【実施例】
【0058】
〔実施例1〕
本実施例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を59.3質量%、Al
2O
3を19.0質量%、MgOを10.0質量%、CaOを11.0質量%、B
2O
3を0.5質量%、その他の成分としてNa
2O、K
2O及びFe
2O
3を0.2質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合されたガラスバッチを得た。本実施例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が99.3質量%となっている。本実施例のガラス繊維用ガラス組成物の組成を表1に示す。
【0059】
次に、前記ガラスバッチを白金ルツボに入れ、電気炉中、1550℃の温度に6時間保持して撹拌を加えながら溶融させることにより、均質な溶融ガラスを得た。次に、得られた溶融ガラスをカーボン板上に流し出してガラスカレットを作製した。このとき前記溶融ガラスの1000ポイズ温度と液相温度とを測定し、作業温度範囲(ΔT)を算出した。
【0060】
1000ポイズ温度は、回転粘度計付高温電気炉(芝浦システム株式会社製)を用い、白金ルツボ中でガラスカレットを溶融し、回転式ブルックフィールド型粘度計を用いて溶融温度を変化させながら連続的に溶融ガラスの粘度を測定し、回転粘度が1000ポイズのときに対応する温度を測定することにより求めた。
【0061】
また、液相温度は、以下の手順により求めた。まず、ガラスカレットを粉砕し、粒径0.5〜1.5mmのガラス粒子40gを180×20×15mmの白金製ボートに入れ、1000〜1400℃の温度勾配を設けた管状電気炉で8時間以上加熱した後、該管状電気炉から取り出し、偏光顕微鏡で観察して、ガラス由来の結晶(失透)が析出し始めた位置を特定した。管状電気炉内の温度をB熱電対を用いて実測し、前記結晶が析出し始めた位置の温度を求めて液相温度とした。
【0062】
また、上述の方法で測定した1000ポイズ温度と液相温度との差を作業温度範囲(ΔT)として算出した。結果を表2に示す。
【0063】
次に、得られたガラスカレットを容器底部に1つの円形ノズルチップを有する小型の筒型白金製ブッシング内に入れ、所定の温度に加熱して溶融したのち、ノズルチップから吐出した溶融ガラスを所定の速度で巻き取ることにより引き伸ばしながら冷却固化して、真円状の円形断面を備え、繊維径13μmのガラス繊維を得た。
【0064】
次に、ノズルチップと巻き取り機の間の一本の繊維(モノフィラメント)を採取し、接触や摩擦による劣化のない状態のものをサンプルとして、本実施例で得られたガラス繊維の繊維強度、繊維弾性率を測定した。
【0065】
繊維強度は、接触、摩擦等による傷、劣化等のないモノフィラメントを、中央に直径25mmの穴の開いた所定の台紙に接着して試験片とし、該試験片を引張試験機(株式会社オリエンテック製)のつかみ具にセットし、台紙の端部を切除した後、クロスヘッド速度5mm/分で引張試験を行い、破断時の最大荷重値と繊維断面積から算出した。前記繊維断面積は、走査型電子顕微鏡(日立株式会社製、商品名:S−3400)にてモノフィラメントを観察して得られた繊維径から算出した。測定中に糸抜けや糸折れが生じた試験片は除外し、n=30の平均値を繊維強度の測定値とした。
【0066】
繊維弾性率は、前記モノフィラメントを、中央に直径50mmの穴の開いた所定の台紙に接着して試験片とし、該試験片を前記引張試験機のつかみ具にセットし、台紙の端部を切除した後、クロスヘッド速度5mm/分で引張試験を行い、初期の強度変動値とそれに対応する伸び率から算出した。測定中に糸抜けが生じた試験片は除外し、n=15の平均値を繊維弾性率の測定値とした。
【0067】
また、線膨張係数は次のようにして測定した。まず、ガラスカレットを溶融した後、冷却してガラスバルクを作製し、ガラスバルクの歪みを除くために除歪温度(660〜750℃)で2時間加熱し、8時間かけて室温(20〜25℃)まで冷却した後、該ガラスバルクから4×4×20mmの試験片を作製した。次に、前記試験片を昇温速度10℃/分で加熱し、50〜200℃の範囲の温度で、熱機械分析装置(株式会社日立ハイテクサイエンス製)を用いて伸び量を測定し、該伸び量から線膨張係数を算出した。
【0068】
本実施例で得られたガラス繊維の繊維強度、繊維弾性率及び線膨張係数を表2に示す。
【0069】
次に、本実施例では、ガラス繊維製造において、稀に生じる赤色の結晶が発生する状況を再現することにより、前記ガラス繊維用ガラス組成物と赤色の結晶との関係性を検証した。
【0070】
本実施例では、赤色の結晶が発生する状況を再現するために、前記ガラス繊維用ガラス組成物にCr
2O
3を添加するが、このCr
2O
3の添加量は、溶融ガラスに接触する部分が前記酸化クロムレンガからなるガラス溶融炉内に滞留しているガラス塊に含まれるCr
2O
3の最大濃度に基づいている。前記ガラス塊には、前記酸化クロムレンガから長時間をかけて溶出したCr
2O
3が凝縮しているため、前記溶融炉を短時間で通過して繊維化される溶融ガラスが含み得るCr
2O
3濃度は、該ガラス塊中のCr
2O
3の最大濃度を超えることはない。
【0071】
そこで、次に、本実施例のガラス繊維用ガラス組成物の全量に対し、0.10質量%の酸化クロム(Cr
2O
3)を含むようにガラスバッチを調合した。次に、前記酸化クロムを含むガラスバッチを白金製ルツボに入れ、電気炉中、1550℃の温度に6時間保持して撹拌を加えながら溶融させることにより、均質な溶融ガラスを得た。次に、得られた溶融ガラスをカーボン板上に流し出してガラスカレットを作製した。
【0072】
得られたガラスカレット40gを60×30×15mmの白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、ブッシング制御温度より低い1250℃に降温して12時間保持した。次に、前記白金製ボートからガラスを取り除き、白金表面上の該ガラスとの界面部分をレーザー顕微鏡(オリンパス株式会社製、商品名:レーザー走査型顕微鏡 LEXT OLS)を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図1及び表2に示す。
【0073】
尚、顕微鏡倍率200倍の視野(1.30×1.05mm)で10μm以上の結晶物が5個以下であるときに、赤色結晶の析出が無いと判定した。
【0074】
〔実施例2〕
本実施例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を58.8質量%、B
2O
3を1.0質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.8質量%となっている。本実施例のガラス繊維用ガラス組成物の組成を表1に示す。
【0075】
次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例のガラス繊維用ガラス組成物の1000ポイズ温度、液相温度、作業温度範囲、線膨張係数と、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表2に示す。
【0076】
次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図2及び表2に示す。
【0077】
〔実施例3〕
本実施例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を58.3質量%、B
2O
3を1.5質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.3質量%となっている。本実施例のガラス繊維用ガラス組成物の組成を表1に示す。
【0078】
次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例のガラス繊維用ガラス組成物の1000ポイズ温度、液相温度、作業温度範囲、線膨張係数と、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表2に示す。
【0079】
次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図3及び表2に示す。
【0080】
〔比較例1〕
本比較例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を59.8質量%含み、B
2O
3を全く含まないガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本比較例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が99.8質量%となっている。本比較例のガラス繊維用ガラス組成物の組成を表1に示す。
【0081】
次に、本比較例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして本比較例のガラス繊維用ガラス組成物の1000ポイズ温度、液相温度、作業温度範囲、線膨張係数と、本比較例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表2に示す。
【0082】
次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図4及び表2に示す。
【0083】
〔比較例2〕
本比較例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を59.5質量%、B
2O
3を0.3質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本比較例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が99.5質量%となっている。本比較例のガラス繊維用ガラス組成物の組成を表1に示す。
【0084】
次に、本比較例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして本比較例のガラス繊維用ガラス組成物の1000ポイズ温度、液相温度、作業温度範囲、線膨張係数と、本比較例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表2に示す。
【0085】
次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図5及び表2に示す。
【0086】
〔比較例3〕
本比較例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を57.8質量%、B
2O
3を2.0質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本比較例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が97.8質量%となっている。本比較例のガラス繊維用ガラス組成物の組成を表1に示す。
【0087】
次に、本比較例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして本比較例のガラス繊維用ガラス組成物の1000ポイズ温度、液相温度、作業温度範囲、線膨張係数と、本比較例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表2に示す。
【0088】
次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図6及び表2に示す。
【0089】
【表1】
【0090】
【表2】
【0091】
図4、5及び表1から、B
2O
3の含有量がガラス繊維用ガラス組成物の全量の0.5質量%未満の場合(比較例1、比較例2)には、ガラスカレットのガラス組織中に微小な粒子(赤色の結晶)が生じていることがわかる。
【0092】
これに対し、
図1〜3及び表1から、B
2O
3を、ガラス繊維用ガラス組成物の全量の0.5〜1.5質量%の範囲で含む場合(実施例1〜3)には、ガラスカレットのガラス組織中に微小な粒子(赤色の結晶)が全く生じていないことがわかる。
【0093】
また、
図6及び表1から、B
2O
3の含有量がガラス繊維用ガラス組成物の全量の1.5質量%を超える場合(比較例3)には、ガラスカレットのガラス組織中に微小な粒子(赤色の結晶)は生じないものの、83GPa以上の十分な繊維弾性率及び4.0GPa以上の十分な繊維強度を得ることができないことがわかる。
【0094】
さらに、表1〜2から、比較例1のガラス繊維用ガラス組成物の組成において、0.5〜1.5質量%のB
2O
3を含み、B
2O
3の含有量だけSiO
2の含有量を減じた実施例1〜3のガラス繊維用ガラス組成物によれば、ガラス繊維において比較例1と同等の繊維強度及び繊維弾性率を得ることができることが明らかである。
【0095】
〔実施例4〕
本実施例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を58.8質量%、Al
2O
3を19.5質量%、MgOを9.0質量%、CaOを12.0質量%、B
2O
3を0.5質量%、その他の成分としてNa
2O、K
2O及びFe
2O
3を0.2質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合されたガラスバッチを得た。本実施例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が99.3質量%となっている。本実施例のガラス繊維用ガラス組成物の組成を表3に示す。
【0096】
次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率を測定した。結果を表3に示す。
【0097】
次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図7及び表3に示す。
【0098】
〔実施例5〕
本実施例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、Al
2O
3を19.0質量%、B
2O
3を1.0質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合した以外は、実施例4と全く同一にしてガラスバッチを得た。本実施例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.8質量%となっている。本実施例のガラス繊維用ガラス組成物の組成を表3に示す。
【0099】
次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率を測定した。結果を表3に示す。
【0100】
次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図8及び表3に示す。
【0101】
〔実施例6〕
本実施例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、Al
2O
3を18.5質量%、B
2O
3を1.5質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合した以外は、実施例4と全く同一にしてガラスバッチを得た。本実施例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.3質量%となっている。本実施例のガラス繊維用ガラス組成物の組成を表3に示す。
【0102】
次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率を測定した。結果を表3に示す。
【0103】
次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図9及び表3に示す。
【0104】
〔実施例7〕
本実施例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、Al
2O
3を18.2質量%、MgOを10.0質量%、CaOを11.8質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合した以外は、実施例5と全く同一にしてガラスバッチを得た。本実施例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.8質量%となっている。本実施例のガラス繊維用ガラス組成物の組成を表3に示す。
【0105】
次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率を測定した。結果を表3に示す。
【0106】
次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図10及び表3に示す。
【0107】
〔比較例4〕
本比較例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、Al
2O
3を20.0質量%含み、B
2O
3を全く含まないガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合した以外は、実施例4と全く同一にしてガラスバッチを得た。本比較例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が99.8質量%となっている。本比較例のガラス繊維用ガラス組成物の組成を表3に示す。
【0108】
次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図11及び表3に示す。
【0109】
【表3】
【0110】
図11及び表3から、B
2O
3を全く含まない比較例4の場合には、ガラスカレットのガラス組織中に微小な粒子(赤色の結晶)が生じていることがわかる。
【0111】
これに対し、
図7〜10及び表3から、比較例4のガラス繊維用ガラス組成物の組成において、0.5〜1.5質量%のB
2O
3を含み、B
2O
3の含有量だけAl
2O
3の含有量を減じた実施例4〜6のガラス繊維用ガラス組成物、及び1.0質量%のB
2O
3を含み、Al
2O
3含有量とCaO含有量を減じ、MgO含有量を増加した実施例7のガラス繊維用ガラス組成物によれば、赤色結晶の析出を無くすことができることが明らかである。
【0112】
〔実施例8〕
本実施例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を58.3質量%、Al
2O
3を19.0質量%、MgOを12.0質量%、CaOを10.0質量%、B
2O
3を0.5質量%、その他の成分としてNa
2O、K
2O及びFe
2O
3を0.2質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合されたガラスバッチを得た。本実施例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が99.3質量%となっている。本実施例のガラス繊維用ガラス組成物の組成を表4に示す。
【0113】
次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率を測定した。結果を表4に示す。
【0114】
次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図12及び表4に示す。
【0115】
〔実施例9〕
本実施例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、Al
2O
3を18.7質量%、MgOを11.8質量%、B
2O
3を1.0質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合した以外は、実施例8と全く同一にしてガラスバッチを得た。本実施例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.8質量%となっている。本実施例のガラス繊維用ガラス組成物の組成を表4に示す。
【0116】
次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率を測定した。結果を表4に示す。
【0117】
次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図13及び表4に示す。
【0118】
〔実施例10〕
本実施例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、Al
2O
3を18.5質量%、MgOを11.5質量%、B
2O
3を1.5質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合した以外は、実施例8と全く同一にしてガラスバッチを得た。本実施例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.3質量%となっている。本実施例のガラス繊維用ガラス組成物の組成を表4に示す。
【0119】
次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率を測定した。結果を表4に示す。
【0120】
次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図14及び表4に示す。
【0121】
〔比較例5〕
本比較例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を58.8質量%含み、B
2O
3を全く含まないガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合した以外は、実施例8と全く同一にしてガラスバッチを得た。本比較例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が99.8質量%となっている。本比較例のガラス繊維用ガラス組成物の組成を表4に示す。
【0122】
次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図15及び表4に示す。
【0123】
【表4】
【0124】
図15及び表4から、B
2O
3を全く含まない比較例5の場合には、ガラスカレットのガラス組織中に微小な粒子(赤色の結晶)が生じていることがわかる。
【0125】
これに対し、
図12〜14及び表4から、比較例5のガラス繊維用ガラス組成物の組成において、0.5〜1.5質量%のB
2O
3を含み、B
2O
3の含有量だけSiO
2のみ、又はSiO
2、Al
2O
3、MgOの含有量を減じた実施例8〜10のガラス繊維用ガラス組成物によれば、赤色結晶の析出を無くすことができることが明らかである。
【0126】
〔比較例6〕
本比較例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を57.0質量%、Al
2O
3を22.0質量%、MgOを9.8質量%、CaOを10.0質量%、B
2O
3を1.0質量%、その他の成分としてNa
2O、K
2O及びFe
2O
3を0.2質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合されたガラスバッチを得た。本比較例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.8質量%となっている。本比較例のガラス繊維用ガラス組成物の組成を表5に示す。
【0127】
次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図16及び表5に示す。
【0128】
〔比較例7〕
本比較例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を59.0質量%、Al
2O
3を20.0質量%、MgOを12.0質量%、CaOを7.8質量%、B
2O
3を1.0質量%、その他の成分としてNa
2O、K
2O及びFe
2O
3を0.2質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合されたガラスバッチを得た。本比較例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.8質量%となっている。本比較例のガラス繊維用ガラス組成物の組成を表5に示す。
【0129】
次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図17及び表5に示す。
【0130】
〔比較例8〕
本比較例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を57.5質量%、Al
2O
3を22.0質量%、MgOを11.8質量%、CaOを7.5質量%、B
2O
3を1.0質量%、その他の成分としてNa
2O、K
2O及びFe
2O
3を0.2質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合されたガラスバッチを得た。本比較例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.8質量%となっている。本比較例のガラス繊維用ガラス組成物の組成を表5に示す。
【0131】
次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図18及び表5に示す。
【0132】
【表5】
【0133】
図16〜18及び表5から、ガラス繊維用ガラス組成物の全量に対するAl
2O
3の含有量が20.0質量%を超えている比較例6、CaOの含有量が10.0質量%未満の比較例7、Al
2O
3の含有量が20.0質量%を超え、CaOの含有量が10.0質量%未満の比較例8の場合には、B
2O
3の含有量が0.5〜1.5質量%の範囲であっても赤色結晶の析出を防止できないことが明らかである。
【0134】
〔比較例9〕
本比較例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を59.8質量%、Al
2O
3を16.0質量%、MgOを10.5質量%、CaOを12.5質量%、B
2O
3を1.0質量%、その他の成分としてNa
2O、K
2O及びFe
2O
3を0.2質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合されたガラスバッチを得た。本比較例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.8質量%となっている。本比較例のガラス繊維用ガラス組成物の組成を表6に示す。
【0135】
次に、本比較例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、本比較例のガラス繊維用ガラス組成物の1000ポイズ温度、液相温度、作業温度範囲を測定した。また、前記ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸し、実施例1と全く同一にして本比較例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率を測定した。結果を表6に示す。
【0136】
次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図19及び表6に示す。
【0137】
〔比較例10〕
本比較例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を58.3質量%、Al
2O
3を18.0質量%、MgOを9.0質量%、CaOを13.5質量%、B
2O
3を1.0質量%、その他の成分としてNa
2O、K
2O及びFe
2O
3を0.2質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合されたガラスバッチを得た。本比較例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.8質量%となっている。本比較例のガラス繊維用ガラス組成物の組成を表6に示す。
【0138】
次に、本比較例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、本比較例のガラス繊維用ガラス組成物の1000ポイズ温度、液相温度、作業温度範囲を測定した。また、前記ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸し、実施例1と全く同一にして本比較例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率を測定した。結果を表6に示す。
【0139】
次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図20及び表6に示す。
【0140】
〔比較例11〕
本比較例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を59.8質量%、Al
2O
3を20.0質量%、MgOを8.0質量%、CaOを11.0質量%、B
2O
3を1.0質量%、その他の成分としてNa
2O、K
2O及びFe
2O
3を0.2質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合されたガラスバッチを得た。本比較例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.8質量%となっている。本比較例のガラス繊維用ガラス組成物の組成を表6に示す。
【0141】
次に、本比較例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、本比較例のガラス繊維用ガラス組成物の1000ポイズ温度、液相温度、作業温度範囲を測定した。また、前記ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸し、実施例1と全く同一にして本比較例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率を測定した。結果を表6に示す。
【0142】
次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図21及び表6に示す。
【0143】
〔比較例12〕
本比較例では、まず、各ガラス原料を混合し、溶融したときに、全量に対し、SiO
2を57.0質量%、Al
2O
3を18.0質量%、MgOを13.0質量%、CaOを10.8質量%、B
2O
3を1.0質量%、その他の成分としてNa
2O、K
2O及びFe
2O
3を0.2質量%含むガラス繊維用ガラス組成物の溶融物(溶融ガラス)となるように調合されたガラスバッチを得た。本比較例のガラス繊維用ガラス組成物は、SiO
2、Al
2O
3、MgO及びCaOの合計量が98.8質量%となっている。本比較例のガラス繊維用ガラス組成物の組成を表6に示す。
【0144】
次に、本比較例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、本比較例のガラス繊維用ガラス組成物の1000ポイズ温度、液相温度、作業温度範囲を測定した。また、前記ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸したが、本比較例ではMgOの含有量が12.0質量%を超えているために、1000ポイズ温度と液相温度とが近く、作業温度範囲が狭くなっている。この結果、本比較例ではガラス繊維の紡糸を安定に行うことができず、ガラス繊維(モノフィラメント)の繊維強度、繊維弾性率を測定することができなかった。結果を表6に示す。
【0145】
次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスバッチを調合し、該酸化クロムを含むガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製した。次に、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を
図22及び表6に示す。
【0146】
【表6】
【0147】
図19〜22及び表6から、ガラス繊維用ガラス組成物の全量に対するAl
2O
3の含有量が17.5質量%未満の比較例9、CaOの含有量が13.0質量%を超えている比較例10、MgOの含有量が8.5質量%未満の比較例11の場合には、ガラスカレットのガラス組織中に微小な粒子(赤色の結晶)は生じないものの、83GPa以上の十分な繊維弾性率を得ることができないことが明らかである。
【0148】
また、MgOの含有量が12.0質量%を超えている比較例12の場合には、1000ポイズ温度と液相温度とが近く、作業温度範囲が50℃未満と狭いため、ガラス繊維の紡糸を安定に行うことが難しく、ガラス繊維の製造に適さない。