(58)【調査した分野】(Int.Cl.,DB名)
前記ガラス成分が、ガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□〜1MΩ/□の範囲の値をとるとき、前記焼成物の抵抗温度係数がプラスの範囲を示すガラスフリットに由来するガラス成分を含む請求項1乃至5の何れかに記載の厚膜抵抗体。
二酸化ルテニウムを含むルテニウム系導電性粒子と、鉛成分を実質的に含まないガラスフリットであって、ガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□〜1MΩ/□の範囲の値をとるとき、前記焼成物の抵抗温度係数がプラスの範囲を示すガラスフリットと、有機ビヒクルとを含む抵抗組成物であって、前記ルテニウム系導電性粒子と前記ガラスフリットとの含有率が異なる2以上の抵抗組成物を用い、前記2以上の抵抗組成物のそれぞれの配合割合を調整してなる抵抗組成物を被印刷物上に印刷した後、600〜900℃で焼成する、100Ω/□〜10MΩ/□の範囲内の抵抗値を有する厚膜抵抗体の製造方法。
二酸化ルテニウムを含むルテニウム系導電性粒子と、鉛成分を実質的に含まないガラスフリットであって、ガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□〜1MΩ/□の範囲の値をとるとき、前記焼成物の抵抗温度係数がプラスの範囲を示すガラスフリットと、機能性フィラーと、有機ビヒクルとを含む抵抗組成物であって、前記機能性フィラーが鉛成分を実質的に含まないガラス粒子と当該ガラス粒子よりも粒径が小さく鉛成分を実質的に含まない導電粒子とからなる複合粒子である抵抗組成物を被印刷物上に印刷した後、600〜900℃で焼成する厚膜抵抗体の製造方法。
【背景技術】
【0002】
一般に、厚膜抵抗体(以下、単に抵抗体と記すこともある)は、種々の絶縁基板上に導電性成分及びガラスを主成分とする抵抗組成物からなる膜を形成し、これを焼成して作製される。具体的には、抵抗組成物は、主としてペーストや塗料の形で、電極を形成したアルミナ基板上やセラミック複合部品等に所定の形状に印刷され、600〜900℃程度の高温で焼成される。その後、必要によりオーバーコートガラスで保護被膜を形成した後、必要に応じてレーザートリミング等により抵抗値の調整を行う。
【0003】
要求される抵抗体の特性としては、抵抗温度係数(TCR)が小さいこと、電流雑音が小さいこと、また耐電圧特性、更にプロセス安定性が良好であること(例えばプロセスの変動による抵抗値変化が小さいこと)等がある。
【0004】
従来、一般に、導電性成分としてルテニウム系の酸化物粉末を用いた抵抗組成物(以下ルテニウム系抵抗組成物ともいう)が広く使用されている。このルテニウム系抵抗組成物は、空気中での焼成が可能であり、導電性成分とガラスの比率を変えることにより、広い範囲の抵抗値を有する抵抗体が容易に得られる。
【0005】
ルテニウム系抵抗組成物の導電性成分としては、二酸化ルテニウム(以下、酸化ルテニウム(IV)と記すこともある)や、パイロクロア構造のルテニウム酸ビスマス、ルテニウム酸鉛等、ペロブスカイト構造のルテニウム酸バリウム、ルテニウム酸カルシウム等のルテニウム複合酸化物類、またルテニウムレジネート等のルテニウム前駆体が使用されている。特に、ガラスの含有比率の高い高抵抗域の抵抗組成物においては、二酸化ルテニウムよりも、上述したルテニウム酸ビスマス等のルテニウム複合酸化物が好ましく使用されている。これは、ルテニウム複合酸化物の抵抗率が一般的に二酸化ルテニウムよりも1桁以上高く、二酸化ルテニウムに比べて多量に配合でき、そのため抵抗値のばらつきが少なく、電流雑音特性、TCR等の抵抗特性が良好で、安定な抵抗体が得られやすいことによる。
【0006】
一方、厚膜抵抗体を構成する成分として用いられるガラスとしては、主として酸化鉛を含むガラスが使用されている。その主な理由は、酸化鉛含有ガラスの軟化点が低く、流動性、導電性成分との濡れ性が良好で基板との接着性も優れ、また熱膨張係数がセラミック、特にアルミナ基板と適合する等、厚膜抵抗体の形成に適した、優れた特性を有するためである。
【0007】
しかし鉛成分は毒性があり、人体への影響及び公害の点から望ましくない。近年環境問題に対処するためエレクトロニクス製品がWEEE(廃電気電子機器指令 Waste Electrical and Electronic Equipment)及びRoHS(特定有害物質使用制限 Restriction of the Use of the Certain Hazardous Substances)対応を要求される中で、抵抗組成物においても鉛フリーの素材の開発が強く求められている。
【0008】
また、鉛成分はアルミナに対する濡れ性が非常に良いために、焼成時にアルミナ基板上に濡れ広がり過ぎ、最終的に得られる抵抗体の形状が意図しないものとなってしまうこともある。
【0009】
そこで、従来からルテニウム酸ビスマスやルテニウム酸アルカリ土類金属塩等を導電性成分として用い、鉛を含まないガラスを使用した抵抗組成物がいくつか提案されている(特許文献1、2参照)。
【0010】
しかし、鉛を含まないガラスを使用した厚膜抵抗体において、従来の鉛含有ガラスを用いた厚膜抵抗体に匹敵するような、広い抵抗値範囲に亘って優れた特性を示すものは未だに得られておらず、特に、100kΩ/□以上の高抵抗域の抵抗体を形成するのが困難であった。それは以下の理由によると考えられる。
【0011】
一般に高抵抗域で用いられるルテニウム複合酸化物の多くは、抵抗組成物を高温で焼成する際、ガラスと反応してルテニウム複合酸化物より抵抗率の低い二酸化ルテニウムに分解する傾向がある。とりわけ鉛成分を含まないガラスと組み合わせた場合、焼成中(例えば800℃〜900℃付近)に二酸化ルテニウムへの分解を抑制することが困難であった。このため、抵抗値が低下して所望の高抵抗値が得られず、また膜厚依存性や焼成温度依存性が大きくなるといった問題もあった。
【0012】
特許文献1に記載されているように粒径の大きい(例えば平均粒径1μm以上)ルテニウム複合酸化物粉末を用いることによって、或る程度、上述した分解を抑制できる。しかし、このような粗大な導電性粉末を使用した場合、電流雑音や負荷特性が悪化し、良好な抵抗特性が得られなくなる。
【0013】
また、ルテニウム複合酸化物の一つであるルテニウム酸ビスマスの分解の抑制には、特許文献2に記載されているようにビスマス系ガラスと組み合わせることが有効であるが、この組み合せの抵抗組成物から得られる抵抗体は、高抵抗域におけるTCRが大きくマイナスになる。
【0014】
本願発明者等が電子顕微鏡により抵抗体の焼成膜を観察したところ、ガラスのマトリックスに対して微細な導電性粒子が分散し、これらの導電性粒子同士が接触してネットワーク(網目状構造)を形成している様子が見られる。それ故、こうしたネットワークが導電パスとなって導電性を示していると考えられる。
【0015】
ところで従来のルテニウム複合酸化物と鉛を含まないガラスを組み合わせて用いた抵抗組成物においては、特に、導電性粒子の含有量が少ない高抵抗域において、安定的に上述したネットワーク構造(以下、導電ネットワークと記すこともある)を作ることが極めて難しかった。このため、鉛を含まず、且つ、TCR特性、電流雑音特性、ばらつき等の諸特性に優れた厚膜抵抗体は未だに産業上の実用化には到っていない。
【発明を実施するための形態】
【0024】
〔ルテニウム系導電性粒子〕
本発明におけるルテニウム系導電性粒子としては、二酸化ルテニウム(RuO
2)を50質量%以上含むことが好ましく、二酸化ルテニウム(RuO
2)のみからなるものが更に好ましい。これにより本発明の抵抗組成物は、高温で焼成した後も、安定な導電ネットワークがより容易に形成され、ばらつきが小さく、高抵抗域においても良好な抵抗特性が得られ、その他の電気特性及びプロセス安定性の良好な厚膜抵抗体を得ることができる。
【0025】
ルテニウム系導電性粒子は、二酸化ルテニウムと、後述する他の導電性粒子とが混合或いは複合化されたものであっても良い。
【0026】
但し、抵抗体中に異なる種類の導電成分が混在すると電流雑音特性が劣化する場合がある。従って、本発明においてルテニウム系導電性粒子は実質的に二酸化ルテニウムのみから成ることが好ましい。
【0027】
特に本発明におけるルテニウム系導電性粒子は、鉛成分を実質的に含まず、更には、ビスマス成分も実質的に含まれないことが好ましい。
【0028】
なお、本発明において「実質的に〜のみから成る」及び「〜を実質的に含まない」という文言は、意図しない不純物のような「微量の含有」を許容し、例えば当該不純物の含有量が1000ppm以下の場合を言い、100ppm以下であることが特に望ましい。
【0029】
本発明において、ルテニウム系導電性粒子としては、微細な粒径のものを用いることが望ましく、例えばレーザー式粒度分布測定装置を用いて測定した粒度分布の質量基準の積算分率50%値(以下、平均粒径D
50と記す)が0.01〜0.2μmの範囲にあることが好ましい。このような微細なルテニウム系導電性粒子を使用することにより、高抵抗域においても抵抗体焼成膜中でルテニウム系導電性粒子が良好に分散し、均一で安定なルテニウム系導電性粒子とガラスからなる微細構造(導電ネットワーク)が当該膜中に形成され、優れた特性の抵抗体が得られる。
【0030】
ルテニウム系導電性粒子の平均粒径D
50が0.01μm以上であることにより、ガラスとの反応を抑え易くなり、安定した特性を得やすい。また平均粒径D
50が0.2μm以下であることにより、電流雑音や負荷特性を改善し易くなる傾向がある。ルテニウム系導電性粒子としては、特に平均粒径D
50が0.03〜0.1μmであることが好ましい。
【0031】
〔ガラスフリット〕
本発明においてガラスフリットとしては、ガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□〜1MΩ/□の範囲の値をとるとき、前記焼成物の抵抗温度係数(TCR)がプラスの範囲を示すようなガラスフリットを用いる。
本発明者等は、このような特性のガラスフリットを用いた場合に、ルテニウム系導電性粒子との配合比率を調整したり、後述する無機添加剤を適宜加える等によって、100kΩ/□以上の高抵抗域においてもTCRを小さくすることができることを見出した。例えば本発明の厚膜抵抗体は、100Ω/□〜10MΩ/□の広い抵抗域において、TCRを±100ppm/℃以下にコントロールすることができる。
【0032】
好ましくは、ガラスフリットはガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□〜1MΩ/□の抵抗値を示すとき、焼成物のTCRが0ppm/℃より大きく、且つ、500ppm/℃以下であり、好ましくは400ppm/℃以下であり、更に好ましくは300ppm/℃以下であるようなガラスフリットである。
【0033】
このような、高抵抗域でTCRがプラスであるガラス組成としては、酸化物換算でBaO 20〜45モル%、B
2O
3 20〜45モル%、SiO
2 25〜55モル%を含むものが好ましい。
【0034】
BaOが20モル%以上であることにより、特に高抵抗域でのTCRをプラスの範囲にすることができ、45モル%以下であることにより焼成後の膜形状を良好に保ち易くなる。
【0035】
B
2O
3が20モル%以上であることにより、緻密な焼成膜を得やすくなり、45モル%以下であることにより、特に高抵抗域でのTCRをプラスの範囲にすることができる。
【0036】
SiO
2が25モル%以上であることにより、焼成後の膜形状を良好に保ち易く、55モル%以下であることにより、緻密な焼成膜を得やすくなる。
【0037】
より好ましくは、当該ガラスフリットは、酸化物換算でBaO 23〜42モル%、B
2O
323〜42モル%、SiO
2 35〜52モル%である。
【0038】
また、ガラスフリットのガラス転移点Tgは、450〜700℃の範囲であることが好ましい。転移点Tgが450℃以上であることにより容易に高抵抗を得ることができ、700℃以下であることにより緻密な焼成膜を得ることができる。Tgは580〜680℃の範囲内にあることが好ましい。
【0039】
抵抗組成物を焼成する焼成温度との関係では、Tgは(焼成温度−200)℃以下であることが好ましく、その場合、下式(1)が成り立つ。
Tg≦(焼成温度−200)〔℃〕・・・式(1)
また、ガラスフリットの平均粒径D
50は5μm以下であることが好ましい。D
50が5μm以下であることにより高抵抗域での抵抗値の調整が容易になるが、D
50が小さすぎると抵抗体にボイドが発生しやすくなる傾向がある。特に好ましいD
50の範囲は0.5〜3μmである。
【0040】
ガラスフリットには、更に、TCRやその他の抵抗特性を調整し得る金属酸化物、例えばZnO、Al
2O
3、Li
2O、Na
2O、K
2O、Nb
2O
5、Ta
2O
5、TiO
2、CuO、MnO
2、La
2O
3といった成分を1種又は2種以上含有されていても良い。これらの成分は少量でも高い効果を得ることができるが、例えば、ガラスフリット中に合計量で0.1〜10mol%程度含有させることができ、目的とする特性に応じて適宜調整することができる。
【0041】
〔機能性フィラー〕
本発明の厚膜抵抗体を形成する抵抗組成物は、上述した無機成分の他、機能性フィラー(以下、単にフィラーと記すこともある)を含むことが好ましい。
【0042】
ここで本発明において機能性フィラーとしては、前出のガラスフリットとは別に焼成時における流動性が低いガラス粒子を準備し、そのガラス粒子の表面やその内部近傍に、前出ルテニウム系導電性粒子とは別に準備する他の導電性粒子(以下、導電粒子という)を付着・固着させて複合化させた複合粒子が好ましい。なお、本発明においては「ガラスフリット」という用語と「ガラス粒子」という用語とを区別して用いる。
また、本発明においては厚膜抵抗体を構成するガラス成分については、ガラスフリットに由来するガラス成分を「第1のガラス成分」といい、ガラス粒子に由来するガラス成分を「第2のガラス成分」ということもある。
【0043】
前記ガラス粒子としては、焼成時における流動性が低ければ組成を問わず用いることができる。一例としてはそのガラス転移点Tg’が500℃以上であり、特には前出ガラスフリットのガラス転移点Tgよりもガラス転移点Tg’が高い(すなわちTg<Tg’が成り立つ)ガラスであることが好ましい。ガラス転移点Tg’の高いガラス組成の例としては、硼珪酸亜鉛系ガラス、硼珪酸鉛系ガラス、硼珪酸バリウム系や硼珪酸カルシウム系といった硼珪酸アルカリ土類金属ガラスなどが挙げられるが、本発明はこれらに限定されない。
【0044】
抵抗組成物の焼成温度との関係では、Tg’は(焼成温度−150)℃以上であることが好ましく、その場合、下式(2)が成り立つ。
Tg’≧(焼成温度−150)〔℃〕・・・式(2)
【0045】
機能性フィラーにおいてガラス粒子と複合化される導電粒子としては、銀(Ag)、金(Au)、白金(Pt)、パラジウム(Pd)、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)などの金属粒子や、これらの金属を含む合金粒子の他、ルテニウム系の導電粒子を用いることもできる。
【0046】
ルテニウム系の導電粒子としては、二酸化ルテニウムの他、ルテニウム酸ネオジム(Nd
2Ru
2O
7)、ルテニウム酸サマリウム(Sm
2Ru
2O
7)、ルテニウム酸ネオジムカルシウム(NdCaRu
2O
7)、ルテニウム酸サマリウムストロンチウム(SmSrRu
2O
7)、これらの関連酸化物等のパイロクロア構造を有するルテニウム複合酸化物;ルテニウム酸カルシウム(CaRuO
3)、ルテニウム酸ストロンチウム(SrRuO
3)、ルテニウム酸バリウム(BaRuO
3)等のペロブスカイト構造を有するルテニウム複合酸化物;ルテニウム酸コバルト(Co
2RuO
4)、ルテニウム酸ストロンチウム(Sr
2RuO
4)等、その他のルテニウム複合酸化物;並びに、これらの混合物が含まれる。
【0047】
当該導電粒子としては、上記例示したものの一種または二種以上を用いることができ、更には、酸化銀、酸化パラジウム等の前駆体化合物と複合化して用いても良い。
【0048】
但し、前述したように、抵抗体中に異なる種類の導電成分が混在すると電流雑音特性が劣化する場合がある。それ故、機能性フィラーにおいてガラス粒子と複合化される導電粒子としては、二酸化ルテニウムを主成分とするルテニウム系導電性粒子を用いることが特に好ましい。
【0049】
また当該導電粒子としては、微細な粒径のものを用いることが望ましく、平均粒径D
50が0.01〜0.2μmの範囲にあることが好ましい。
【0050】
本発明において機能性フィラーの製法に限定はなく、例えば予め準備したガラス粒子の表面に、置換析出法、無電解メッキ法、電解法等の周知の手法により前出の導電粒子を析出させて複合化させても良い。本発明においては、予め準備したガラス粒子と導電粒子とをメディアミル等の公知の撹拌手段によって攪拌混合し、熱処理(例えば850〜900℃)した後に粉砕することにより、ガラス粒子の表面及び/又は内部に導電粒子を固着させる、いわゆるメカノケミカル的手法により製造することが望ましい。
【0051】
このような手法によれば、相対的に粒径の大きいガラス粒子の表面及びその近傍の内部に対し、粒径の小さい導電粒子が付着・固着した分散構造の複合粒子を容易に製造することができる。
【0052】
本発明に係る抵抗組成物はTCRやその他の抵抗特性の調整が容易であるため、後述する無機添加剤を用いても良好な抵抗体を得ることができるが、上述の機能性フィラーを含有することにより、高抵抗域における抵抗値のばらつきが少なく安定し、耐電圧特性、静電気特性、抵抗値変化等の諸特性が改善された抵抗体を得ることができる。
【0053】
フィラーの平均粒径D
50は0.5〜5μmの範囲であることが望ましい。フィラーの平均粒径D
50が0.5μm以上であることにより、緻密な焼成膜が得られ易く、5μm以下であることにより耐電圧特性が劣化しにくくなる。特には平均粒径D
50が1〜3μmが好ましい。
【0054】
なお、フィラーの平均粒径D
50は、例えば前出のメカノケミカル的手法で製造する場合は粉砕条件を調整することによって制御することができる。
【0055】
フィラー中に含まれる導電粒子の含有量はフィラーに対して20〜35質量%であることが好ましい。20質量%以上であることにより、焼成後に得られる厚膜抵抗体の抵抗値を調整/制御することが容易であり、35質量%以下であることによりSTOL特性(耐電圧特性)が良好となる。
【0056】
後述する実施例1で
図1に基づいて示すが、鉛成分を実質的に含まないガラス粒子を含み、ガラスフリットのガラス転移点Tgが(焼成温度−200)℃以下であり、前記ガラス粒子のガラス転移点Tg’が(焼成温度−150)℃以上である場合には、抵抗体におけるガラスは海島構造を形成するようになる。この海島構造は、ガラスフリットに由来するガラス(第1のガラス成分)が海(マトリックス)を形成し、ガラス粒子に由来するガラス(第2のガラス成分)が島を形成している構造である。このような構造は抵抗組成物の成分として機能性フィラーを添加した場合に限らず、機能性フィラーに代えてガラス粒子を使用した場合にも形成される。このような構造は従来の抵抗体には見られない構造である。
【0057】
〔その他の添加剤〕
本発明に係る抵抗組成物には、本発明の効果を損なわない範囲であれば、TCR、電流雑音、ESD特性、STOL等の抵抗特性の改善や調整の目的で一般的に使用される種々の無機添加剤、例えばNb
2O
5、Ta
2O
5、TiO
2、CuO、MnO
2、ZnO、ZrO
2、La
2O
3、Al
2O
3、V
2O
5、ガラス(以下添加ガラスという。なお、「添加ガラス」は、前記の第1のガラス成分、第2のガラス成分とは異なる別のガラス成分である。)等を単独で又は組み合わせて添加してもよい。このような添加剤を配合することにより、広い抵抗値範囲に亘ってより優れた特性の抵抗体を製造することができる。添加量は、その使用目的に応じて適宜調整されるが、例えばNb
2O
5等の金属酸化物系の添加剤の場合は、一般的には、抵抗組成物中の無機固形分の合計100質量部に対して合計で0.1〜10質量部程度である。また添加ガラスを添加する場合は、10質量部を超えて添加する場合もある。
【0058】
〔有機ビヒクル〕
本発明においてルテニウム系導電性粒子、ガラスフリットは、必要に応じて配合される機能性フィラーや添加剤と共に有機ビヒクルと混合されることにより、スクリーン印刷等の抵抗組成物を適用する方法に適したレオロジーを備えるペースト状、塗料状、又はインク状の抵抗組成物となる。
【0059】
有機ビヒクルとしては、特に制限はなく、抵抗組成物において一般的に用いられているテルピネオール(以下、TPOと記す)、カルビトール、ブチルカルビトール、セロソルブ、ブチルセロソルブやこれらのエステル類、トルエン、キシレン等の溶剤や、これらにエチルセルロースやニトロセルロース、アクリル酸エステル、メタアクリル酸エステル、ロジン等の樹脂を溶解した溶液が用いられる。ここで必要により可塑剤、粘度調整剤、界面活性剤、酸化剤、金属有機化合物等を添加してもよい。
【0060】
有機ビヒクルの配合量も、抵抗組成物において一般的に配合される範囲でよく、抵抗体を形成するための印刷等の適用方法に応じて適宜調整される。好ましくは無機固形分50〜80質量%、有機ビヒクル50〜20質量%程度である。
【0061】
〔抵抗組成物〕
本発明における抵抗組成物は常法に従って、ルテニウム系導電性粒子、ガラスフリット及び必要に応じて配合される機能性フィラーや添加剤と共に、有機ビヒクルと混合・混練され、均一に分散させることによって製造されるが、本発明において組成物はペースト状に限られるものではなく、塗料状またはインク状でも良い。
【0062】
〔抵抗体の製造〕
本発明における抵抗組成物は常法に従ってアルミナ基板、ガラスセラミック基板等の絶縁性基板や積層電子部品等の被印刷物上に、印刷法等により所定の形状に印刷/塗布され、乾燥後、例えば600〜900℃程度の高温で焼成される。このようにして形成された厚膜抵抗体には、通常オーバーコートガラスを焼付けることにより保護被膜が形成され、必要に応じてレーザートリミング等により抵抗値の調整が行われる。
【0063】
また、抵抗組成物の商品としての流通形態としては、抵抗値が異なる抵抗体を形成する抵抗組成物を2種以上組み合わせてセットで販売、流通することが多い。
本発明の抵抗組成物はこれに適したものであり、本発明の抵抗組成物の2種以上をセットで提供することにより、使用者において適宜複数の抵抗組成物を配合して所望の抵抗値を有する抵抗体を作製することが可能な抵抗組成物を調製することができる、これにより、類似した組成の複数の抵抗組成物によって広い範囲の抵抗領域をカバーすることができる。
【実施例】
【0064】
以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。
【0065】
実施例で作製した各試料についての物性値の測定は以下の測定機器及び測定方法によって行った。
[Rs(シート抵抗)]
Agilent社製デジタルマルチメーター「3458A」を使用し測定し焼成膜厚8μmに換算した。試料20個について測定しその平均値をとった。
[TCR]
上記デジタルマルチメーターを使用して、+25〜+125℃(H−TCR)、−55〜+25℃(C−TCR)を測定した。試料20個について測定しその平均値をとった。
[Tg,Tg’,TMA]
Bruker AXS社製熱機械測定装置「TMA4000S」を使用した。試料20個について測定しその平均値をとった。
[STOL]
1/4W定格電圧の2.5倍(但し最大400V)を5秒間かけた後の抵抗値変化率を測定した。試料20個について測定しその平均値をとった。
[平均粒径D
50]
HORIBA社製レーザー回折/散乱式粒子径分布測定装置「LA950V2」を使用した。試料20個について測定しその平均値をとった。
【0066】
<予備実験A>
まず、ガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□〜1MΩ/□の範囲の値をとるとき、焼成物の抵抗温度係数がプラスの範囲を示すガラスフリットを得るための実験を行った。
【0067】
(実験例1〜42)
表1に示すガラス組成で、平均粒径D
50が2μmのガラスフリットを作製し、それぞれを試料1〜42とした。
【0068】
次に、これとは別に準備した二酸化ルテニウム(昭栄化学工業株式会社製、製品名:Ru−109、平均粒径D
50=0.05μm)と各試料1〜42とを20:80の質量比で混合した後、当該混合物100質量部に対し、有機ビヒクルを30質量部加えた組成物を3本ロールで混練することにより、試料1〜42に対応する実験例1〜42のペーストをそれぞれ作製した。なお、ここで有機ビヒクルとしてはエチルセルロースを15質量部、溶剤としてTPOを残部加えたものを用いた。
【0069】
各ペーストを用いて、予め銀厚膜電極が焼き付けられたアルミナ基板上に対して1mm×1mmのパターンを印刷し、室温で10分間のレベリングを行った後、150℃で10分間乾燥させ、その後、大気中において850℃(ピーク温度)で60分焼成することによって、各試料1〜42に対応する実験例1〜42の焼成パターンを得た。
【0070】
当該焼成パターンのそれぞれについて抵抗値Rsを測定し、おおよそ1kΩ/□程度及びそれ以上の抵抗値が得られている焼成パターンについては、更に+25℃〜+125℃のTCR(以下、H−TCR)と−55℃〜+25℃のTCR(以下、C−TCR)を測定した。
【0071】
その測定結果を表1に併記する。
また、表1において、Rsが1kΩ/□に満たなかったものについては、H−TCR及びC−TCRの測定を省略し、表中に“−”の符号を記した。
【0072】
実験例1〜42のうち、H−TCR、C−TCRが共にプラスの範囲であった実験例11、13、30、38、39、41で用いた試料11、13、30、38、39、41については、前述と同様にして二酸化ルテニウムと各試料との質量比が10:90のペーストを作製し、焼成パターンを得た。
【0073】
その後、同様に各パターンについて抵抗値Rsを測定し、更に、抵抗値が測定できなかったものを除いてH−TCRとC−TCRを測定した。その結果を表1に併記する。
【0074】
【表1】
【0075】
表1に示される通り、上述の予備実験Aにおいては、試料1〜42の中で試料13だけが、全てのTCRがプラスの範囲であった。
【0076】
そこで更に詳細な検討を行うために、上述と同様にして、組成が試料13と同様にSiO
2、B
2O
3、BaOを主たる成分として含むガラスフリット(表2の試料43〜50)を新たに準備した後、二酸化ルテニウムと各ガラスフリットとの質量比が30:70、20:80、10:90となるペーストを作製した。次に、それぞれのペーストを用いて焼成パターンを得、ガラス転移点Tg、熱膨張係数α、焼成パターンの抵抗値Rs、H−TCR、C−TCRをそれぞれ測定した。
【0077】
更に、焼成膜表面の緻密性を評価するため、各パターンの焼成面を目視で観察し、その表面上にハッキリと凹凸を確認できるものを“×”、わずかに凹凸を確認できるものを“△”、殆ど凹凸を観察できないものを“○”とした。
【0078】
その結果を表2に併記する。
【0079】
【表2】
【0080】
表2の結果から理解されるように、実験例13、43、44、45、46、47、49で用いた試料13、43、44、45、46、47、49のガラスフリットは、ガラスフリット及び二酸化ルテニウムの混合物の焼成物が1kΩ/□〜1MΩ/□の範囲の値をとるとき、前記焼成物の抵抗温度係数がプラスの範囲を示すガラスフリットであるといえる。
後述する実施例では試料13のガラスフリットを含む抵抗組成物から抵抗体を作製した実施例を示す。
【0081】
<予備実験B>
次に、耐電圧特性、静電気特性、抵抗値変化等の諸特性を改善するための機能性フィラーについての予備実験を行った。
【0082】
焼成時における流動性の低いガラスとして、酸化物換算でSiO
276.4モル%、B
2O
3 3.3モル%、Al
2O
3 6.5モル%、CaO 11.1モル%、MgO 1.2モル%、La
2O
3 0.3モル%、K
2O 1.1モル%、ZrO
20.1モル%を含むガラス粒子(平均粒径D
50=2μm、Tg’=713℃)を準備した。
【0083】
またフィラー中に含まれる導電粒子として、二酸化ルテニウム(Ru−109)を準備し、フィラー中の導電粒子の含有量がそれぞれ20質量%、30質量%、40質量%となるように、前出のガラス粒子と導電粒子とを混合し、直径5mmのメディアを用い、アルコールを溶媒としてボールミルで攪拌した後、880℃で熱処理を行い、再度、前出のボールミルによってフィラーの平均粒径D
50が3μmになるまで粉砕して、3種のフィラーを作製した。
【0084】
得られたフィラーを走査型電子顕微鏡(SEM)で観察したところ、相対的な粒径が大きい(約3μm)ガラス粒子の表面とその内部近傍に、相対的に小粒径(0.05μm)の二酸化ルテニウムの粒子が付着/分散した構造が観察された。
【0085】
これらのフィラーと前出の試料13のガラスフリットとを質量比で50:50、40:60、30:70となるよう混合し、予備実験Aと同様にして焼成パターンを作製した。
【0086】
更に、これらのフィラーと二酸化ルテニウム(Ru−109)と試料13のガラスフリットとを、質量比で45:5:50、35:5:60、25:5:70となるよう混合し、同様に焼成パターンを作製した。
【0087】
これらの各パターンについて、それぞれの抵抗値RsとSTOLを測定した。その結果を表3に示す。
なお、表3において、抵抗値が大きく値が安定しないためにSTOLの測定が困難であったものについては測定を省略し、表中に“−”で記した。
【0088】
【表3】
【0089】
表3に示されるように、フィラー中における導電粒子の含有量が20質量%の場合は、フィラーだけでは導通しないが、二酸化ルテニウムを少量添加することにより導通が得られた。一方、当該含有量が40質量%になると、実用に適さないほどSTOLが大きくなった。
【0090】
以上の結果から、本発明においてはフィラー中の導電粒子の含有量は20〜35質量%の範囲内が好ましいことが分かった。
【0091】
<実施例1>
本実施例は抵抗組成物が機能性フィラーを成分として含有する場合についての実施例である。
(実施例1−1〜実施例1−6)
二酸化ルテニウム(Ru−109)、予備実験Bで作製した導電粒子含有量が30質量%のフィラー、及び、予備実験Aで作製した試料13のガラスフリットを、表4に示す質量部で配合し、これに対して有機ビヒクルを30質量部加えた組成物を3本ロールで混練して実施例1−1〜実施例2−6のペーストを作製した。なお、有機ビヒクルとしてはエチルセルロースを15質量部、溶剤としてTPOを残部加えたものを用いた。
【0092】
各ペーストを用いて、予め銀厚膜電極が焼き付けられたアルミナ基板上に1mm×1mmのパターンを印刷し、室温で10分間のレベリングを行った後、150℃で10分間乾燥させ、その後、大気中において850℃(ピーク温度)で60分焼成することによって、抵抗体を得た。
【0093】
各抵抗体に対し、シート抵抗値Rs、H−TCR、C−TCR、抵抗値のバラツキCV、ノイズ、STOLを測定した。なおCVは抵抗体20個から求めた値である。
【0094】
測定した結果を表4に併記する。
なお、表4において、ノイズに関してオーバーレンジのため、測定が困難なものについては測定を省略し、表中に“−”で記した。
また各ペースト毎に目標値として設定した抵抗値Rsについても、参考程度に表4に併記した。
【0095】
【表4】
【0096】
表4から明らかなように、本発明によれば、広い抵抗域(100Ω/□〜10MΩ/□)の全範囲内において、電流雑音特性や負荷特性のいずれにも優れた抵抗体を得ることができ、特にTCRについては、±100ppm/℃以下を達成することができた。
【0097】
更に、得られた抵抗体を走査型顕微鏡−エネルギー分散型X線分析(SEM−EDX)で分析した結果を
図1に示す。
図1Aは抵抗体のSEM画像であり、
図1BはBa元素についてマッピングした結果を示す図であり、
図1CはRu元素についてマッピングした結果を示す図である。
【0098】
図1Bに示されるように実施例1で得られた抵抗体には、Baを含む連続体領域(以下、マトリクス記す)の中に、Baを含まない不連続体(以下、島と記す)が複数点在する、所謂、海島構造(sea-island structure)が見られる。この実施例1で使用したガラスフリットにはBaが含まれており、一方、フィラーとして使用したガラス粒子にはBaが含まれていないことから、本発明の抵抗体は、ガラスフリットのマトリクス中に、焼成時の流動性が低いガラス粒子が島状に残り、このような海島構造が形成されたものと推測される。また、
図1Cに示されるようにガラス粒子の表面にはRuが高濃度で存在していることが確認できることから、本発明の抵抗体中においてRuO
2粒子は均一に分散しておらず、少なくとも抵抗体中の一部に、石鹸の泡状の偏りのあるネットワーク構造を備えているものと推察される。
【0099】
<実施例2>
本実施例は抵抗組成物が機能性フィラーを含有しない場合についての実施例である。
(実施例2−1〜実施例2−6)
組成が試料13に近いガラスフリットとして、新たに試料51(酸化物換算でSiO
238.1モル%、B
2O
3 26.1モル%、BaO 27.2モル%、Al
2O
30.8モル%、SrO 0.5モル%、ZnO 3.6モル%、Na
2O 3.2モル%、K
2O 0.5モル%)を準備した。なお試料51のTgは629.4℃であった。
【0100】
また、TCRを調整する目的でペーストに添加ガラスを加えた。当該添加ガラスとして、酸化物換算でSiO
243.0モル%、B
2O
3 18.2モル%、Al
2O
3 13.0モル%、CaO 2.8モル%、MgO 3.2モル%、SnO
2 1.3モル%、Co
2O
3 1.9モル%、K
2O 6.6モル%、Li
2O 10.0モル%)を準備した。添加ガラスのガラス転移点は494.0℃であった。
【0101】
二酸化ルテニウム(Ru−109)、添加ガラス、及び、試料51のガラスフリットを、表5に示す質量部で配合し、これに対して有機ビヒクルを30質量部と、更に表5に示す質量部のその他の添加剤とを加えた組成物を3本ロールで混練してペーストを作製した。なお、有機ビヒクルとしてはエチルセルロースを15質量部、溶剤としてTPOを残部加えたものを用いた。
【0102】
各ペーストを用いて、予め銀厚膜電極が焼き付けられたアルミナ基板上に1mm×1mmのパターンを印刷し、室温で10分間のレベリングを行った後、150℃で10分間乾燥させ、その後、大気中において850℃(ピーク温度)で60分焼成することによって、抵抗体を得た。
各抵抗体に対し、シート抵抗値Rs、H−TCR、C−TCR、抵抗値のバラツキCV、ノイズ、を測定した。
測定した結果を表5に併記する。
【0103】
【表5】
【0104】
表5から明らかなように、本発明は機能性フィラーを含まない場合でも、広い抵抗域においてTCRを±100ppm/℃以下にすることができた。
【0105】
<実施例3>
使用するルテニウム系導電性粒子を平均粒径D
50=0.20μmの二酸化ルテニウム(昭栄化学工業株式会社製、製品名:Ru−108)、及び、D
50=0.02μmの二酸化ルテニウム(昭栄化学工業株式会社製、製品名:Ru−105)にそれぞれ変更した他は予備実験A、予備実験B、実施例1及び実施例2と同様の実験を行ったところ、ほぼ同様の結果が得られた。