本発明の硬化性組成物には、ポリリン酸アンモニウム、トリクレジルホスフェートなどのリン系可塑剤、水酸化アルミニウム、水酸化マグネシウム、および、熱膨張性黒鉛などの難燃剤を添加することができる。上記難燃剤は単独で用いてもよく、2種以上併用してもよい。難燃剤は(A)成分100重量部に対して、5から200重量部、好ましくは10から100重量部の範囲で使用される。
【0149】
本発明の組成物には、組成物の粘度を低減し、チクソ性を高め、作業性を改善する目的で、溶剤を使用することができる。溶剤としては、特に限定は無く、各種の化合物を使用することができる。具体例としては、トルエン、キシレン、ヘプタン、ヘキサン、石油系溶媒等の炭化水素系溶剤、トリクロロエチレン等のハロゲン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶剤、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等のシリコーン系溶剤が例示される。これらの溶剤は、単独で使用してもよく、2種以上併用してもよい。
【0150】
但し、溶剤の配合量が多い場合には、人体への毒性が高くなる場合があり、また、硬化物の体積収縮などが見られる場合がある。従って、溶剤の配合量は、(A)成分100重量部に対して、3重量部以下であることが好ましく、1重量部以下であることがより好ましく、溶剤を実質的に含まないことが最も好ましい。
【0151】
本発明の硬化性組成物には、硬化性組成物または硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、防蟻剤、防かび剤などがあげられる。これらの各種添加剤は単独で用いてもよく、2種類以上を併用してもよい。本明細書にあげた添加物の具体例以外の具体例は、たとえば、特公平4−69659号、特公平7−108928号、特開昭63−254149号、特開昭64−22904号、特開2001−72854号の各公報などに記載されている。
【0152】
本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する一液型として調製される。
【0153】
一液型の硬化性組成物は、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、または、配合混練中に減圧などにより脱水するのが好ましい。脱水、乾燥方法としては、粉状などの固状物の場合は加熱乾燥法または減圧脱水法、液状物の場合は減圧脱水法または合成ゼオライト、活性アルミナ、シリカゲル、生石灰、酸化マグネシウムなどを使用した脱水法が好適である。かかる脱水乾燥法に加えて、n−プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、メチルシリケート、エチルシリケート、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加し、水と反応させて脱水してもよい。また、3−エチル−2−メチル−2−(3−メチルブチル)−1,3−オキサゾリジンなどのオキサゾリジン化合物を配合して水と反応させて脱水してもよい。また、イソシアネート化合物を少量配合してイソシアネート基と水とを反応させて脱水してもよい。アルコキシシラン化合物やオキサゾリジン化合物、および、イソシアネート化合物の添加により、貯蔵安定性が向上する。
【0154】
脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は、成分(A)100重量部に対して、0.1から20重量部、好ましくは0.5から10重量部の範囲が好ましい。
【0155】
本発明の硬化性組成物の比重は、0.9以上1.3以下であることが好ましい。下限は0.95がより好ましく、1.0がさらに好ましい。上限は1.25がより好ましく、1.2がさらに好ましい。0.9未満であると、炭酸カルシウム等のフィラーを多く充填できず、硬化物の強度が低いものとなってしまうためであり、1.3を越えると、体積あたりの重量が重いために、垂直目地に施工した場合に硬化性組成物が垂れる可能性が生じるためである。
【0156】
本発明の硬化性組成物の調製法には特に限定はなく、例えば上記した成分を配合し、ミキサーやロールやニーダーなどを用いて常温または加熱下で混練したり、適した溶剤を少量使用して成分を溶解させ、混合したりするなどの通常の方法が採用されうる。
【0157】
本発明の硬化性組成物は、大気中に暴露されると水分の作用により、三次元的に網状組織を形成し、ゴム状弾性を有する固体へと硬化する。
【0158】
本発明の硬化性組成物は、一液型の硬化性組成物に関するもので、特に容積が330ml以上(例えば330mlや500ml程度)の筒型カートリッジでノズルを有するものに保存し、加圧することでノズルから硬化性組成物を押し出す形態で使用する場合に適する。本発明は、4リットルや6リットル程度のペール缶に入れられた1液型硬化性組成物で、使用直前に専用のカートリッジに吸入して使用するものも含まれる。これらの一部は、カラートナーと呼ばれる顔料を別袋にしておき、使用直前に、ペール缶に保存されていた1液型の硬化性組成物とカラートナーを混合し、使用される形態も含む。また、柔軟なアルミラミネートで包まれたソーセージ型容器に保存された一液型の硬化性組成物も含む。硬化性組成物を内部に保存または充填する容器は、湿気が浸入して硬化性組成物と反応することがないよう、防湿性のものを使用する。
【0159】
本発明の硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などのシーリング材、接着剤、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材などに使用できる。本発明の硬化性組成物を硬化して得られる硬化物は、柔軟性および接着性に優れることから、これらの中でも、シーリング材または接着剤として用いることがより好ましい。
【0160】
また、太陽電池裏面封止材などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気絶縁材料、弾性接着剤、コンタクト型接着剤、スプレー型シール材、クラック補修材、タイル張り用接着剤、粉体塗料、注型材料、医療用ゴム材料、医療用粘着剤、医療機器シール材、食品包装材、サイディングボード等の外装材の目地用シーリング材、コーティング材、プライマー、電磁波遮蔽用導電性材料、熱伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、各種成形材料、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車部品、電機部品、各種機械部品などにおいて使用される液状シール剤等の様々な用途に利用可能である。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。また、本発明の硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤、ダイレクトグレージング用シーリング材、複層ガラス用シーリング材、SSG工法用シーリング材、または、建築物のワーキングジョイント用シーリング材、としても使用可能である。上記の中でも、シーリング材、タイル用接着剤、床用接着剤に好適に使用可能である。
【実施例】
【0161】
つぎに実施例および比較例によって本発明を具体的に説明するが、本発明はこれに限定されるものではない。
【0162】
(合成例1)熱膨張性マイクロカプセルの例示
塩化ナトリウム120g、シリカ有効成分20重量%であるコロイダルシリカ100g、ポリビニルピロリドン1.0gおよびカルボキシメチル化ポリエチレンイミン・Na塩の5%水溶液の1.0gを、イオン交換水600gに加えた後、得られた混合物のpHを2.8〜3.2に調整し、水性分散媒を調製した。
【0163】
これとは別に、アクリロニトリル130g、メタクリロニトリル106g、メチルメタクリレート3g(以上、単量体成分);エチレングリコールジメタクリレート1.0g(架橋剤);イソペンタン50g(発泡剤、沸点:27.7℃);およびアゾビスイソブチロニトリル1.5g(重合開始剤)を混合して油性混合物を調製した。
【0164】
水性分散媒および油性混合物を混合し、得られた混合液をホモミキサー(特殊機化工業社製、TKホモミキサー、回転数12000rpm)で2分間分散して、縣濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.5MPaにし、80rpmで攪拌しつつ重合温度70℃で20時間重合した。重合後に得られた重合液を濾過、乾燥して、熱膨張性マイクロカプセルを得た。得られた熱膨張性マイクロカプセルの平均粒子径は14μmであった。
【0165】
(製造例1)
合成例1で得られた熱膨張性マイクロカプセルを膨張させることによって、真比重が0.064、平均粒子径が39μmである中空粒子1を製造した。製造方法は、上述したように、特開2006−213930号公報に記載されている内部噴射方法を採用した。
【0166】
(製造例2〜4)
製造例1と同様に合成例1で得られた熱膨張性マイクロカプセルを膨張させることによって、中空粒子2〜4を製造した。得られた中空粒子の物性について表1に示した。
【0167】
【表1】
【0168】
(実施例1)
末端にメチルジメトキシシリル基を有するポリプロピレングリコール((株)カネカ製、商品名:カネカMSポリマーS203)100重量部、フタル酸エステル系可塑剤(ジェイ・プラス(株)製、商品名:DINP)60重量部、表面処理膠質炭酸カルシウム(白石工業(株)製、商品名:白艶華CCR)120重量部、タレ防止剤(楠本化成(株)製、商品名:ディスパロン6500)2重量部、を混合して充分混練りした後、3本ペイントロールに3回通して分散させた。その後、ミキサーにて120℃に加熱しながら減圧にて2時間攪拌することによって、上記組成物中の水分を除去し、500ppm以下であることを確認した。その後、50℃以下になるまで冷却した後、製造例1で得られた中空粒子(B−1)を3.63重量部、脱水剤としてビニルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:Silquest A−171)2重量部、接着性付与剤としてγ−(2−アミノエチル)アミノプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:Silquest A−1120)3重量部、硬化触媒としてジブチル錫ビスアセチルアセトナート(日東化成(株)製、商品名:ネオスタンU−220H)1重量部を加えて混練し、容量330mlの密閉容器に充填して1液型の硬化性組成物を得た。この硬化性組成物の粘度、3日後と7日後の残留タック(表面のべたつき)、硬化物の引張物性、硬化性組成物の比重、スプリングバック評価を下記の方法に従って行った。
【0169】
(実施例2)
実施例1における中空粒子(B−1)の代わりに、中空粒子(B−2)を2.55重量部用いること以外は、実施例1と同様の方法で硬化性組成物を得て、同様の評価を行った。
【0170】
(実施例3)
実施例1における中空粒子(B−1)の代わりに、中空粒子(B−3)を1.70重量部用いること以外は、実施例1と同様の方法で硬化性組成物を得て、同様の評価を行った。
【0171】
(比較例1)
実施例1における中空粒子(B−1)を使用しないこと以外は、実施例1と同様の方法で硬化性組成物を得て、同様の評価を行った。
【0172】
(比較例2)
実施例1における中空粒子(B−1)の代わりに、中空粒子(B−4)を1.30重量部用いること以外は、実施例1と同様の方法で硬化性組成物を得て、同様の評価を行った。
【0173】
(比較例3)
実施例1における中空粒子(B−1)の代わりに、中空粒子(B−8)として、マツモトマイクロスフェアーF−80SDE(松本油脂製薬株式会社製、既膨張ドライタイプ、真比重0.030、強熱残分7.1%、発泡剤種としてイソブタン(沸点:−12℃)およびノルマルペンタンを含有し、発泡剤全体におけるノルマルペンタンの重量割合は45重量%)を1.70重量部用いること以外は、実施例1と同様の方法で硬化性組成物を得て、同様の評価を行った。
【0174】
(比較例4)
実施例1における中空粒子(B−1)の代わりに、中空粒子(B−9)として、MFL−80GCA(松本油脂製薬株式会社製、無機粉体複合既膨張タイプ、真比重0.25、強熱残分73%、発泡剤種としてイソブタンおよびノルマルペンタンを含有し、発泡剤全体におけるノルマルペンタンの重量割合は45重量%)を16.0重量部用いること以外は、実施例1と同様の方法で硬化性組成物を得て、同様の評価を行った。
【0175】
上記の中空粒子の使用量は、いずれも中空粒子の体積が等しくなるように真比重から求めた値である。
【0176】
以下に、各評価方法について説明する。
【0177】
(硬化性組成物の粘度)
100ml容量のカップに泡が入らないように各硬化性組成物を充填し、BS型粘度計(トキメック社製)とローターNo.7を用いて、23℃50%RH条件下で各組成物の1rpm、2rpm、10rpmでの粘度を測定した。
【0178】
(残留タック)
上記で得られた硬化性組成物を厚み約3mmに伸ばし、23℃、50%RH条件下で放置した。3日後、7日後にその表面を指先で軽く触れ、べたつき程度を評価した。7は全くべたつき感が感じられない、5は少しべたつき感があり、3はべたつき感がきつい、という指標を元に評価を行った。
【0179】
(引張物性)
上記硬化性組成物を厚さ3mmのシート状試験体にして23℃、50%RH条件に3日間、さらに50℃乾燥機に4日間入れることで完全に硬化させた。3号ダンベル型に打ち抜いた後、島津(株)製オートグラフを用いて引張速度200mm/分で引張試験を行い、50%モジュラス、100%モジュラス、破断時の強度、破断時の伸び(それぞれ、M50、M100、TB、EBと示す)を測定した。
【0180】
(スプリングバック評価)
専用のガンを用いて、330ml容積のカートリッジから上記硬化性組成物を約4cm押し出し、すぐにガンの押し出しを止めてカートリッジをたてかけ、ノズルの先から出てきた量を計量した。これを2回繰り返し、平均値を求めた。比較例1はマイクロカプセルを含有していない例であり、この比較例1に比較したスプリングバックの良し悪しを下記のように表示した。
比較例1より大変悪い:×、少し悪い:△、同等:○、良好:◎
(硬化性組成物の比重)
容積をあらかじめ測定しておいた約10mlのミニカップに硬化性組成物を空気が入らないように充填し、その前後の重量を測定した。硬化性組成物の重量を体積で除して比重を求めた。
【0181】
以上の結果を表2に示す。
【0182】
【表2】
【0183】
本発明によると、硬化性組成物に配合する中空粒子の最適化により、この硬化性組成物のスプリングバックが改善され、ヘラ切れ性が向上し、比重の低下によりスリップやスランプが改善されることで、表面の艶が消えて意匠性が向上したシーリング材および接着剤を提供することができる。